Application of Immune Checkpoint Inhibitors in Gynecological Cancers: What Do Gynecologists Need to Know before Using Immune Checkpoint Inhibitors?
Abstract
:1. Introduction
2. PD-1/PD-L1 Inhibitor Mechanism
3. CTLA-4 Inhibitor Mechanism
4. Use of ICIs in Endometrial Cancer
Studies | Patient Subjects | Therapeutic Agent | Results |
---|---|---|---|
Studies using single ICI therapy | |||
Phase 2 study conducted by Le et al. (NCT01876511) [25] | EM cancer with MMR-d (EM cancer 2 out of 9 MMR-d non-colorectal cancer patients) | Pembrolizumab | ORR, 40% |
Multicohort phase Ib study conducted by Ott et al. (KEYNOTE-028 study) [27] | Advanced or metastatic EM cancer with PD-L1-positive | Pembrolizumab | ORR, 13% |
KEYNOTE 016, 158, 028 [26] | EM cancer with MMR-d/MSI-H (EM cancer 14 out of 59 MMR-d/MSI-H non-colorectal cancer patients | Pembrolizumab | ORR, 39.6% |
Study conducted by Santin et al. [28] | 2 patients with EM cancer (POLE and MSI-H) | Nivolumab | Prolonged response for more than 7 months in 2 patients |
Phase 2 study conducted by Hasegawa et al. [29] | 23 patients with metastatic EM cancer | Nivolumab | ORR, 23% PFS, 3.6 months |
Phase Ia study conducted by Fleming et al. [30] | 15 patients with metastatic EM cancer | Atezolizumab | ORR, 13% PFS, 1.7 months |
Phase I/II GARNET trial conducted by Oaknin et al. [31] | Advanced/recurrent EM cancer with MSI-H | TSR-042 | ORR, 52% |
Studies using combination therapy (ICI + antiangiogenesis agent) | |||
Phase Ib/II study conducted by Makker et al. (KEYNOTE 775) [32] | Metastatic EM cancer | Pembrolizumab + Lenvatinib | ORR, 48% DCR, 96% |
Phase II study Conducted by Moore et al. (NCT03526432) [33] | Recurrent EM cancer | Atezolizumab + Bevacizumab | Ongoing |
Phase II study conducted by Lheureux et al. (NCT03367741) [34] | Recurrent EM cancer | Nivolumab + Cabozantinib | ORR, 25% PFS 5.3 months (MSI-H) Clinical benefit (ORR+SD) higher than nivolumab single therapy group; p < 0.001 |
Studies using combination therapy (ICI + chemotherapy) | |||
Phase II study conducted by Matei et al. (NCT02549209) [35] | Advanced/recurrent EM cancer | Pembrolizumab + Chemotherapy (Paclitaxel and Carboplatin) | Ongoing |
Phase II study conducted by Vall d’Hebron Institute of Oncology (NCT03276013) [36] | Recurrent/metastatic EM cancer | Pembrolizumab + Chemotherapy (Doxorubicin) | Ongoing |
Phase III study conducted by Colombo et al. (NCT03603184) [37] | Advanced/recurrent EM cancer | Pembrolizumab + Chemotherapy (Paclitaxel and Carboplatin) | Ongoing |
Phase II study conducted by Pignata et al. (NCT03503786) [38] | Advanced/recurrent EM cancer | Avelumab + Chemotherapy (Paclitaxel and Carboplatin) | Ongoing |
5. Use of ICIs in Ovarian Cancer
Studies | Patient Subjects | Therapeutic Agent | Results |
---|---|---|---|
Studies using single ICI therapy | |||
Phase I study conducted by Brahmer et al. [55] | Advanced ovarian cancer | Anti-PD-L1 antibody | ORR, 6% |
Phase II study conducted by Hamanishi et al. [56] | Platinum resistant ovarian cancer | Nivolumab | ORR, 15% PFS, 3.5 months OS, 20.0 months |
Phase Ib study conducted by Disis et al. [57] | Advanced ovarian cancer | Avelumab | ORR, 9.7% PFS, 11.3 weeks OS, 10.8 months |
Phase Ia study conducted by Infante et al. [58] | Advanced/recurrent ovarian cancer | Atezolizumab | ORR, 22% |
Phase Ib study conducted by Varga et al. (NCT02054806) [42] | PDL1+ advanced ovarian cancer | Pembrolizumab | ORR, 11.5% PFS, 1.9 months OS, 13.1 months |
Phase II study conducted by Matulonis et al. (NCT02674061) [43] | Advanced/recurrent ovarian cancer | Pembrolizumab | ORR, 7.4% (one to three prior lines of treatment) ORR, 9.9% (four to six prior lines of treatment) |
Studies using combination therapy (ICI + antiangiogenesis agent) | |||
Phase II study conducted by Liu et al. [59] | Recurrent ovarian cancer | Nivolumab + Bevacizumab | ORR, 21% PFS, 9.4 months |
Phase Ib trial conducted by Michels et al. [60] | Platinum resistant ovarian cancer | Pembrolizumab + Bevacizumab | ORR, 26.3% |
Studies using combination therapy (ICI + chemotherapy) | |||
Phase III study conducted by Monk et al. [53] | Ovarian cancer patients who received first line chemotherapy | Avelumab + Chemotherapy (Paclitaxel and Carboplatin) | PFS, 11.0 months (avelumab + CTx.) PFS, 10.2 months (CTx.) HR for PFS, 1.14; 95% CI, 0.83, 1.56; p = 0.79 (CTx. = reference) |
Phase III study conducted by Merck et al. [54] | Platinum resistant or refractory recurrent ovarian cancer | Atezolizumab + Chemotherapy (PLD) | ORR, 13.3% (avelumab + CTx.) ORR, 4.2% (CTx.) |
Phase II study conducted by Walsh et al. [61] | Platinum resistant recurrent ovarian cancer | Pembrolizumab + Chemotherapy (Gemcitabine and Cisplatin) | ORR, 60% PFS, 6.2 months OS, 11.3 months |
Phase II study conducted by Wenham et al. (NCT02440425) [45] | Platinum resistant recurrent ovarian cancer | Pembrolizumab + Chemotherapy (Paclitaxel) | Ongoing |
