Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review
Abstract
:1. Introduction
2. Review Methodology
3. The Impact of PEF Parameters
4. The Principle of Electroporation
5. Applications of PEF in Fresh Food Products and By-Products
5.1. Fruits
5.1.1. Prunus Fruits
5.1.2. Grapes
5.1.3. Apples
5.1.4. Pomegranate
5.1.5. Citrus Fruits
5.1.6. Quince
5.1.7. Berry Fruits
5.1.8. Red Prickly Pear
5.2. Vegetables
5.2.1. Potato
5.2.2. Asparagus
5.2.3. Mushroom
5.2.4. Olives
5.3. Various Plants, Herbs, Nuts and Seaweeds
5.3.1. Borage
5.3.2. Flaxseed
5.3.3. Rapeseed
5.3.4. Canola
5.3.5. Coffee and Cocoa
5.3.6. Saffron
5.3.7. Wheat Plants
5.3.8. Sage
5.3.9. Drumstick Tree
5.3.10. Almond
5.3.11. Hemp
5.3.12. Sesame
5.3.13. Rice
5.3.14. Spruce
5.3.15. Barberry
5.3.16. Other Plants
5.3.17. Algae/Microalgae
6. Current Challenges and Limitations
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.N. Reactions of Plant Polyphenols in Foods: Impact of Molecular Structure. Trends Food Sci. Technol. 2021, 112, 241–251. [Google Scholar] [CrossRef]
- Gomez-Pinilla, F.; Nguyen, T.T.J. Natural Mood Foods: The Actions of Polyphenols against Psychiatric and Cognitive Disorders. Nutr. Neurosci. 2012, 15, 127–133. [Google Scholar] [CrossRef] [PubMed]
- El Gharras, H. Polyphenols: Food Sources, Properties and Applications—A Review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Bešlo, D.; Golubić, N.; Rastija, V.; Agić, D.; Karnaš, M.; Šubarić, D.; Lučić, B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants 2023, 12, 1141. [Google Scholar] [CrossRef]
- Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as Natural Phenolic Compounds and Their Role in Therapeutics: An Overview. Future J. Pharm. Sci. 2021, 7, 25. [Google Scholar] [CrossRef]
- Román, G.C.; Jackson, R.E.; Gadhia, R.; Román, A.N.; Reis, J. Mediterranean Diet: The Role of Long-Chain ω-3 Fatty Acids in Fish; Polyphenols in Fruits, Vegetables, Cereals, Coffee, Tea, Cacao and Wine; Probiotics and Vitamins in Prevention of Stroke, Age-Related Cognitive Decline, and Alzheimer Disease. Rev. Neurol. 2019, 175, 724–741. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Hazafa, A.; Iqbal, M.O.; Javaid, U.; Tareen, M.B.K.; Amna, D.; Ramzan, A.; Piracha, S.; Naeem, M. Inhibitory Effect of Polyphenols (Phenolic Acids, Lignans, and Stilbenes) on Cancer by Regulating Signal Transduction Pathways: A Review. Clin. Transl. Oncol. 2022, 24, 432–445. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef] [PubMed]
- Rufino, A.T.; Costa, V.M.; Carvalho, F.; Fernandes, E. Flavonoids as Antiobesity Agents: A Review. Med. Res. Rev. 2021, 41, 556–585. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Madrid-Gambin, F.; Garcia-Aloy, M.; Andres-Lacueva, C.; Logue, C.; Gallagher, A.M.; Mack, C.; Kulling, S.E.; Gao, Q.; Praticò, G. Biomarkers of Intake for Coffee, Tea, and Sweetened Beverages. Genes Nutr. 2018, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.A.; Calder, P.C. Effects of Citrus Fruit Juices and Their Bioactive Components on Inflammation and Immunity: A Narrative Review. Front. Immunol. 2021, 12, 712608. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Maciel, G.M.; Fernandes, I.d.A.A.; Rossetto, R.; Brugnari, T.; Ribeiro, V.R.; Haminiuk, C.W.I. Biological Potential and Technological Applications of Red Fruits: An Overview. Food Chem. Adv. 2022, 1, 100014. [Google Scholar] [CrossRef]
- Thilakarathna, S.H.; Rupasinghe, H.P.V. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients 2013, 5, 3367–3387. [Google Scholar] [CrossRef]
- Kruger, M.J.; Davies, N.; Myburgh, K.H.; Lecour, S. Proanthocyanidins, Anthocyanins and Cardiovascular Diseases. Food Res. Int. 2014, 59, 41–52. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Mayo, B.; Vázquez, L.; Flórez, A.B. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019, 11, 2231. [Google Scholar] [CrossRef]
