Hybrid-Type Transparent Organic Light Emitting Diode with High Contrast Using Switchable Windows
Abstract
:1. Introduction
2. Result and Discussion
2.1. Proposed Optical Structures of the Hybrid-Type Transparent Display
2.1.1. Proposed Switching Window Using a Heilmeier Type LC Cell for Polarized Mode Transparent OLED Cell
2.1.2. Proposed Switching Window Using a Ch-LC Cell with Dichroic Dye for Non-Polarized Mode Transparent OLED Cell
2.2. Measured Optical Performances of the Polarized Mode and the Non-Polarized Mode for Hybrid-Type Transparent OLED Display
2.2.1. Electro-Optical Characteristics of the OLED Cell as a Display Area
2.2.2. Proposed Switching Window Using a Heilmeier Type LC Cell for Polarized Mode Transparent OLED Cell
2.2.3. Electro-Optical Characteristics of the Non-Polarized Mode LC Cell as a Window Part
2.3. Comparison of Contrast Ratio for the Proposed Two Transparent OLED Device
3. Methods and Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuo, C.-W.; Liao, Y.-Y.; Tseng, B.-S.; Yu, T.-H.; Yu, H.-Y.; Hsieh, H.-Y.; Lin, J.-Y.; Lin, C.-H.; Lai, Y.-H.; Chuang, C.-T. Flat type transparent display demonstrating field-sequential-color. SID Symp. Dig. Tech. Pap. 2016, 47, 168–170. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lo, W.-B.; Liu, K.-H.; Liu, C.-Y.; Lu, J.-K.; Sugiura, N. P-144L: Late-news poster: Novel transparent LCD with tunable transparency. Proc. SID 2012, 43, 1159–1162. [Google Scholar] [CrossRef]
- Okuyama, K.; Nakahara, T.; Numata, Y.; Nakamura, T.; Mizuno, M.; Sugiyama, H.; Nomura, S.; Shunpei, T.; Yoshihide, Q.; Hirofumi, K.; et al. 94-4L: Highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light. SID Symp. Dig. Tech. Pap. 2017, 48, 1166–1169. [Google Scholar] [CrossRef]
- Yamamoto, A.; Yanai, Y.; Nagai, M.; Suzuki, R.; Ito, Y. 16-3: A Novel Transparent Screen Using Cholesteric Liquid Crystal Dots. SID Symp. Dig. Tech. Pap. 2016, 47, 185–188. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.J.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Beaujuge, P.M.; Reynolds, J.R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320. [Google Scholar] [CrossRef]
- Park, S.H.K.; Ryu, M.; Yang, S.; Byun, C.; Hwang, C.; Cho, K.I.; Im, W.-B.; Kim, Y.-E.; Kim, T.-S.; Ha, Y.-B.; et al. 18.1: Invited Paper: Oxide TFT Driving Transparent AMOLED. SID Symp. Dig. Tech. Pap. 2010, 41, 245–248. [Google Scholar] [CrossRef]
- Mun, B.-J.; Kang, W.S.; Lee, J.H.; Choi, H.C.; Kim, B.K.; Kang, B.; Lim, Y.J.; Lee, S.H.; Lee, G.-D. A high transmittance color liquid crystal display mode with controllable color gamut and transparency. Opt. Express 2014, 22, 12505–12512. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-W.; Lin, C.-H.; Liao, Y.-Y.; Lai, Y.-H.; Chuang, C.-T.; Yeh, C.-N.; Lu, J.-K.; Sugiura, N. Blur-free transparent LCD with hybrid transparency. Dig. Tech. Pap. 2013, 44, 70–73. [Google Scholar] [CrossRef]
- Feng, Z.; Wu, Y.; Surigalatu, B.; Zhang, X.; Chang, K.-C. Large transparent display based on liquid crystal technology. Appl. Opt. 2020, 59, 4915–4920. [Google Scholar] [CrossRef]