Phase III study conducted by Merck Sharp & Dohme LLC (NCT05116189) [46] | Platinum resistant recurrent ovarian cancer | Pembrolizumab + Chemotherapy (Paclitaxel or Docetaxel) ± Bevacizumab | Ongoing |
Studies using combination therapy (ICI + chemotherapy + antiangiogenesis agent) | |||
Phase III study conducted by Moore et al. (NCT03038100) [62] | Advanced ovarian cancer | Atezolizumab + Bevacizumab + Chemotherapy (Paclitaxel and Carboplatin) | PFS, 19.5 months (PD-L1 negative) PFS, 20.8 months (PD-L1 positive) |
Phase III study conducted by Kurtz et al. (NCT02891824) [47] | Platinum sensitive recurrent ovarian cancer | Atezolizumab + Bevacizumab + Chemotherapy (Platinum-based Chemotherapy) | Ongoing |
Phage II study conducted by Zsiros et al. (NCT02853318) [63] | Platinum sensitive, resistant, or refractory ovarian cancer | Pembrolizumab + Bevacizumab + Oral Metronomic Cyclophosphamide | ORR, 47.5% (total) ORR, 66.0% (platinum sensitive) ORR, 43.3% (platinum resistant) |
Phage Ib study conducted by Michels et al. (NCT03596281) [48] | Platinum resistant ovarian cancer | Pembrolizumab + Bevacizumab + Chemotherapy (Pegylated Liposomal Doxorubicin, PLD) | Ongoing |
Studies using combination therapy (immunotherapy combination) | |||
Phase II study conducted by Zamarin et al. [52] | Persistent or recurrent ovarian cancer | Nivolumab + Ipilimumab | ORR, 31.4% PFS, 3.9 months |
6. Use of ICIs in Cervical Cancer
Studies | Patient Subjects | Therapeutic Agent | Results |
---|---|---|---|
Studies using single ICI therapy | |||
Phase Ib study conducted by Frenel et al. [67] | PD-L1-positive advanced cervical cancer | Pembrolizumab | ORR, 17% |
Phase II study conducted by Chung et al. [68] | PL-L1-positive advanced cervical cancer | Pembrolizumab | ORR, 14.3% (total) ORR, 16.0% (PD-L1+ patients) |
Phase I/II study conducted by Lheureux et al. [80] | Recurrent cervical cancer | Ipilimumab (anti-CTLA-4 agent) | ORR, 2.9% |
Phase I/II study conducted by Hollebecque et al. [81] | Recurrent cervical cancer | Nivolumab | ORR, 5% |
Phase II study conducted by Santin et al. [82] | Persistent or Recurrent cervical cancer | Nivolumab | ORR, 4% |
Phase III study conducted by Tewari et al. [69] | Recurrent cervical cancer | Cemiplimab | ORR 16.4% OS at 8.5 months |
Phase I study conducted by Mayadev et al. [73] | Cervical cancer IB2/IIA with positive para-aortic LN only, Cervical cancer IIB/IIIB/IVA with positive LN following chemoradiation | Ipilimumab | Ongoing |
Phase II study conducted by Lheureux et al. [74] | Metastatic or recurrent cervical caner | Ipilimumab | Ongoing |
Phase II study conducted by Santin et al. [82] | Persistent or recurrent cervical cancer | Nivolumab | PFS at 6 months, 16% OS at 6 months, 78.4% |
Studies using combination therapy (ICI + antiangiogenesis agent) | |||
Phase II study conducted by Friedman et al. [70] | Advanced cervical cancer | Atezolizumab + Bevacizumab | ORR, 0% |
Studies using combination therapy (immunotherapy combination) | |||
Phase I study conducted by Callahan et al. [75] | Advanced cervical cancer | Durvalumab + Tremelimumab | Ongoing |
Studies using combination therapy (ICI + CCRT) | |||
Phase II study conducted by Duska et al. [76] | Advanced cervical cancer in combination with chemoradiation | Pembrolizumab + CCRT | Ongoing |
Studies using Combination therapy (ICI + CIRT) | |||
Phase Ib study conducted by Okonogi et al. [77] | Advanced cervical cancer | Durvalumab + CIRT | Ongoing |
7. irAE Mechanism
8. Organ-Specific Toxicities Induced by ICI Treatment and Their Management
8.1. Skin-Related Adverse Events
8.2. Gastrointestinal-Related Adverse Events
8.2.1. Hepatitis
8.2.2. Colitis
8.3. Endocrine-Related Adverse Events
8.3.1. Hypophysitis
8.3.2. Thyroid Disorder
8.3.3. Diabetes Mellitus
8.4. Pulmonary-Related Adverse Events
8.5. Musculoskeletal System-Related Adverse Events
8.6. Myasthenia Gravis
8.7. Myocarditis
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Woods, P. Cervical Cancer Statistics I World Cancer Research Fund International. Available online: https://www.wcrf.org/cancer-trends/cervical-cancer-statistics/ (accessed on 13 July 2022).
- Woods, P. Endometrial Cancer Statistics | World Cancer Research Fund international. Available online: https://www.wcrf.org/cancer-trends/endometrial-cancer-statistics/ (accessed on 13 July 2022).
- Woods, P. Ovarian Cancer Statistics | World Cancer Research Fund international. Available online: https://www.wcrf.org/cancer-trends/ovarian-cancer-statistics/ (accessed on 13 July 2022).
- Cancer of the Cervix—Cancer Stat Facts. Seer. Available online: https://seer.cancer.gov/statfacts/html/cervix.html (accessed on 13 July 2022).
- Cancer of the Endometrium—Cancer Stat Facts. Seer. Available online: https://seer.cancer.gov/statfacts/html/corp.html (accessed on 13 July 2022).
- Cancer of the Ovary—Cancer Stat Facts. Seer. Available online: https://seer.cancer.gov/statfacts/html/ovary.html (accessed on 13 July 2022).