- De Silva, S.F.; Alcorn, J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals 2019, 12, 68. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Venkataraman, K.; Hollingsworth, A.; Piche, M.; Tai, T.C. Polyphenols: Benefits to the Cardiovascular System in Health and in Aging. Nutrients 2013, 5, 3779–3827. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Pomegranate and Its Many Functional Components as Related to Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef] [PubMed]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B. Berry Polyphenols and Human Health: Evidence of Antioxidant, Anti-Inflammatory, Microbiota Modulation, and Cell-Protecting Effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Bose, M.; Lambert, J.D.; Ju, J.; Reuhl, K.R.; Shapses, S.A.; Yang, C.S. The Major Green Tea Polyphenol, (-)-Epigallocatechin-3-Gallate, Inhibits Obesity, Metabolic Syndrome, and Fatty Liver Disease in High-Fat-Fed Mice. J. Nutr. 2008, 138, 1677–1683. [Google Scholar] [CrossRef]
- McSweeney, M.; Seetharaman, K. State of Polyphenols in the Drying Process of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 660–669. [Google Scholar] [CrossRef]
- Lu, C.; Zhu, W.; Shen, C.L.; Gao, W. Green Tea Polyphenols Reduce Body Weight in Rats by Modulating Obesity-Related Genes. PLoS ONE 2012, 7, e38332. [Google Scholar] [CrossRef]
- Rifna, E.J.; Misra, N.N.; Dwivedi, M. Recent Advances in Extraction Technologies for Recovery of Bioactive Compounds Derived from Fruit and Vegetable Waste Peels: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 719–752. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B. An Overview of the Recent Trends on the Waste Valorization Techniques for Food Wastes. J. Environ. Manag. 2019, 233, 352–370. [Google Scholar] [CrossRef]
- Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food Waste: A Potential Bioresource for Extraction of Nutraceuticals and Bioactive Compounds. Bioresour. Bioprocess. 2017, 4, 18. [Google Scholar] [CrossRef]
- Yan, L.-G.; He, L.; Xi, J. High Intensity Pulsed Electric Field as an Innovative Technique for Extraction of Bioactive Compounds—A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2877–2888. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A Review of Sustainable and Intensified Techniques for Extraction of Food and Natural Products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green Alternative Methods for the Extraction of Antioxidant Bioactive Compounds from Winery Wastes and By-Products: A Review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Pojić, M.; Mišan, A.; Tiwari, B. Eco-Innovative Technologies for Extraction of Proteins for Human Consumption from Renewable Protein Sources of Plant Origin. Trends Food Sci. Technol. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Li, K.-Y.; Ye, J.-T.; Yang, J.; Shao, J.-Q.; Jin, W.-P.; Zheng, C.; Wan, C.-Y.; Peng, D.-F.; Deng, Q.-C. Co-Extraction of Flaxseed Protein and Polysaccharide with a High Emulsifying and Foaming Property: Enrichment through the Sequence Extraction Approach. Foods 2023, 12, 1256. [Google Scholar] [CrossRef]
- Liu, Z.; Esveld, E.; Vincken, J.-P.; Bruins, M.E. Pulsed Electric Field as an Alternative Pre-Treatment for Drying to Enhance Polyphenol Extraction from Fresh Tea Leaves. Food Bioprocess Technol. 2019, 12, 183–192. [Google Scholar] [CrossRef]
- Mohamed, M.E.A.; Amer Eiss, A.H. Pulsed Electric Fields for Food Processing Technology. In Structure and Function of Food Engineering; Amer Eissa, A., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0695-1. [Google Scholar]
- Quass, D.W. Pulsed Electric Field Processing in the Food Industry; A Status Report on Pulsed Electric Field; Electric Power Research Institute: Palo Alto, CA, USA, 1997; pp. 23–35. [Google Scholar]
