Anti-IL17A Halts the Onset of Diabetic Retinopathy in Type I and II Diabetic Mice
Abstract
:1. Introduction
2. Results
2.1. Clinical Data of STZ-Type 1 Diabetic Mice That Received an Intravitreal Injection of Anti-IL-17A
2.2. Anti-IL-17A Intravitreal Injection Treatment in STZ-Type I Diabetic Mice
2.3. Clinical Data of STZ-Diabetic Mice That Received a 50 μg/mL Intravitreal Injection of Anti-IL-17A
2.4. Anti-IL-17A Intravitreal Injection Decreases Retinal Inflammation in STZ-Diabetic Mice
2.5. Anti-IL17A Intravitreal Injection Halt ZO-1 Degradation in the Retinal Vasculature of STZ-Type I-Diabetic Mice
2.6. Clinical Data of Leprdb-Type II Diabetic Mice Receiving Weekly 10 μg/mL, 25 μg/mL, or 50 μg/mL of Anti-IL-17A Intraperitoneal Injections 2- and 6-Months Post-Diabetes
2.7. Anti-IL17A Treatment Regimen in Leprdb Type II Diabetic Mice
2.8. Clinical Data of db/db Mice Receiving Weekly 50 μg/mL of Anti-IL-17A Intraperitoneal Injections 2 Months Post-Diabetes
2.9. Anti-IL17A Treatments Significantly Decrease Inflammatory Cytokine Production in the Retina of Leprdb Type II Diabetic Mice
2.10. Anti-IL17A Halts ZO-1 Degradation in db/db Diabetic Mice 2 Months Post-Diabetes
2.11. Clinical Data of Leprdb-Type II Diabetic Mice That Received Intraperitoneal Injections of 50 μg/mL of Anti-IL-17A 6 Months after Diabetic Conditions Were Confirmed
2.12. Anti-IL17A Treatments Halt Occludin Degradation in db/db Type II Diabetic Mice; 6 Months Post-Diabetes
2.13. Anti-IL17A Treatments Halts Capillary Degeneration and the Early Onset of Diabetic Retinopathy in Leprdb Type II Diabetic Mice 6 Months Post-Diabetes
3. Discussion
4. Materials and Methods
4.1. C57BL/6 Streptozotocin (STZ)-Induced Diabetic Mice
4.2. Anti-IL17A Intravitreal Injection
4.3. IL-17A ELISA Analysis
4.4. Ella Automated Immunoassay Analysis
4.5. Wes Automated Western Blot Analysis
4.6. Leprdb (db/db) Diabetic Mice
4.7. Anti-IL17A Intraperitoneal Treatment Regimen
4.8. Retinal Capillary Degeneration
4.9. Statistical Analysis
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
αIL-17A | anti-Interleukin-17A antibody |
A1C | Hemoglobin glycated average blood sugar |
ANOVA | Analysis of variance |
Act1 | adaptor molecule 1 |
BCA | Bicinchoninic acid |
BW | Body weight |
CU | Chemiluminescent unit |
DB | Diabetic |
db/db | Leprdb mice |
ELISA | Enzyme-linked immunosorbent assay |
ERK5 | Extracellular signal receptor kinase 5 |
FADD | Fas-associated death domain |
FBG | Fasted blood glucose |
FDA | Food and drug administration |
Het | Heterozygous |
IgG1 | Immunoglobulin G1 |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
IL-17A | Interleukin-17A |
IL17R | Interleukin-17A receptor |
IL-17RA | Interleukin-17A receptor A |
IP | Intraperitoneal |
kDa | Kilo-Dalton |
MW | Molecular weight |
ND | Non-diabetic |
NFκB | Nuclear factor kappa B |
RORγt | Retinoic acid-related orphan receptor-gamma t |
SD | Standard deviation |
SEM | Standard error of the mean |
STZ | Streptozotocin |
Th17 | T helper 17 |