- Su, C.; Wang, H.; Liu, Y.; Guo, Q.; Zhang, L.; Li, J.; Zhou, W.; Yan, Y.; Zhou, X.; Zhang, J. Adverse effects of anti-PD-1/PD-L1 therapy in non-small cell lung cancer. Front. Oncol. 2020, 10, 554313. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; D’Angelo, S.P.; Minor, D.; Hodi, F.S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N.I.; Miller, W.H.; Lao, C.D.; et al. Nivolumab versus Chemotherapy in Patients with Advanced Melanoma Who Progressed after anti-CTLA-4 Treatment (CheckMate 037): A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncol. 2015, 16, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Juneja, V.R.; McGuire, K.A.; Manguso, R.T.; LaFleur, M.W.; Collins, N.; Haining, W.N.; Freeman, G.J.; Sharpe, A.H. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 2017, 214, 895–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramamurthy, C.; Godwin, J.L.; Borghaei, H. Immune checkpoint inhibitor therapy: What line of therapy and how to choose? Curr. Treat. Options Oncol. 2017, 18, 33. [Google Scholar] [CrossRef]
- Kythreotou, A.; Siddique, A.; Mauri, F.A.; Bower, M.; Pinato, D.J. PD-L1. J. Clin. Pathol. 2018, 71, 189–194. [Google Scholar] [CrossRef]
- Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharmacol. 2017, 8, 561. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Shi, Y.; Zhang, D.; Zhou, Q.; Liu, J.; Chen, M.; Xu, Y.; Zhao, J.; Zhong, W.; Wang, M. Risk factors for immune-related adverse events: What have we learned and what lies ahead? Biomark. Res. 2021, 9, 79. [Google Scholar] [CrossRef]
- Savoia, P.; Astrua, C.; Fava, P. Ipilimumab (anti-Ctla-4 Mab) in the treatment of metastatic melanoma: Effectiveness and toxicity management. Hum. Vaccin. Immunother. 2016, 12, 1092–1101. [Google Scholar] [CrossRef] [Green Version]
- Fife, B.T.; Bluestone, J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 2008, 224, 166–182. [Google Scholar] [CrossRef]
- Waterhouse, P.; Penninger, J.M.; Timms, E.; Wakeham, A.; Shahinian, A.; Lee, K.P.; Thompson, C.B.; Griesser, H.; Mak, T.W. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995, 270, 985–988. [Google Scholar] [CrossRef]
- Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999, 11, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Ring, K.L. The role of PD-1 checkpoint inhibition in gynecologic malignancies. Curr. Treat. Options Oncol. 2018, 19, 70. [Google Scholar] [CrossRef]
- Levinson, K.; Dorigo, O.; Rubin, K.; Moore, K. Immunotherapy in gynecologic cancers: What we know now and where we are headed. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, e126–e140. [Google Scholar] [CrossRef]
- Alexa, M.; Hasenburg, A.; Battista, M.J. The TCGA molecular classification of endometrial cancer and its possible impact on adjuvant treatment decisions. Cancers 2021, 13, 1478. [Google Scholar] [CrossRef]
- Yi, M.; Jiao, D.; Xu, H.; Liu, Q.; Zhao, W.; Han, X.; Wu, K. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer 2018, 17, 129. [Google Scholar] [CrossRef]
- Xiao, X.; Dong, D.; He, W.; Song, L.; Wang, Q.; Yue, J.; Xie, L. Mismatch repair deficiency is associated with MSI phenotype, increased tumor-infiltrating lymphocytes and PD-L1 expression in immune cells in ovarian cancer. Gynecol. Oncol. 2018, 149, 146–154. [Google Scholar] [CrossRef]
- Kumar, R.; Yu, F.; Zhen, Y.H.; Li, B.; Wang, J.; Yang, Y.; Ge, H.X.; Hu, P.S.; Xiu, J. PD-1 blockade restores impaired function of ex vivo expanded CD8+ T cells and enhances apoptosis in mismatch repair deficient EpCAM+PD-L1+ cancer cells. Onco Targets Ther. 2017, 10, 3453–3465. [Google Scholar] [CrossRef] [Green Version]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Endometrial Cancer Keytruda Highlight Study. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125514s096lbl.pdf (accessed on 20 October 2022).
- Ott, P.A.; Bang, Y.-J.; Berton-Rigaud, D.; Elez, E.; Pishvaian, M.J.; Rugo, H.S.; Puzanov, I.; Mehnert, J.M.; Aung, K.L.; Lopez, J.; et al. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1-positive endometrial cancer: Results from the KEYNOTE-028 study. J. Clin. Oncol. 2017, 35, 2535–2541. [Google Scholar] [CrossRef]
- Santin, A.D.; Bellone, S.; Buza, N.; Choi, J.; Schwartz, P.E.; Schlessinger, J.; Lifton, R.P. Regression of chemotherapy-resistant polymerase ε (POLE) ultra-mutated and MSH6 hyper-mutated endometrial tumors with nivolumab. Clin. Cancer Res. 2016, 22, 5682–5687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, K.; Tamura, K.; Katsumata, N.; Matsumoto, K.; Takahashi, S.; Mukai, H.; Nomura, H.; Minami, H. Efficacy and safety of nivolumab (Nivo) in patients (Pts) with advanced or recurrent uterine cervical or corpus cancers. JCO 2018, 36, 5594. [Google Scholar] [CrossRef]
- Fleming, G.F.; Emens, L.A.; Eder, J.P.; Hamilton, E.P.; Liu, J.F.; Liu, B.; Molinero, L.; Fasso, M.; O’Hear, C.; Braiteh, F.S. Clinical activity, safety and biomarker results from a phase Ia study of atezolizumab (Atezo) in advanced/recurrent endometrial cancer (REC). JCO 2017, 35, 5585. [Google Scholar] [CrossRef]
- Oaknin, A.; Duska, L.R.; Sullivan, R.J.; Pothuri, B.; Ellard, S.L.; Leath, C.A.; Moreno, V.; Kristeleit, R.S.; Guo, W.; Danaee, H.; et al. Preliminary safety, efficacy, and pharmacokinetic/pharmacodynamic characterization from GARNET, a Phase I/II clinical trial of the anti-PD-1 monoclonal antibody, TSR-042, in patients with recurrent or advanced MSI-h and MSS endometrial cancer. Gynecol. Oncol. 2019, 154, 17. [Google Scholar] [CrossRef]
- Makker, V.; Rasco, D.W.; Dutcus, C.E.; Stepan, D.E.; Li, D.; Schmidt, E.V.; Shumaker, R.C.; Taylor, M.H. A phase Ib/II trial of lenvatinib (LEN) plus pembrolizumab (Pembro) in patients (Pts) with endometrial carcinoma. JCO 2017, 35, 5598. [Google Scholar] [CrossRef]
- University of Oklahoma. A Phase II, Single Arm Study of Atezolizumab + Bevacizumab in Women with Advanced, Recurrent or Persistent Endometrial Cancer; Clinical Trial Registration NCT03526432; NIH: Bethesda, MD, USA, 2022.