- Bansal, V.; Sharma, A.; Ghanshyam, C.; Singla, M.L.; Kim, K.-H. Influence of Pulsed Electric Field and Heat Treatment on Emblica Officinalis Juice Inoculated with Zygosaccharomyces bailii. Food Bioprod. Process. 2015, 95, 146–154. [Google Scholar] [CrossRef]
- Gabrić, D.; Barba, F.; Roohinejad, S.; Gharibzahedi, S.M.T.; Radojčin, M.; Putnik, P.; Bursać Kovačević, D. Pulsed Electric Fields as an Alternative to Thermal Processing for Preservation of Nutritive and Physicochemical Properties of Beverages: A Review. J. Food Process Eng. 2018, 41, e12638. [Google Scholar] [CrossRef]
- Mohamad, A.; Shah, N.N.A.K.; Sulaiman, A.; Mohd Adzahan, N.; Aadil, R.M. Impact of the Pulsed Electric Field on Physicochemical Properties, Fatty Acid Profiling, and Metal Migration of Goat Milk. J. Food Process. Preserv. 2020, 44, e14940. [Google Scholar] [CrossRef]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The Effect of Pulsed Electric Field as a Pre-Treatment Step in Ultrasound Assisted Extraction of Phenolic Compounds from Fresh Rosemary and Thyme by-Products. Innov. Food Sci. Emerg. Technol. 2021, 69, 102644. [Google Scholar] [CrossRef]
- Martí-Quijal, F.J.; Ramon-Mascarell, F.; Pallarés, N.; Ferrer, E.; Berrada, H.; Phimolsiripol, Y.; Barba, F.J. Extraction of Antioxidant Compounds and Pigments from Spirulina (Arthrospira Platensis) Assisted by Pulsed Electric Fields and the Binary Mixture of Organic Solvents and Water. Appl. Sci. 2021, 11, 7629. [Google Scholar] [CrossRef]
- Soquetta, M.B.; Terra, L.d.M.; Bastos, C.P. Green Technologies for the Extraction of Bioactive Compounds in Fruits and Vegetables. CyTA J. Food 2018, 16, 400–412. [Google Scholar] [CrossRef]
- Bozinou, E.; Karageorgou, I.; Batra, G.; Dourtoglou, V.G.; Lalas, S.I. Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa Oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages 2019, 5, 8. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of Bioactive Compounds from Plant Materials Using Combination of Various Novel Methods: A Review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Qureshi, M.I.; Khan, N.; Ahmad, M.H.; Liu, Z.W.; Aadil, R.M. Effective Valorization of Food Wastes and By-Products through Pulsed Electric Field: A Systematic Review. J. Food Process. Eng. 2021, 44, e13629. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Grigorakis, S.; Lalas, S.; Makris, D.P. Methyl β-Cyclodextrin as a Booster for the Extraction for Olea Europaea Leaf Polyphenols with a Bio-Based Deep Eutectic Solvent. Biomass Convers. Biorefin. 2018, 8, 345–355. [Google Scholar] [CrossRef]
- Poojary, M.M.; Lund, M.N.; Barba, F.J. 4—Pulsed Electric Field (PEF) as an Efficient Technology for Food Additives and Nutraceuticals Development. In Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow; Barba, F.J., Parniakov, O., Wiktor, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 65–99. ISBN 978-0-12-816402-0. [Google Scholar]
- Barba, F.J.; Parniakov, O.; Pereira, S.A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J.A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Food Res. Int. 2015, 77, 773–798. [Google Scholar] [CrossRef]
- Khan, M.K.; Ahmad, K.; Hassan, S.; Imran, M.; Ahmad, N.; Xu, C. Effect of Novel Technologies on Polyphenols during Food Processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 361–381. [Google Scholar] [CrossRef]
- Ranjitha Gracy, T.K.; Sharanyakanth, P.S.; Radhakrishnan, M. Non-Thermal Technologies: Solution for Hazardous Pesticides Reduction in Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2022, 62, 1782–1799. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Janius, R.; Abdan, K.; Chen, G.; Oladejo, A.O. Non-Thermal Hybrid Drying of Fruits and Vegetables: A Review of Current Technologies. Innov. Food Sci. Emerg. Technol. 2017, 43, 223–238. [Google Scholar] [CrossRef]