TNF-α | Tumor necrosis factor alpha |
TRAF | TNF receptor associated factor |
TRAF6 | TNF receptor associated factor 6 |
VEGF | Vascular endothelial growth factor |
ZO-1 | Zonula occludens-1 |
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef] [PubMed]
- Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 Diabetes Mellitus: A Review of Current Trends. Oman Med. J. 2012, 27, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of Diabetes and Diabetes-Related Complications. Phys. Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight 2017, 2, e93751. [Google Scholar] [CrossRef]
- Sigurdardottir, S.; Zapadka, T.E.; Lindstrom, S.I.; Liu, H.; Taylor, B.E.; Lee, C.A.; Kern, T.S.; Taylor, P.R. Diabetes-mediated IL-17A enhances retinal inflammation, oxidative stress, and vascular permeability. Cell Immunol. 2019, 341, 103921. [Google Scholar] [CrossRef]
- Lindstrom, S.I.; Sigurdardottir, S.; Zapadka, T.E.; Tang, J.; Liu, H.; Taylor, B.E.; Smith, D.G.; Lee, C.A.; DeAngelis, J.; Kern, T.S.; et al. Diabetes induces IL-17A-Act1-FADD-dependent retinal endothelial cell death and capillary degeneration. J. Diabetes Complicat. 2019, 33, 668–674. [Google Scholar] [CrossRef]
- Qiu, A.-W.; Bian, Z.; Mao, P.-A.; Liu, Q.-H. IL-17A exacerbates diabetic retinopathy by impairing Müller cell function via Act1 signaling. Exp. Mol. Med. 2016, 48, e280. [Google Scholar] [CrossRef] [Green Version]
- Qiu, A.-W.; Liu, Q.-H.; Wang, J.-L. Blocking IL-17A Alleviates Diabetic Retinopathy in Rodents. Cell. Physiol. Biochem. 2017, 41, 960–972. [Google Scholar] [CrossRef]
- Qiu, A.-W.; Cao, X.; Zhang, W.-W.; Liu, Q.-H. IL-17A is involved in diabetic inflammatory pathogenesis by its receptor IL-17RA. Exp. Biol. Med. 2020, 246, 57–65. [Google Scholar] [CrossRef]
- Emamaullee, J.A.; Davis, J.; Merani, S.; Toso, C.; Elliott, J.F.; Thiesen, A.; Shapiro, A.J. Inhibition of Th17 Cells Regulates Autoimmune Diabetes in NOD Mice. Diabetes 2009, 58, 1302–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, B.S.; Lee, K.; Fanok, M.H.; Mascaraque, C.; Amoury, M.; Cohn, L.B.; Rogoz, A.; Dallner, O.S.; Moraes-Vieira, P.M.; Domingos, A.I.; et al. Leptin Receptor Signaling in T Cells Is Required for Th17 Differentiation. J. Immunol. 2015, 194, 5253–5260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolbinger, F.; Huppertz, C.; Mir, A.; Di Padova, F. IL-17A and Multiple Sclerosis: Signaling Pathways, Producing Cells and Target Cells in the Central Nervous System. Curr. Drug Targets 2016, 17, 1882–1893. [Google Scholar] [CrossRef]
- Blauvelt, A.; Chiricozzi, A. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clin. Rev. Allergy Immunol. 2018, 55, 379–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Moneim, A.; Bakery, H.H.; Allam, G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed. Pharmacother. 2018, 101, 287–292. [Google Scholar] [CrossRef]