- Lheureux, S.; Matei, D.; Konstantinopoulos, P.A.; Block, M.S.; Jewell, A.; Gaillard, S.; McHale, M.S.; McCourt, C.K.; Temkin, S.; Girda, E.; et al. A randomized phase II study of cabozantinib and nivolumab versus nivolumab in recurrent endometrial cancer. JCO 2020, 38, 6010. [Google Scholar] [CrossRef]
- Phase II Study of Pembrolizumab in Combination with Carboplatin and Paclitaxel for Advanced or Recurrent Endometrial Adenocarcinoma; Clinical Trial Registration NCT02549209; NIH: Bethesda, MD, USA, 2022.
- Vall d’Hebron Institute of Oncology. Phase II Trial of Pembrolizumab in Combination with Doxorubicin in Advanced, Recurrent or Metastatic Endometrial Cancer (TOPIC); Clinical Trial Registration NCT03276013; NIH: Bethesda, MD, USA, 2021.
- Colombo, N.; Barretina-Ginesta, M.P.; Beale, P.J.; Harano, K.; Hudson, E.; Marmé, F.; Marth, C.; Radaglio, M.; Secord, A.A.; Fossati, R.; et al. AtTEnd/ENGOT-En7: A multicenter Phase III double-blind randomized controlled trial of atezolizumab in combination with paclitaxel and carboplatin in women with advanced/recurrent endometrial cancer. J. Clin. Oncol. 2019, 37, TPS5608. [Google Scholar] [CrossRef]
- National Cancer Institute, Naples. MITO END-3: A Randomized Phase II Trial of Carboplatin + Paclitaxel Compared to Carboplatin + Paclitaxel + Avelumab in Advanced (Stage III–IV) or Recurrent Endometrial Cancer; Clinical Trial Registration NCT03503786; NIH: Bethesda, MD, USA, 2021.
- Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger, K.; Liebman, M.N.; et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 2003, 348, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Sato, E.; Olson, S.H.; Ahn, J.; Bundy, B.; Nishikawa, H.; Qian, F.; Jungbluth, A.A.; Frosina, D.; Gnjatic, S.; Ambrosone, C.; et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 18538–18543. [Google Scholar] [CrossRef] [Green Version]
- Curiel, T.J.; Coukos, G.; Zou, L.; Alvarez, X.; Cheng, P.; Mottram, P.; Evdemon-Hogan, M.; Conejo-Garcia, J.R.; Zhang, L.; Burow, M.; et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 2004, 10, 942–949. [Google Scholar] [CrossRef]
- Varga, A.; Piha-Paul, S.A.; Ott, P.A.; Mehnert, J.M.; Berton-Rigaud, D.; Morosky, A.; Zhao, G.Q.; Rangwala, R.A.; Matei, D. Pembrolizumab in patients (Pts) with PD-L1-positive (PD-L1+) advanced ovarian cancer: Updated analysis of KEYNOTE-028. JCO 2017, 35, 5513. [Google Scholar] [CrossRef]
- Matulonis, U.A.; Shapira-Frommer, R.; Santin, A.D.; Lisyanskaya, A.S.; Pignata, S.; Vergote, I.; Raspagliesi, F.; Sonke, G.S.; Birrer, M.; Provencher, D.M.; et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: Results from the Phase II KEYNOTE-100 study. Ann. Oncol. 2019, 30, 1080–1087. [Google Scholar] [CrossRef]
- Yang, C.; Xia, B.R.; Zhang, Z.C.; Zhang, Y.J.; Lou, G.; Jin, W.L. Immunotherapy for ovarian cancer: Adjuvant, combination, and neoadjuvant. Front. Immunol. 2020, 11, 577869. [Google Scholar] [CrossRef]
- H. Lee Moffitt Cancer Center and Research Institute. Phase 2 Trial of Dose Dense (Weekly) Paclitaxel with Pembrolizumab (MK-3475) in Platinum Resistant Recurrent Ovarian Cancer; Clinical Trial Registration NCT02440425; NIH: Bethesda, MD, USA, 2022.
- Sharp, M.; Dohme, L.L.C. A Phase 3, Randomized, Double-Blind Study of Pembrolizumab versus Placebo in Combination with Paclitaxel with or without Bevacizumab for the Treatment of Platinum-Resistant Recurrent Ovarian Cancer (KEYNOTE-B96/ENGOT-Ov65); Clinical Trial Registration NCT05116189; NIH: Bethesda, MD, USA, 2022.
- Arcagy/Gineco Group. A Randomized, Double-Blinded, Phase III Study of Atezolizumab versus Placebo in Patients with Late Relapse of Epithelial Ovarian, Fallopian Tube, or Peritoneal Cancer Treated by Platinum-Based Chemotherapy and Bevacizumab; Clinical Trial Registration NCT02891824; NIH: Bethesda, MD, USA, 2022.
- Roussy, G.; Cancer Campus, Grand, Paris. An Open-Label Phase 1 of Pembrolizumab in Combination with Bevacizumab and Pegylated Liposomal Doxorubicin in Patients with Platinum Resistant Epithelial Ovarian Cancer; Clinical Trial Registration NCT03596281; NIH: Bethesda, MD, USA, 2021.