- Knoerzer, K.; Baumann, P.; Buckow, R. An Iterative Modelling Approach for Improving the Performance of a Pulsed Electric Field (PEF) Treatment Chamber. Comput. Chem. Eng. 2012, 37, 48–63. [Google Scholar] [CrossRef]
- Hossain, M.B.; Aguiló-Aguayo, I.; Lyng, J.G.; Brunton, N.P.; Rai, D.K. Effect of Pulsed Electric Field and Pulsed Light Pre-Treatment on the Extraction of Steroidal Alkaloids from Potato Peels. Innov. Food Sci. Emerg. Technol. 2015, 29, 9–14. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef]
- Lasekan, O.; Ng, S.; Azeez, S.; Shittu, R.; Teoh, L.; Gholivand, S. Effect of Pulsed Electric Field Processing on Flavor and Color of Liquid Foods†. J. Food Process. Preserv. 2017, 41, e12940. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The Application of PEF Technology in Food Processing and Human Nutrition. J. Food Sci. Technol. 2021, 58, 397–411. [Google Scholar] [CrossRef]
- Goettel, M.; Eing, C.; Gusbeth, C.; Straessner, R.; Frey, W. Pulsed Electric Field Assisted Extraction of Intracellular Valuables from Microalgae. Algal Res. 2013, 2, 401–408. [Google Scholar] [CrossRef]
- Wang, M.-S.; Wang, L.-H.; Bekhit, A.E.-D.A.; Yang, J.; Hou, Z.-P.; Wang, Y.-Z.; Dai, Q.-Z.; Zeng, X.-A. A Review of Sublethal Effects of Pulsed Electric Field on Cells in Food Processing. J. Food Eng. 2018, 223, 32–41. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M.H.; Jusoh, Y.M.M.; Bekhit, A.E.-D.; Roobab, U.; Manzoor, M.F.; Aadil, R.M. Electrical Systems for Pulsed Electric Field Applications in the Food Industry: An Engineering Perspective. Trends Food Sci. Technol. 2020, 104, 1–13. [Google Scholar] [CrossRef]
- Yang, R.J.; Li, S.Q.; Zhang, Q.H. Effects of Pulsed Electric Fields on the Activity of Enzymes in Aqueous Solution. J. Food Sci. 2004, 69, FCT241–FCT248. [Google Scholar] [CrossRef]
- Buckow, R.; Baumann, P.; Schroeder, S.; Knoerzer, K. Effect of Dimensions and Geometry of Co-Field and Co-Linear Pulsed Electric Field Treatment Chambers on Electric Field Strength and Energy Utilisation. J. Food Eng. 2011, 105, 545–556. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Y.; He, H.; Sun, Z.; Li, A. Effective Aluminum Extraction Using Pressure Leaching of Bauxite Reaction Residue from Coagulant Industry and Leaching Kinetics Study. J. Environ. Chem. Eng. 2021, 9, 104770. [Google Scholar] [CrossRef]
- Novickij, V.; Grainys, A.; Lastauskienė, E.; Kananavičiūtė, R.; Pamedytytė, D.; Kalėdienė, L.; Novickij, J.; Miklavčič, D. Pulsed Electromagnetic Field Assisted In Vitro Electroporation: A Pilot Study. Sci. Rep. 2016, 6, 33537. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G.; Pataro, G. Applications of Pulsed Electric Field Treatments for the Enhancement of Mass Transfer from Vegetable Tissue. Food Eng. Rev. 2010, 2, 109–130. [Google Scholar] [CrossRef]
- Chen, C.; Smye, S.W.; Robinson, M.P.; Evans, J.A. Membrane Electroporation Theories: A Review. Med. Biol. Eng. Comput. 2006, 44, 5–14. [Google Scholar] [CrossRef]
- Soliva-Fortuny, R.; Balasa, A.; Knorr, D.; Martín-Belloso, O. Effects of Pulsed Electric Fields on Bioactive Compounds in Foods: A Review. Trends Food Sci. Technol. 2009, 20, 544–556. [Google Scholar] [CrossRef]
- García, D.; Gómez, N.; Mañas, P.; Raso, J.; Pagán, R. Pulsed Electric Fields Cause Bacterial Envelopes Permeabilization Depending on the Treatment Intensity, the Treatment Medium pH and the Microorganism Investigated. Int. J. Food Microbiol. 2007, 113, 219–227. [Google Scholar] [CrossRef]
- Pagán, R.; Mañas, P. Fundamental Aspects of Microbial Membrane Electroporation. In Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications; Food Engineering Series; Raso, J., Heinz, V., Eds.; Springer: Boston, MA, USA, 2006; pp. 73–94. ISBN 978-0-387-31122-7. [Google Scholar]