- Cho, H.; Choi, J.M.; Yoo, S. Highly transparent organic light-emitting diodes with a metallic top electrode: The dual role of a Cs2CO3 layer. Opt. Express 2011, 19, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.W.; Lampande, R.; Choe, D.C.; Ko, I.J.; Park, J.H.; Pode, R.; Kwon, J.H. Next generation smart window display using transparent organic display and light blocking screen. Opt. Express 2018, 26, 8493–8502. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Chen, Z.-Y.; Jiang, N.-R.; Liu, Y.-F.; Bi, Y.-G.; Zhang, X.-L.; Han, W.; Feng, J.; Sun, H.-B. Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays. Org. Electron. 2020, 76, 105494. [Google Scholar] [CrossRef]
- Riedl, T.; Gorrn, P.; Kowalsky, W. Transparent Electronics for See-Through AMOLED Displays. J. Disp. Technol. 2009, 5, 501–508. [Google Scholar] [CrossRef]
- Li, C.-C.; Tseng, H.-Y.; Liao, H.-C.; Chen, H.-M.; Hsieh, T.; Lin, S.-A.; Jau, H.-C.; Wu, Y.-C.; Hsu, Y.-L.; Hsu, W.-H.; et al. Enhanced image quality of OLED transparent display by cholesteric liquid crystal back-panel. Opt. Express 2017, 25, 29199–29206. [Google Scholar] [CrossRef]
- Yeon, J.; Koh, T.-W.; Cho, H.; Chung, J.; Yoo, S.; Yoon, J.-B. Actively transparent display with enhanced legibility based on an organic light-emitting diode and a cholesteric liquid crystal blind panel. Opt. Express 2013, 21, 10358–10366. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Huh, J.-W.; Yoon, T.-H. Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes. AIP Adv. 2015, 5, 047118. [Google Scholar] [CrossRef]
- Lee, J.-H.; Zhu, X.; Lin, Y.-H.; Choi, W.K.; Lin, T.-C.; Hsu, S.-C. High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device. Opt. Express 2005, 13, 9431–9438. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Xianyu, H.; Ge, Z.; Zhu, X.; Lu, Y.H.; Teng, C.-W.; Liu, K.C.; Wu, S.T. Hybrid transflective displays using vertically integrated transparent OLED and reflective LCD. SID Symp. Dig. Tech. Pap. 2007, 38, 1810–1812. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lin, C.-F.; Lee, J.-H.; Chang, W.-F.; Chiu, T.-L.; Liu, S.-W. Fully integration of transflective hybrid device consisting of PSCT and In-cell OLED. SID Symp. Dig. Tech. Pap. 2011, 42, 1602–1605. [Google Scholar] [CrossRef]
- Uchida, T.; Katagishi, T.; Onodera, M.; Shibata, Y. Reflective multicolor liquid-crystal display. IEEE Trans. Electron Devices 1986, 33, 1207–1211. [Google Scholar] [CrossRef]
- Huh, J.-W.; Yu, B.-H.; Heo, J.; Ji, S.-M.; Yoon, T.-H. Technologies for display application of liquid crystal light shutters. Mol. Cryst. Liq. Cryst. 2017, 664, 120–129. [Google Scholar] [CrossRef]
- Chilaya, G. Cholesteric Liquid Crystals: Optics, Electro-optics, and Photo-optics. In Chirality in Liquid Crystals; Bahr, H.-S.C., Ed.; Springer: New York, NY, USA, 2001; pp. 159–185. [Google Scholar]
- Yamaguchi, T.; Yamaguchi, H.; Kawata, Y. Driving voltage of reflective cholesteric liquid crystal displays. J. Appl. Phys. 1999, 85, 7511–7516. [Google Scholar] [CrossRef]
- Jakeman, E.; Raynes, E.P. Electro-optic response times in liquid crystals. Phys. Lett. 1972, 39, 69–70. [Google Scholar] [CrossRef]
- Scheffer, T.; Nehring, J.; Annu. Supertwisted nematic (STN) liquid crystal displays. Rev. Mater. Sci. 1997, 27, 555–583. [Google Scholar] [CrossRef]
- Jeong, H.-C.; Aya, S.; Kang, S.; Araoka, F.; Ishikawa, K.; Takezoe, H. Are chiral dopants with higher twisting power advantageous to induce wider temperature range of the blue phases? Liq. Cyrstals 2013, 40, 951–958. [Google Scholar] [CrossRef]