- Honkanen, J.; Nieminen, J.K.; Gao, R.; Luopajarvi, K.; Salo, H.M.; Ilonen, J.; Knip, M.; Otonkoski, T.; Vaarala, O. IL-17 Immunity in Human Type 1 Diabetes. J. Immunol. 2010, 185, 1959–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapadka, T.E.; Lindstrom, S.I.; Taylor, B.E.; Lee, C.A.; Tang, J.; Taylor, Z.R.R.; Howell, S.J.; Taylor, P.R. RORgammaT inhibitor-SR1001 halts retinal inflammation, capillary degeneration, and the progression of diabetic retinopathy. Int. J. Mol. Sci. 2021, 21, 3547. [Google Scholar] [CrossRef] [PubMed]
- Zapadka, T.E.; Lindstrom, S.I.; Batoki, J.C.; Lee, C.A.; Taylor, B.E.; Howell, S.J.; Taylor, P.R. Aryl hydrocarbon receptor agonist VAF347 impedes ratinal pathogenesis in diabetic mice. Int. J. Mol. Sci. 2022, 22, 4335. [Google Scholar] [CrossRef]
- Howell, S.J.; Lee, C.A.; Batoki, J.C.; Zapadka, T.E.; Lindstrom, S.I.; Taylor, B.E.; Lee, C.A.; Tang, J.; Taylor, Z.R.R.; Howell, S.J.; et al. Retinal inflammation, oxidative stress, and vascular impairment is ablated in diabetic mice receiving XMD8-92 treatment. Front. Pharmacol. 2021, 12, 732630. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.J.; Lee, C.A.; Zapadka, T.E.; Lindstrom, S.I.; Taylor, B.E.; Taylor, Z.R.R.; Barber, K.G.; Taylor, P.R. Inhibition of CD40-TRAF6-dependent inflammatory activity halts the onset of diabetic retinopathy in streptozotocin-diabetic mice. Nutr. Diabetes 2022, 12, 46. [Google Scholar] [CrossRef]
- Zhang, X.; Gregg, E.W.; Williamson, D.F.; Barker, L.E.; Thomas, W.; Bullard, K.M.; Imperatore, G.; Williams, D.E.; Albright, A.L. A1Cc level and future risk of diabetes: A systemic review. Diabetes Care 2010, 33, 1665–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, T.S.; Tang, J.; Berkowitz, B.A. Validation of structural and functional lesions of diabetic retinopathy in mice. Mol. Vis. 2010, 16, 2121–2131. [Google Scholar] [PubMed]
- Yun, J.H.; Park, S.W.; Kim, K.-J.; Bae, J.-S.; Lee, E.H.; Paek, S.H.; Kim, S.U.; Ye, S.; Kim, J.-H.; Cho, C.-H. Endothelial STAT3 Activation Increases Vascular Leakage Through Downregulating Tight Junction Proteins: Implications for Diabetic Retinopathy. J. Cell. Physiol. 2017, 232, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Tien, T.; Barrette, K.; Chronopoulos, A.; Roy, S. Effects of High Glucose-Induced Cx43 Downregulation on Occludin and ZO-1 Expression and Tight Junction Barrier Function in Retinal Endothelial Cells. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6518–6525. [Google Scholar] [CrossRef]
- Adu-Agyeiwaah, Y.; Vieira, C.P.; Asare-Bediako, B.; Hammer, S.S.; Li Calzi, S.; Busik, J.V.; Grant, M.B. Intravitreal AAV2-SIRT1 administration reverses diabetic retinopathy in db/db mice. Investig. Ophthalmol. Vis. Sci. 2021, 62, 1106. [Google Scholar]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. Rev. 2019, 14, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Byrne, E.M.; Llorián-Salvador, M.; Tang, M.; Margariti, A.; Chen, M.; Xu, H. IL-17A Damages the Blood–Retinal Barrier through Activating the Janus Kinase 1 Pathway. Biomedicines 2021, 9, 831. [Google Scholar] [CrossRef]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER Measurement Techniques for In Vitro Barrier Model Systems. SLAS Technol. 2015, 20, 107–126. [Google Scholar] [CrossRef] [Green Version]