- Yu, Z.; Chan, M.-K.; O-Charoenrat, P.; Eisenberg, D.P.; Shah, J.P.; Singh, B.; Fong, Y.; Wong, R.J. Enhanced Nectin-1 Expression and Herpes Oncolytic Sensitivity in Highly Migratory and Invasive Carcinoma. Clin. Cancer Res. 2005, 11, 4889–4897. [Google Scholar] [CrossRef] [Green Version]
- Galanis, E.; Hartmann, L.C.; Cliby, W.A.; Long, H.J.; Peethambaram, P.P.; Barrette, B.A.; Kaur, J.S.; Haluska, P.J.; Aderca, I.; Zollman, P.J.; et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 2010, 70, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Cohn, D.E.; Sill, M.W.; Walker, J.L.; O’Malley, D.; Nagel, C.I.; Rutledge, T.L.; Bradley, W.; Richardson, D.L.; Moxley, K.M.; Aghajanian, C. Randomized Phase IIB Evaluation of Weekly paclitaxel versus Weekly paclitaxel with Oncolytic Reovirus (Reolysin®) in Recurrent Ovarian, tubal, or peritoneal Cancer: An NRG Oncology/Gynecologic Oncology Group Study. Gynecol. Oncol. 2017, 146, 477–483. [Google Scholar] [CrossRef]
- Zamarin, D.; Burger, R.A.; Sill, M.W.; Powell, D.J.; Lankes, H.A.; Feldman, M.D.; Zivanovic, O.; Gunderson, C.; Ko, E.; Mathews, C.; et al. Randomized Phase II trial of Nivolumab versus Nivolumab and ipilimumab for recurrent or persistent ovarian cancer: An NRG oncology study. J. Clin. Oncol. 2020, 38, 1814–1823. [Google Scholar] [CrossRef]
- Monk, B.J.; Colombo, N.; Oza, A.M.; Fujiwara, K.; Birrer, M.J.; Randall, L.; Poddubskaya, E.V.; Scambia, G.; Shparyk, Y.V.; Lim, M.C.; et al. Chemotherapy with or without Avelumab Followed by Avelumab Maintenance versus Chemotherapy Alone in Patients with Previously Untreated Epithelial Ovarian Cancer (JAVELIN Ovarian 100): An Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2021, 22, 1275–1289. [Google Scholar] [CrossRef]
- Merck. Phase II Study of Ovarian Cancer. Available online: https://www.emdgroup.com/en/news/avelumab-1x-11-2018.html (accessed on 20 October 2022).
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [Green Version]
- Hamanishi, J.; Mandai, M.; Ikeda, T.; Minami, M.; Kawaguchi, A.; Murayama, T.; Kanai, M.; Mori, Y.; Matsumoto, S.; Chikuma, S.; et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 2015, 33, 4015–4022. [Google Scholar] [CrossRef]
- Disis, M.L.; Patel, M.R.; Pant, S.; Hamilton, E.P.; Lockhart, A.C.; Kelly, K.; Beck, J.T.; Gordon, M.S.; Weiss, G.J.; Taylor, M.H.; et al. Avelumab (MSB0010718C; anti-PD-L1) in patients with recurrent/refractory ovarian cancer from the JAVELIN solid tumor phase Ib Trial: Safety and clinical activity. JCO 2016, 34, 5533. [Google Scholar] [CrossRef]
- Infante, J.R.; Braiteh, F.; Emens, L.A.; Balmanoukian, A.S.; Oaknin, A.; Wang, Y.; Liu, B.; Molinero, L.; Fasso, M.; O’Hear, C.; et al. Safety, clinical activity and biomarkers of atezolizumab (Atezo) in advanced ovarian cancer (OC). Ann. Oncol. 2016, 27, vi300. [Google Scholar] [CrossRef]
- Liu, J.F.; Herold, C.; Luo, W.; Penson, R.; Horowitz, N.; Konstantinopoulos, P.; Castro, C.; Curtis, J.; Matulonis, U.A.; Cannistra, S.; et al. A Phase II trial of combination nivolumab and bevacizumab in recurrent ovarian cancer. Ann. Oncol. 2018, 29, viii334–viii335. [Google Scholar] [CrossRef]
- Michels, J.; Frenel, J.-S.; Genestie, C.; Ghiringhelli, F.; Brard, C.; You, B.; Floquet, A.; Eberst, L.; Bahleda, R.; Balleyguier, C.; et al. 355 pembrolizumab and bevacizumab in platinum resistant epithelial ovarian cancer patients. J. Immunother. Cancer 2021, 9, A382. [Google Scholar] [CrossRef]
- Walsh, C.S.; Kamrava, M.; Rogatko, A.; Kim, S.; Li, A.; Cass, I.; Karlan, B.; Rimel, B.J. Phase II trial of cisplatin, gemcitabine and pembrolizumab for platinum-resistant ovarian cancer. PLoS ONE 2021, 16, e0252665. [Google Scholar] [CrossRef]
- Moore, K.N.; Bookman, M.; Sehouli, J.; Miller, A.; Anderson, C.; Scambia, G.; Myers, T.; Taskiran, C.; Robison, K.; Mäenpää, J.; et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed Stage III or IV ovarian cancer: Placebo-controlled randomized Phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J. Clin. Oncol. 2021, 39, 1842–1855. [Google Scholar] [CrossRef]
- Zsiros, E.; Lynam, S.; Attwood, K.M.; Wang, C.; Chilakapati, S.; Gomez, E.C.; Liu, S.; Akers, S.; Lele, S.; Frederick, P.J.; et al. Efficacy and safety of pembrolizumab in combination with bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent ovarian cancer: A Phase 2 nonrandomized clinical trial. JAMA Oncol. 2021, 7, 78–85. [Google Scholar] [CrossRef]
- FUTURE II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med. 2007, 356, 1915–1927. [Google Scholar] [CrossRef]
- Hpv Vaccination Rate Analysis; CDC: Atlanta, USA. Available online: https://www.cdc.gov/hpv/parents/vaccine/six-reasons.html (accessed on 20 October 2022).