- Kolosnjaj-Tabi, J.; Gibot, L.; Fourquaux, I.; Golzio, M.; Rols, M.-P. Electric Field-Responsive Nanoparticles and Electric Fields: Physical, Chemical, Biological Mechanisms and Therapeutic Prospects. Adv. Drug Deliv. Rev. 2019, 138, 56–67. [Google Scholar] [CrossRef]
- Demir, E.; Tappi, S.; Dymek, K.; Rocculi, P.; Gómez Galindo, F. Reversible Electroporation Caused by Pulsed Electric Field—Opportunities and Challenges for the Food Sector. Trends Food Sci. Technol. 2023, 139, 104120. [Google Scholar] [CrossRef]
- Fauster, T.; Schlossnikl, D.; Rath, F.; Ostermeier, R.; Teufel, F.; Toepfl, S.; Jaeger, H. Impact of Pulsed Electric Field (PEF) Pretreatment on Process Performance of Industrial French Fries Production. J. Food Eng. 2018, 235, 16–22. [Google Scholar] [CrossRef]
- Makrygiannis, I.; Athanasiadis, V.; Bozinou, E.; Chatzimitakos, T.; Makris, D.P.; Lalas, S.I. Combined Effects of Deep Eutectic Solvents and Pulsed Electric Field Improve Polyphenol-Rich Extracts from Apricot Kernel Biomass. Biomass 2023, 3, 66–77. [Google Scholar] [CrossRef]
- Kotsou, K.; Stoikou, M.; Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Sfougaris, A.I.; Lalas, S.I. Enhancing Antioxidant Properties of Prunus Spinosa Fruit Extracts via Extraction Optimization. Horticulturae 2023, 9, 942. [Google Scholar] [CrossRef]
- Di Cagno, R.; Surico, R.F.; Minervini, G.; Rizzello, C.G.; Lovino, R.; Servili, M.; Taticchi, A.; Urbani, S.; Gobbetti, M. Exploitation of Sweet Cherry (Prunus avium L.) Puree Added of Stem Infusion through Fermentation by Selected Autochthonous Lactic Acid Bacteria. Food Microbiol. 2011, 28, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Crisosto, C.H.; Crisosto, G.M.; Metheney, P. Consumer Acceptance of “Brooks” and “Bing” Cherries Is Mainly Dependent on Fruit SSC and Visual Skin Color. Postharvest Biol. Technol. 2003, 28, 159–167. [Google Scholar] [CrossRef]
- Serra, A.T.; Duarte, R.O.; Bronze, M.R.; Duarte, C.M.M. Identification of Bioactive Response in Traditional Cherries from Portugal. Food Chem. 2011, 125, 318–325. [Google Scholar] [CrossRef]
- Schreiner, M.; Huyskens-Keil, S. Phytochemicals in Fruit and Vegetables: Health Promotion and Postharvest Elicitors. Crit. Rev. Plant Sci. 2006, 25, 267–278. [Google Scholar] [CrossRef]
- Sotelo, K.A.G.; Hamid, N.; Oey, I.; Pook, C.; Gutierrez-Maddox, N.; Ma, Q.; Ying Leong, S.; Lu, J. Red Cherries (Prunus Avium Var. Stella) Processed by Pulsed Electric Field—Physical, Chemical and Microbiological Analyses. Food Chem. 2018, 240, 926–934. [Google Scholar] [CrossRef]
- El Darra, N.; Grimi, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Pulsed Electric Field, Ultrasound, and Thermal Pretreatments for Better Phenolic Extraction during Red Fermentation. Eur. Food Res. Technol. 2013, 236, 47–56. [Google Scholar] [CrossRef]
- El Darra, N.; Turk, M.F.; Ducasse, M.A.; Grimi, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Changes in Polyphenol Profiles and Color Composition of Freshly Fermented Model Wine Due to Pulsed Electric Field, Enzymes and Thermovinification Pretreatments. Food Chem. 2016, 194, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Delsart, C.; Cholet, C.; Ghidossi, R.; Grimi, N.; Gontier, E.; Gény, L.; Vorobiev, E.; Mietton-Peuchot, M. Effects of Pulsed Electric Fields on Cabernet Sauvignon Grape Berries and on the Characteristics of Wines. Food Bioprocess Technol. 2012, 7, 424–436. [Google Scholar] [CrossRef]
- Delsart, C.; Ghidossi, R.; Poupot, C.; Cholet, C.; Grimi, N.; Vorobiev, E.; Milisic, V.; Peuchot, M.M. Enhanced Extraction of Phenolic Compounds from Merlot Grapes by Pulsed Electric Field Treatment. Am. J. Enol. Vitic. 2012, 63, 205–211. [Google Scholar] [CrossRef]