On State | Off State | |||||
---|---|---|---|---|---|---|
Cell Gap (µm) | Response Time (ms) | Voltage (v) | Luminance (cd/m2) | Voltage (v) | Luminance (cd/m2) | ΔV (V) |
1.6 | 30 | 6 | 331 | 0.4 | 112 | 5.6 |
2.6 | 37 | 7 | 296 | 1.3 | 66 | 5.7 |
3.2 | 44 | 9 | 293 | 1.5 | 62 | 7.5 |
5.6 | 57 | 11 | 244 | 2.1 | 37 | 8.9 |
7.2 | 68 | 11 | 202 | 2.2 | 30 | 6.8 |
8 | 77 | 14 | 193 | 2.8 | 28 | 11.2 |
9.2 | 83 | 14 | 136 | 3.3 | 16 | 10.7 |
10 | 90 | 14 | 120 | 3.5 | 13 | 10.5 |
On State | Off State | |||||
---|---|---|---|---|---|---|
wt (%) | Response Time (ms) | Voltage (v) | Luminance (cd/m2) | Voltage (v) | Luminance (cd/m2) | ΔV (V) |
3.4 | 50 | 9 | 304 | 1.5 | 59 | 7.5 |
5 | 51 | 9 | 274 | 1.8 | 45 | 7.2 |
6.2 | 57 | 11 | 244 | 2.2 | 37 | 8.8 |
7.4 | 60 | 11 | 229 | 2.4 | 29 | 8.6 |
On State | Off State | |||||
---|---|---|---|---|---|---|
wt (%) | Response Time (ms) | Voltage (v) | Luminance (cd/m2) | Voltage (v) | Luminance (cd/m2) | ΔV (V) |
3 | 178 | 6.0 | 654 | 5.2 | 138 | 0.8 |
4 | 234 | 6.6 | 530 | 5.6 | 100 | 1.0 |
5 | 278 | 8.4 | 442 | 6.2 | 72 | 2.2 |
6 | 315 | 8.8 | 359 | 6.2 | 45 | 2.6 |
7 | 334 | 8.6 | 266 | 6.4 | 32 | 2.2 |
8 | 389 | 8.8 | 110 | 6.4 | 18 | 2.4 |
Cell Gap (μm) | Contrast Ratio |
---|---|
1.6 | 22:1 |
2.6 | 37:1 |
3.2 | 40:1 |
5.6 | 65:1 |
7.2 | 79:1 |
8 | 84:1 |
9.2 | 144:1 |
10 | 175:1 |
wt % | Contrast Ratio |
---|---|
3.4 | 42:1 |
5 | 54:1 |
6.2 | 65:1 |
7.4 | 82:1 |
wt % | Contrast Ratio |
---|---|
3 | 38:1 |
4 | 52:1 |
5 | 71:1 |
6 | 111:1 |
7 | 153:1 |
8 | 264:1 |
Concentration of Dichroic Dyes (wt %) | Liquid Crystal (g) | Type 1. Blue Dye (g) | Type 2. Red Dye (g) | Type 3. Yellow Dye (g) | Type 4. Cyan Dye (g) |
---|---|---|---|---|---|
3% | 2.91 | 0.02727 | 0.02727 | 0.02727 | 0.0081 |
4% | 2.88 | 0.03636 | 0.03636 | 0.03636 | 0.0109 |
5% | 2.85 | 0.04545 | 0.04545 | 0.04545 | 0.0135 |
6% | 2.82 | 0.05454 | 0.05454 | 0.05454 | 0.0163 |
7% | 2.79 | 0.06363 | 0.06363 | 0.06363 | 0.0190 |
8% | 2.76 | 0.07272 | 0.07272 | 0.07272 | 0.0218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Lee, C.-H.; Choi, J.-H.; Choi, S.-H.; Kang, B.; Lee, G.-D. Hybrid-Type Transparent Organic Light Emitting Diode with High Contrast Using Switchable Windows. Int. J. Mol. Sci. 2023, 24, 1097. https://doi.org/10.3390/ijms24021097
Choi S, Lee C-H, Choi J-H, Choi S-H, Kang B, Lee G-D. Hybrid-Type Transparent Organic Light Emitting Diode with High Contrast Using Switchable Windows. International Journal of Molecular Sciences. 2023; 24(2):1097. https://doi.org/10.3390/ijms24021097
Chicago/Turabian StyleChoi, Seongwook, Chang-Hee Lee, Ju-Hyeok Choi, Sung-Hoon Choi, Bongsoon Kang, and Gi-Dong Lee. 2023. "Hybrid-Type Transparent Organic Light Emitting Diode with High Contrast Using Switchable Windows" International Journal of Molecular Sciences 24, no. 2: 1097. https://doi.org/10.3390/ijms24021097
APA StyleChoi, S., Lee, C. -H., Choi, J. -H., Choi, S. -H., Kang, B., & Lee, G. -D. (2023). Hybrid-Type Transparent Organic Light Emitting Diode with High Contrast Using Switchable Windows. International Journal of Molecular Sciences, 24(2), 1097. https://doi.org/10.3390/ijms24021097