- Sherer, M.V.; Kotha, N.V.; Williamson, C.; Mayadev, J. Advances in immunotherapy for cervical cancer: Recent developments and future directions. Int. J. Gynecol. Cancer 2022, 32, 281–287. [Google Scholar] [CrossRef]
- Frenel, J.S.; Le Tourneau, C.L.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1—Positive cervical cancer: Results from the phase Ib KEYNOTE-028 trial. J. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar] [CrossRef]
- Chung, H.C.; Schellens, J.H.M.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Wang, J.; Zeigenfuss, S.; et al. Pembrolizumab treatment of advanced cervical cancer: Updated results from the Phase 2 KEYNOTE-158 study. JCO 2018, 36, 5522. [Google Scholar] [CrossRef]
- Tewari, K.S.; Monk, B.J.; Vergote, I.; Miller, A.; de Melo, A.C.; Kim, H.S.; Kim, Y.M.; Lisyanskaya, A.; Samouëlian, V.; Lorusso, D.; et al. Survival with cemiplimab in recurrent cervical cancer. N. Engl. J. Med. 2022, 386, 544–555. [Google Scholar] [CrossRef]
- Friedman, C.F.; Snyder Charen, A.; Zhou, Q.; Carducci, M.A.; Buckley De Meritens, A.; Corr, B.R.; Fu, S.; Hollmann, T.J.; Iasonos, A.; Konner, J.A.; et al. Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer. J. Immunother. Cancer 2020, 8, e001126. [Google Scholar] [CrossRef]
- Rini, B.I.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Suarez, C.; Bracarda, S.; Stadler, W.M.; Donskov, F.; Lee, J.L.; et al. Atezolizumab plus bevacizumab versus sunitinib in Patients with Previously Untreated Metastatic Renal Cell Carcinoma (IMmotion151): A Multicentre, Open-Label, Phase 3, randomised controlled trial. Lancet 2019, 393, 2404–2415. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable Hepatocellular Carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Mayadev, J.; Brady, W.E.; Lin, Y.G.; Da Silva, D.M.; Lankes, H.A.; Fracasso, P.M.; Ghamande, S.A.; Moore, K.N.; Pham, H.Q.; Wilkinson, K.J.; et al. A Phase I Study of Sequential Ipilimumab in the Definitive Treatment of Node Positive Cervical Cancer: GOG 9929. J. Clin. Oncol. 2017, 35, 5526. [Google Scholar] [CrossRef]
- Lheureux, S.; Butler, M.O.; Clarke, B.; Cristea, M.C.; Martin, L.P.; Tonkin, K.S.; Fleming, G.F.; Tinker, A.; Hirte, H.W.; Tsoref, D.; et al. A Phase I/II study of ipilimumab in women with metastatic or recurrent cervical carcinoma: A study of the Princess Margaret and Chicago N01 consortia. JCO 2015, 33, 3061. [Google Scholar] [CrossRef]
- Callahan, M.K.; Odunsi, K.; Sznol, M.; Nemunaitis, J.J.; Ott, P.A.; Dillon, P.M.; Park, A.J.; Schwarzenberger, P.; Ricciardi, T.; Macri, M.J.; et al. Phase 1 study to evaluate the safety and tolerability of MEDI4736 (durvalumab, DUR) + tremelimumab (TRE) in patients with advanced solid tumors. JCO 2017, 35, 3069. [Google Scholar] [CrossRef]
- Duska, L.R.; Showalter, T.N.; Petroni, G.R.; Bullock, T. A randomized Phase II study of chemoradiation and pembrolizumab for locally advanced cervical cancer. JCO 2017, 35, TPS5601. [Google Scholar] [CrossRef]
- Okonogi, N.; Usui, H.; Murata, K.; Hori, M.; Kurokawa, T.; Fujiwara, T.; Fujii, Y.; Hanawa, M.; Kawasaki, Y.; Hattori, Y.; et al. Phase Ib study of durvalumab (MEDI4736) in combination with carbon-ion radiotherapy and weekly cisplatin for patients with locally advanced cervical cancer (DECISION study): Study protocol for a prospective open-label single-arm study. BMJ Open 2022, 12, e056424. [Google Scholar] [CrossRef]
- Nitta, Y.; Murata, H.; Okonogi, N.; Murata, K.; Wakatsuki, M.; Karasawa, K.; Kato, S.; Yamada, S.; Nakano, T.; Tsuji, H. Secondary cancers after carbon-ion radiotherapy and photon beam radiotherapy for uterine cervical cancer: A comparative study. Cancer Med. 2022, 11, 2445–2454. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.Y.; Takiyama, H.; Kang, J.H.; Chang, J.S.; Min, B.S.; Tsuji, H.; Yamada, S.; Koom, W.S. Comparison of clinical outcomes between carbon ion radiotherapy and X-ray radiotherapy for reirradiation in locoregional recurrence of rectal cancer. Sci. Rep. 2022, 12, 1845. [Google Scholar] [CrossRef] [PubMed]