- Maza, M.A.; Martínez, J.M.; Delso, C.; Camargo, A.; Raso, J.; Álvarez, I. PEF-Dependency on Polyphenol Extraction during Maceration/Fermentation of Grenache Grapes. Innov. Food Sci. Emerg. Technol. 2020, 60, 102303. [Google Scholar] [CrossRef]
- Maza, M.A.; Martínez, J.M.; Cebrián, G.; Sánchez-Gimeno, A.C.; Camargo, A.; Álvarez, I.; Raso, J. Evolution of Polyphenolic Compounds and Sensory Properties of Wines Obtained from Grenache Grapes Treated by Pulsed Electric Fields during Aging in Bottles and in Oak Barrels. Foods 2020, 9, 542. [Google Scholar] [CrossRef]
- Comuzzo, P.; Voce, S.; Grazioli, C.; Tubaro, F.; Marconi, M.; Zanella, G.; Querzè, M. Pulsed Electric Field Processing of Red Grapes (Cv. Rondinella): Modifications of Phenolic Fraction and Effects on Wine Evolution. Foods 2020, 9, 414. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis Vinifera, Sideritis Scardica and Crocus sativus. ChemEngineering 2021, 5, 25. [Google Scholar] [CrossRef]
- Brianceau, S.; Turk, M.; Vitrac, X.; Vorobiev, E. Combined Densification and Pulsed Electric Field Treatment for Selective Polyphenols Recovery from Fermented Grape Pomace. Innov. Food Sci. Emerg. Technol. 2015, 29, 2–8. [Google Scholar] [CrossRef]
- Barba, F.J.; Brianceau, S.; Turk, M.; Boussetta, N.; Vorobiev, E. Effect of Alternative Physical Treatments (Ultrasounds, Pulsed Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-Compounds from Fermented Grape Pomace. Food Bioprocess Technol. 2015, 8, 1139–1148. [Google Scholar] [CrossRef]
- Atanasov, S.; Stoylov, B.L.; Saykova, I.; Tchaoushev, S.T. Mass Transfer Intensification in Bioactive Compounds Recovery by Alternative Extraction Methods: Effects of Solvent. Glob. Nest J. 2019, 21, 30–36. [Google Scholar] [CrossRef]
- Delso, C.; Berzosa, A.; Sanz, J.; Álvarez, I.; Raso, J. Two-Step PEF Processing for Enhancing the Polyphenol Concentration and Decontaminating a Red Grape Juice. Foods 2022, 11, 621. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Parpinello, G.P.; Banfi, B.A.; Olivi, F.; Versari, A. Preliminary Study of the Effects of Pulsed Electric Field (PEF) Treatments in Wines Obtained from Early-Harvested Sangiovese Grapes. Beverages 2020, 6, 34. [Google Scholar] [CrossRef]
- Ziagova, M.; Mavromatidou, C.; Samiotis, G.; Amanatidou, E. Total Phenolic Content and Antioxidant Capacity of Greek Medicinal and Aromatic Plant Extracts Using Pulsed Electric Field Followed by Ultrasounds Extraction Process. J. Food Process. Preserv. 2022, 46, e16639. [Google Scholar] [CrossRef]
- Ntourtoglou, G.; Drosou, F.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Dourtoglou, V.G.; Elhakem, A.; Sami, R.; Ashour, A.A.; Shafie, A. Combination of Pulsed Electric Field and Ultrasound in the Extraction of Polyphenols and Volatile Compounds from Grape Stems. Appl. Sci. 2022, 12, 6219. [Google Scholar] [CrossRef]
- Carpentieri, S.; Ferrari, G.; Pataro, G. Pulsed Electric Fields-Assisted Extraction of Valuable Compounds from Red Grape Pomace: Process Optimization Using Response Surface Methodology. Front. Nutr. 2023, 10, 1158019. [Google Scholar] [CrossRef] [PubMed]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of Polyphenols in Different Apple Varieties. J. Agric. Food Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef] [PubMed]
- Wiktor, A.; Sledz, M.; Nowacka, M.; Rybak, K.; Chudoba, T.; Lojkowski, W.; Witrowa-Rajchert, D. The Impact of Pulsed Electric Field Treatment on Selected Bioactive Compound Content and Color of Plant Tissue. Innov. Food Sci. Emerg. Technol. 2015, 30, 69–78. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Dróżdż, T.; Kiełbasa, P.; Ostafin, M.; Bulski, K.; Oziembłowski, M. Effect of Pulsed Electric Field Treatment on Shelf Life and Nutritional Value of Apple Juice. J. Food Sci. Technol. 2019, 56, 1184–1191. [Google Scholar] [CrossRef]