- Kuo, W.; Odenwald, M.A.; Turner, J.R.; Zuo, L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann. N. Y. Acad. Sci. 2022, 1514, 21–33. [Google Scholar] [CrossRef]
- Lavoz, C.; Rayego-Mateo, S.; Orejudo, M.; Opazo-Rios, L.; Marchant, V.; Marquez-Episoto, L.; Tejera-Munoz, A.; Navarro-Gonzalez, J.F.; Droguett, A.; Ortiz, A.; et al. Could IL-17A be a novel therapeutic target in diabetic nephropathy? J. Clin. Med. 2020, 9, 272. [Google Scholar] [PubMed]
- Choueiri, T.K. VEGF Inhibitors in Metastatic Renal Cell Carcinoma: Current Therapies and Future Perspectives. Curr. Clin. Pharmacol. 2011, 6, 164–168. [Google Scholar] [CrossRef]
- Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer 2013, 13, 871–882. [Google Scholar] [CrossRef]
- Kovach, J.L.; Schwartz, S.G.; Flynn, H.W., Jr.; Scott, I.U. Anti-VEGF Treatment Strategies for Wet AMD. J. Ophthalmol. 2012, 2012, 786870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumper, J.M.; Dugel, P.U.; Chen, S.; Blinder, K.J.; Walt, J.G. Anti-VEGF treatment of macular edema associated with retinal vein occlusion: Patterns of use and effectiveness in clinical practice (ECHO study report 2). Clin. Ophthalmol. 2018, 12, 621–629. [Google Scholar] [CrossRef]
- Blinder, K.J.; Dugel, P.U.; Chen, S.; Jumper, J.M.; Walt, J.G.; Hollander, D.A.; Scott, L.C. Anti-VEGF treatment of diabetic macular edema in clinical practice: Effectiveness and patterns of use (ECHO Study Report 1). Clin. Ophthalmol. 2017, 11, 393–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Singh, R.P. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context 2018, 7, 212532. [Google Scholar] [CrossRef]
- Shin, E.S.; Sorenson, C.M.; Sheibani, N. Diabetes and Retinal Vascular Dysfunction. J. Ophthalmic Vis. Res. 2014, 9, 362–373. [Google Scholar] [CrossRef]
- Maniati, E.; Hagemann, T. IL-17 mediates resistance to anti-VEGF therapy. Nat. Med. 2013, 19, 1092–1094. [Google Scholar] [CrossRef]
- Chung, A.S.; Wu, X.; Zhuang, G.; Ngu, H.; Kasman, I.; Zhang, J.; Vernes, J.-M.; Jiang, Z.; Meng, Y.G.; Peale, F.V.; et al. An interleukin-17–mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat. Med. 2013, 19, 1114–1123. [Google Scholar] [CrossRef]
- Pan, B.; Shen, J.; Cao, J.; Zhou, Y.; Shang, L.; Jin, S.; Cao, S.; Che, D.; Liu, F.; Yu, Y. Interleukin-17 promotes angiogenesis by stimulating VEGF production of cancer cells via the STAT3/GIV signaling pathway in non-small-cell lung cancer. Sci. Rep. 2015, 5, 16053. [Google Scholar] [CrossRef] [PubMed]
Group | Number of Mice | HbA1C (%) | Body Weight (g) |
---|---|---|---|
C57BL/6 ND-untreated | n = 9 | 4.5 ± 0.3 | 36.8 ± 0.8 |
C57BL/6 STZ-DB-untreated | n = 9 | 12.1 ± 1.3 * | 26.1 ± 2.1 * |
αIL17A (10 μg/mL) C57BL/6 ND | n = 9 | 5.1 ± 0.4 | 31.7 ± 0.6 |
αIL17A (10 μg/mL) C57BL/6 STZ-DB | n = 9 | 11.8 ± 1.4 * | 24.1 ± 1.1 * |
αIL17A (25 μg/mL) C57BL/6 ND | n = 9 | 4.8 ± 0.5 | 33.1 ± 0.6 |