- Lheureux, S.; Butler, M.O.; Clarke, B.; Cristea, M.C.; Martin, L.P.; Tonkin, K.; Fleming, G.F.; Tinker, A.V.; Hirte, H.W.; Tsoref, D.; et al. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus-related cervical carcinoma. JAMA Oncol. 2018, 4, e173776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollebecque, A.; Meyer, T.; Moore, K.N.; Machiels, J.-P.H.; De Greve, J.; López-Picazo, J.M.; Oaknin, A.; Kerger, J.N.; Boni, V.; Evans, T.R.J.; et al. An open-label, multicohort, Phase I/II study of nivolumab in patients with virus-associated tumors (CheckMate 358): Efficacy and safety in recurrent or metastatic (R/M) cervical, vaginal, and vulvar cancers. JCO 2017, 35, 5504. [Google Scholar] [CrossRef]
- Santin, A.D.; Deng, W.; Frumovitz, M.; Buza, N.; Bellone, S.; Huh, W.; Khleif, S.; Lankes, H.A.; Ratner, E.S.; O’Cearbhaill, R.E.; et al. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol. Oncol. 2020, 157, 161–166. [Google Scholar] [CrossRef]
- Okazaki, T.; Maeda, A.; Nishimura, H.; Kurosaki, T.; Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting Src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. USA 2001, 98, 13866–13871. [Google Scholar] [CrossRef] [Green Version]
- Thibult, M.L.; Mamessier, E.; Gertner-Dardenne, J.; Pastor, S.; Just-Landi, S.; Xerri, L.; Chetaille, B.; Olive, D. PD-1 is a novel regulator of human B-cell activation. Int. Immunol. 2013, 25, 129–137. [Google Scholar] [CrossRef] [Green Version]
- De Moel, E.C.; Rozeman, E.A.; Kapiteijn, E.H.; Verdegaal, E.M.E.; Grummels, A.; Bakker, J.A.; Huizinga, T.W.J.; Haanen, J.B.; Toes, R.E.M.; van der Woude, D. Autoantibody development under treatment with immune-checkpoint inhibitors. Cancer Immunol. Res. 2019, 7, 6–11. [Google Scholar] [CrossRef]
- Toi, Y.; Sugawara, S.; Sugisaka, J.; Ono, H.; Kawashima, Y.; Aiba, T.; Kawana, S.; Saito, R.; Aso, M.; Tsurumi, K.; et al. Profiling preexisting antibodies in patients treated with anti-PD-1 therapy for advanced non-small cell lung cancer. JAMA Oncol. 2019, 5, 376–383. [Google Scholar] [CrossRef]
- Osorio, J.C.; Ni, A.; Chaft, J.E.; Pollina, R.; Kasler, M.K.; Stephens, D.; Rodriguez, C.; Cambridge, L.; Rizvi, H.; Wolchok, J.D.; et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann. Oncol. 2017, 28, 583–589. [Google Scholar] [CrossRef]
- Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef]
- Byrne, E.H.; Fisher, D.E. Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer 2017, 123 (Suppl. 11), 2143–2153. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Kikuchi, T. Does the gut microbiota play a key role in PD-1/PD-L1 blockade therapy? Transl. Lung Cancer Res. 2020, 9, 438–440. [Google Scholar] [CrossRef]
- Jin, Y.; Dong, H.; Xia, L.; Yang, Y.; Zhu, Y.; Shen, Y.; Zheng, H.; Yao, C.; Wang, Y.; Lu, S. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J. Thorac. Oncol. 2019, 14, 1378–1389. [Google Scholar] [CrossRef]
- Liu, T.; Xiong, Q.; Li, L.; Hu, Y. Intestinal microbiota predicts lung cancer patients at risk of immune-related diarrhea. Immunotherapy 2019, 11, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Chaput, N.; Lepage, P.; Coutzac, C.; Soularue, E.; Le Roux, K.; Monot, C.; Boselli, L.; Routier, E.; Cassard, L.; Collins, M.; et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 2017, 28, 1368–1379. [Google Scholar] [CrossRef]
- Belum, V.R.; Benhuri, B.; Postow, M.A.; Hellmann, M.D.; Lesokhin, A.M.; Segal, N.H.; Motzer, R.J.; Wu, S.; Busam, K.J.; Wolchok, J.D.; et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur. J. Cancer 2016, 60, 12–25. [Google Scholar] [CrossRef] [Green Version]
- Fujii, T.; Colen, R.R.; Bilen, M.A.; Hess, K.R.; Hajjar, J.; Suarez-Almazor, M.E.; Alshawa, A.; Hong, D.S.; Tsimberidou, A.; Janku, F.; et al. Incidence of immune-related adverse events and its association with treatment outcomes: The MD Anderson Cancer Center experience. Investig. New Drugs 2018, 36, 638–646. [Google Scholar] [CrossRef]
- How Side Effects Are Graded | Guides | HIV. Base. Available online: https://i-base.info/guides/side/how-side-effects-are-graded (accessed on 28 September 2022).
- Sohn, S.-W. Stevens-Johnson Syndrome, Toxic Epidermal Necrolysis. 2010. Available online: https://www.koperm.org/_UPLOAD/1508953033-JPERM20100215.pdf (accessed on 20 October 2022).
- Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O.; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the society for immunotherapy of cancer (SITC) toxicity management working group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W.; Ramaiya, N.H.; Krajewski, K.M.; Jagannathan, J.P.; Tirumani, S.H.; Srivastava, A.; Ibrahim, N. Ipilimumab associated hepatitis: Imaging and clinicopathologic findings. Investig. New Drugs 2013, 31, 1071–1077. [Google Scholar] [CrossRef]
- Kumar, V.; Chaudhary, N.; Garg, M.; Floudas, C.S.; Soni, P.; Chandra, A.B. Current diagnosis and management of immune related adverse events (IrAEs) induced by immune checkpoint inhibitor therapy. Front. Pharmacol. 2017, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessandrino, F.; Shah, H.J.; Ramaiya, N.H. Multimodality imaging of endocrine immune related adverse events: A primer for radiologists. Clin. Imaging 2018, 50, 96–103. [Google Scholar] [CrossRef] [PubMed]
- González-Rodríguez, E.; Rodríguez-Abreu, D.; Spanish Group for Cancer Immuno-Biotherapy (GETICA). Immune checkpoint inhibitors: Review and management of endocrine adverse events. Oncologist 2016, 21, 804–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, F.S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: A systematic review and meta-analysis. JAMA Oncol. 2018, 4, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Fecher, L.A.; Agarwala, S.S.; Hodi, F.S.; Weber, J.S. Ipilimumab and its toxicities: A multidisciplinary approach. Oncologist 2013, 18, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Ryder, M.; Callahan, M.; Postow, M.A.; Wolchok, J.; Fagin, J.A. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: A comprehensive retrospective review from a single institution. Endocr. Relat. Cancer 2014, 21, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Delivanis, D.A.; Gustafson, M.P.; Bornschlegl, S.; Merten, M.M.; Kottschade, L.; Withers, S.; Dietz, A.B.; Ryder, M. Pembrolizumab-induced thyroiditis: Comprehensive clinical review and insights into underlying involved mechanisms. J. Clin. Endocrinol. Metab. 2017, 102, 2770–2780. [Google Scholar] [CrossRef]
- Byun, D.J.; Wolchok, J.D.; Rosenberg, L.M.; Girotra, M. Cancer immunotherapy—Immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 2017, 13, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Min, L.; Vaidya, A.; Becker, C. Thyroid autoimmunity and ophthalmopathy related to melanoma biological therapy. Eur. J. Endocrinol. 2011, 164, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Perri, V.; Russo, B.; Crinò, A.; Schiaffini, R.; Giorda, E.; Cappa, M.; Rosado, M.M.; Fierabracci, A. Expression of PD-1 molecule on regulatory T lymphocytes in patients with insulin-dependent diabetes mellitus. Int. J. Mol. Sci. 2015, 16, 22584–22605. [Google Scholar] [CrossRef]
- Okamoto, M.; Okamoto, M.; Gotoh, K.; Masaki, T.; Ozeki, Y.; Ando, H.; Anai, M.; Sato, A.; Yoshida, Y.; Ueda, S.; et al. Fulminant type 1 diabetes mellitus with anti-programmed cell Death-1 therapy. J. Diabetes Investig. 2016, 7, 915–918. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, J.; Wang, X.; Woo, K.M.; Iyriboz, T.; Halpenny, D.; Cunningham, J.; Chaft, J.E.; Segal, N.H.; Callahan, M.K.; Lesokhin, A.M.; et al. Pneumonitis in patients treated with anti–programmed death-1/programmed death ligand 1 therapy. J. Clin. Oncol. 2017, 35, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Khunger, M.; Rakshit, S.; Pasupuleti, V.; Hernandez, A.V.; Mazzone, P.; Stevenson, J.; Pennell, N.A.; Velcheti, V. Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: A systematic review and meta-analysis of trials. Chest 2017, 152, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Touat, M.; Maisonobe, T.; Knauss, S.; Ben Hadj Salem, O.; Hervier, B.; Auré, K.; Szwebel, T.A.; Kramkimel, N.; Lethrosne, C.; Bruch, J.F.; et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology 2018, 91, 280. [Google Scholar] [CrossRef]
- Makarious, D.; Horwood, K.; Coward, J.I.G. Myasthenia gravis: An emerging toxicity of immune checkpoint inhibitors. Eur. J. Cancer 2017, 82, 128–136. [Google Scholar] [CrossRef]
- Sciacca, G.; Nicoletti, A.; Rampello, L.; Noto, L.; Parra, H.J.S.; Zappia, M. Benign form of myasthenia gravis after nivolumab treatment. Muscle Nerve 2016, 54, 507–509. [Google Scholar] [CrossRef]
- Zimmer, L.; Goldinger, S.M.; Hofmann, L.; Loquai, C.; Ugurel, S.; Thomas, I.; Schmidgen, M.I.; Gutzmer, R.; Utikal, J.S.; Göppner, D.; et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur. J. Cancer 2016, 60, 210–225. [Google Scholar] [CrossRef]
- Semper, H.; Muehlberg, F.; Schulz-Menger, J.; Allewelt, M.; Grohé, C. Drug-induced myocarditis after nivolumab treatment in a patient with PDL1-negative squamous cell carcinoma of the lung. Lung Cancer 2016, 99, 117–119. [Google Scholar] [CrossRef]
- Gibson, R.; Delaune, J.; Szady, A.; Markham, M. Suspected autoimmune myocarditis and cardiac conduction abnormalities with nivolumab therapy for non-small cell lung cancer. BMJ Case Rep. 2016, 2016. [Google Scholar] [CrossRef]
- Wang, J.; Okazaki, I.M.; Yoshida, T.; Chikuma, S.; Kato, Y.; Nakaki, F.; Hiai, H.; Honjo, T.; Okazaki, T. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int. Immunol. 2010, 22, 443–452. [Google Scholar] [CrossRef]
- Läubli, H.; Balmelli, C.; Bossard, M.; Pfister, O.; Glatz, K.; Zippelius, A. Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma. J. Immunother. Cancer 2015, 3, 11. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-M.; Lee, S.; Cho, H.-W.; Min, K.-J.; Hong, J.-H.; Song, J.-Y.; Lee, J.-K.; Lee, N.-W. Application of Immune Checkpoint Inhibitors in Gynecological Cancers: What Do Gynecologists Need to Know before Using Immune Checkpoint Inhibitors? Int. J. Mol. Sci. 2023, 24, 974. https://doi.org/10.3390/ijms24020974
Lee S-M, Lee S, Cho H-W, Min K-J, Hong J-H, Song J-Y, Lee J-K, Lee N-W. Application of Immune Checkpoint Inhibitors in Gynecological Cancers: What Do Gynecologists Need to Know before Using Immune Checkpoint Inhibitors? International Journal of Molecular Sciences. 2023; 24(2):974. https://doi.org/10.3390/ijms24020974
Chicago/Turabian StyleLee, Seon-Mi, Sanghoon Lee, Hyun-Woong Cho, Kyung-Jin Min, Jin-Hwa Hong, Jae-Yun Song, Jae-Kwan Lee, and Nak-Woo Lee. 2023. "Application of Immune Checkpoint Inhibitors in Gynecological Cancers: What Do Gynecologists Need to Know before Using Immune Checkpoint Inhibitors?" International Journal of Molecular Sciences 24, no. 2: 974. https://doi.org/10.3390/ijms24020974
APA StyleLee, S. -M., Lee, S., Cho, H. -W., Min, K. -J., Hong, J. -H., Song, J. -Y., Lee, J. -K., & Lee, N. -W. (2023). Application of Immune Checkpoint Inhibitors in Gynecological Cancers: What Do Gynecologists Need to Know before Using Immune Checkpoint Inhibitors? International Journal of Molecular Sciences, 24(2), 974. https://doi.org/10.3390/ijms24020974