- Pollini, L.; Cossignani, L.; Juan, C.; Mañes, J. Extraction of Phenolic Compounds from Fresh Apple Pomace by Different Non-Conventional Techniques. Molecules 2021, 26, 4272. [Google Scholar] [CrossRef]
- Matys, A.; Dadan, M.; Witrowa-Rajchert, D.; Parniakov, O.; Wiktor, A. Response Surface Methodology as a Tool for Optimization of Pulsed Electric Field Pretreatment and Microwave-Convective Drying of Apple. Appl. Sci. 2022, 12, 3392. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Rana, T.S.; Narzary, D.; Verma, N.; Meshram, D.T.; Ranade, S.A. Pomegranate Biology and Biotechnology: A Review. Sci. Hortic. 2013, 160, 85–107. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, Y.; Duan, G.; Li, Y. Study on Infrared-Assisted Extraction Coupled with High Performance Liquid Chromatography (HPLC) for Determination of Catechin, Epicatechin, and Procyanidin B2 in Grape Seeds. Food Chem. 2011, 127, 1872–1877. [Google Scholar] [CrossRef]
- Rajha, H.N.; Abi-Khattar, A.M.; El Kantar, S.; Boussetta, N.; Lebovka, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Comparison of Aqueous Extraction Efficiency and Biological Activities of Polyphenols from Pomegranate Peels Assisted by Infrared, Ultrasound, Pulsed Electric Fields and High-Voltage Electrical Discharges. Innov. Food Sci. Emerg. Technol. 2019, 58, 102212. [Google Scholar] [CrossRef]
- Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant Activity of Citrus Fruits. Food Chem. 2016, 196, 885–896. [Google Scholar] [CrossRef]
- El Kantar, S.; Boussetta, N.; Lebovka, N.; Foucart, F.; Rajha, H.N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Pulsed Electric Field Treatment of Citrus Fruits: Improvement of Juice and Polyphenols Extraction. Innov. Food Sci. Emerg. Technol. 2018, 46, 153–161. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability 2022, 14, 13926. [Google Scholar] [CrossRef]
- Luengo, E.; Álvarez, I.; Raso, J. Improving the Pressing Extraction of Polyphenols of Orange Peel by Pulsed Electric Fields. Innov. Food Sci. Emerg. Technol. 2013, 17, 79–84. [Google Scholar] [CrossRef]
- Peiró, S.; Luengo, E.; Segovia, F.; Raso, J.; Almajano, M.P. Improving Polyphenol Extraction from Lemon Residues by Pulsed Electric Fields. Waste Biomass Valorization 2019, 10, 889–897. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Bozinou, E.; Lalas, S.I. Response Surface Optimization for the Enhancement of the Extraction of Bioactive Compounds from Citrus Limon Peel. Antioxidants 2023, 12, 1605. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Kotsou, K.; Palaiogiannis, D.; Lalas, S.I. Optimization of Extraction Parameters for Enhanced Recovery of Bioactive Compounds from Quince Peels Using Response Surface Methodology. Foods 2023, 12, 2099. [Google Scholar] [CrossRef]
- Lončarić, A.; Celeiro, M.; Jozinović, A.; Jelinić, J.; Kovač, T.; Jokić, S.; Babić, J.; Moslavac, T.; Zavadlav, S.; Lores, M. Green Extraction Methods for Extraction of Polyphenolic Compounds from Blueberry Pomace. Foods 2020, 9, 1521. [Google Scholar] [CrossRef] [PubMed]
- Medina-Meza, I.G.; Boioli, P.; Barbosa-Cánovas, G.V. Assessment of the Effects of Ultrasonics and Pulsed Electric Fields on Nutritional and Rheological Properties of Raspberry and Blueberry Purees. Food Bioprocess Technol. 2016, 9, 520–531. [Google Scholar] [CrossRef]
- Ozkan, G.; Stübler, A.S.; Aganovic, K.; Dräger, G.; Esatbeyoglu, T.; Capanoglu, E. Retention of Polyphenols and Vitamin C in Cranberrybush Purée (Viburnum Opulus) by Means of Non-Thermal Treatments. Food Chem. 2021, 360, 129918. [Google Scholar] [CrossRef] [PubMed]
- Gagneten, M.; Leiva, G.; Salvatori, D.; Schebor, C.; Olaiz, N. Optimization of Pulsed Electric Field Treatment for the Extraction of Bioactive Compounds from Blackcurrant. Food Bioprocess Technol. 2019, 12, 1102–1109. [Google Scholar] [CrossRef]