αIL17A (25 μg/mL) C57BL/6 STZ-DB | n = 9 | 11.1 ± 1.8 * | 22.0 ± 1.5 * |
αIL17A (50 μg/mL) C57BL/6 ND | n = 9 | 4.7 ± 0.3 | 35.2 ± 0.9 |
αIL17A (50 μg/mL) C57BL/6 STZ-DB | n = 9 | 12.2 ± 1.1 * | 23.3 ± 0.5 * |
Group | Number of Mice | HbA1C (%) | Body Weight (g) |
---|---|---|---|
C57BL/6 ND-untreated | n = 18 | 4.7 ± 0.2 | 33.2 ± 0.3 |
C57BL/6 STZ-DB-untreated | n = 18 | 11.7 ± 0.6 * | 24.3 ± 1.1 * |
αIL17A (50 μg/mL) C57BL/6 STZ-DB | n = 18 | 11.2 ± 1.0 * | 23.8 ± 0.9 * |
Group | HbA1C (%) Week 6 | Weight (g) Week 6 | HbA1C (%) Week 22 | Weight (g) Week 22 |
---|---|---|---|---|
Leprdb Het ND-untreated | 4.4 ± 0.3 | 32.7 ± 6.4 | 4.2 ± 0.1 | 39.3 ± 1.5 |
Leprdb DB-untreated | 11.2 ± 0.7 * | 66.3 ± 3.1 * | 12.7 ± 1.4 * | 73.0 ± 6.3 * |
αIL17A (10 μg/mL) Leprdb Het ND | 4.8 ± 0.4 | 27.7 ± 0.6 | 4.2 ± 0.8 | 28.7 ± 1.2 |
αIL17A (10 μg/mL) Leprdb DB | 10.7 ± 0.8 * | 66.0 ± 5.3 * | 11.9 ± 1.8 * | 71.7 ± 2.3 * |
αIL17A (25 μg/mL) Leprdb Het ND | 4.4 ± 0.4 | 32.0 ± 2.3 | 4.3 ± 0.6 | 29.3 ± 3.2 |
αIL17A (25 μg/mL) Leprdb DB | 11.4 ± 0.7 * | 65.0 ± 1.6 * | 10.7 ± 0.5 * | 70.3 ± 6.7 * |
αIL17A (50 μg/mL) Leprdb Het ND | 4.4 ± 0.1 | 39.0 ± 4.0 | 4.2 ± 0.3 | 29.3 ± 2.1 |
αIL17A (50 μg/mL) Leprdb DB. | 11.5 ± 0.5 * | 64.0 ± 5.4 * | 11.9 ± 0.3 * | 67.7 ± 6.8 * |
Group | Number of Mice | HbA1C (%) | Body Weight (g) |
---|---|---|---|
Leprdb Het ND-untreated | n = 18 | 4.3 ± 0.4 | 38.9 ± 2.3 |
Leprdb (db/db) DB-untreated | n = 18 | 12.2 ± 0.9 * | 64.1 ± 4.1 * |
αIL17A (50 μg/mL) Leprdb (db/db) DB | n = 18 | 11.5 ± 0.5 * | 65.8 ± 0.9 * |
Group | Number of Mice | HbA1C (%) | Body Weight (g) |
---|---|---|---|
Leprdb Het ND-untreated | n = 14 | 4.3 ± 0.7 | 38.9 ± 2.3 |
Leprdb DB-untreated (db/db) | n = 14 | 12.8 ± 1.3 * | 64.1 ± 4.1 * |
αIL17A (50 μg/mL) Leprdb DB (db/db) | n = 14 | 11.9 ± 1.1 * | 65.8 ± 0.9 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, A.Y.; Taylor, B.E.; Barber, K.G.; Lee, C.A.; Taylor, Z.R.R.; Howell, S.J.; Taylor, P.R. Anti-IL17A Halts the Onset of Diabetic Retinopathy in Type I and II Diabetic Mice. Int. J. Mol. Sci. 2023, 24, 1347. https://doi.org/10.3390/ijms24021347
Zhou AY, Taylor BE, Barber KG, Lee CA, Taylor ZRR, Howell SJ, Taylor PR. Anti-IL17A Halts the Onset of Diabetic Retinopathy in Type I and II Diabetic Mice. International Journal of Molecular Sciences. 2023; 24(2):1347. https://doi.org/10.3390/ijms24021347
Chicago/Turabian StyleZhou, Amy Y., Brooklyn E. Taylor, Katherine G. Barber, Chieh A. Lee, Zakary R. R. Taylor, Scott J. Howell, and Patricia R. Taylor. 2023. "Anti-IL17A Halts the Onset of Diabetic Retinopathy in Type I and II Diabetic Mice" International Journal of Molecular Sciences 24, no. 2: 1347. https://doi.org/10.3390/ijms24021347
APA StyleZhou, A. Y., Taylor, B. E., Barber, K. G., Lee, C. A., Taylor, Z. R. R., Howell, S. J., & Taylor, P. R. (2023). Anti-IL17A Halts the Onset of Diabetic Retinopathy in Type I and II Diabetic Mice. International Journal of Molecular Sciences, 24(2), 1347. https://doi.org/10.3390/ijms24021347