- Stübler, A.S.; Lesmes, U.; Juadjur, A.; Heinz, V.; Rauh, C.; Shpigelman, A.; Aganovic, K. Impact of Pilot-Scale Processing (Thermal, PEF, HPP) on the Stability and Bioaccessibility of Polyphenols and Proteins in Mixed Protein- and Polyphenol-Rich Juice Systems. Innov. Food Sci. Emerg. Technol. 2020, 64, 102426. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Lamuela-Raventós, R.M.; Elez-Martínez, P.; Martín-Belloso, O. Changes in the Polyphenol Profile of Tomato Juices Processed by Pulsed Electric Fields. J. Agric. Food Chem. 2012, 60, 9667–9672. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Oms-Oliu, G.; Odriozola-Serrano, I.; Lamuela-Raventos, R.M.; Martín-Belloso, O.; Elez-Martínez, P. Effects of Pulsed Electric Fields on the Bioactive Compound Content and Antioxidant Capacity of Tomato Fruit. J. Agric. Food Chem. 2012, 60, 3126–3134. [Google Scholar] [CrossRef]
- Surano, B.; Leiva, G.; Marshall, G.; Maglietti, F.; Schebor, C. Pulsed Electric Fields Using a Multiple Needle Chamber to Improve Bioactive Compounds Extraction from Unprocessed Opuntia Ficus-Indica Fruits. J. Food Eng. 2022, 317, 110864. [Google Scholar] [CrossRef]
- Aleti, G.; Nikolić, B.; Brader, G.; Pandey, R.V.; Antonielli, L.; Pfeiffer, S.; Oswald, A.; Sessitsch, A. Secondary Metabolite Genes Encoded by Potato Rhizosphere Microbiomes in the Andean Highlands Are Diverse and Vary with Sampling Site and Vegetation Stage. Sci. Rep. 2017, 7, 2330. [Google Scholar] [CrossRef]
- Rasheed, H.; Ahmad, D.; Bao, J. Genetic Diversity and Health Properties of Polyphenols in Potato. Antioxidants 2022, 11, 603. [Google Scholar] [CrossRef]
- Frontuto, D.; Carullo, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Pataro, G. Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. Food Bioprocess Technol. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Symes, A.; Shavandi, A.; Bekhit, A.E.A. Effects of Ionic Liquids and Pulsed Electric Fields on the Extraction of Antioxidants from Green Asparagus Roots. Int. J. Food Sci. Technol. 2023, 58, 3935–3945. [Google Scholar] [CrossRef]
- Lee, I.H.; Huang, R.L.; Chen, C.T.; Chen, H.C.; Hsu, W.C.; Lu, M.K. Antrodia camphorata Polysaccharides Exhibit Anti-Hepatitis B Virus Effects. FEMS Microbiol. Lett. 2002, 209, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.K.; Agarwal, S.; Gupta, K.K.; Ramteke, P.W.; Singh, M.P. Medicinal Mushroom: Boon for Therapeutic Applications. 3 Biotech 2018, 8, 334. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Farid, M.M. Pulsed Electric Field Extraction of Valuable Compounds from White Button Mushroom (Agaricus Bisporus). Innov. Food Sci. Emerg. Technol. 2015, 29, 178–186. [Google Scholar] [CrossRef]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Gammazza, A.M.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef]
- Tsantili, E.; Evangelou, E.; Kiritsakis, A. Botanical Characteristics of Olive Trees: Cultivation and Growth Conditions—Defense Mechanisms to Various Stressors and Effects on Olive Growth and Functional Compounds. In Olives and Olive Oil as Functional Foods; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 13–33. ISBN 978-1-119-13534-0. [Google Scholar]
- Andreou, V.; Psarianos, M.; Dimopoulos, G.; Tsimogiannis, D.; Taoukis, P. Effect of Pulsed Electric Fields and High Pressure on Improved Recovery of High-Added-Value Compounds from Olive Pomace. J. Food Sci. 2020, 85, 1500–1512. [Google Scholar] [CrossRef]
- Andreou, V.; Kourmbeti, E.; Dimopoulos, G.; Psarianos, M.; Katsaros, G.; Taoukis, P. Optimization of Virgin Olive Oil Yield and Quality Applying Nonthermal Processing. Food Bioprocess Technol. 2022, 15, 891–903. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Bozinou, E.; Ntourtoglou, G.; Batra, G.; Athanasiadis, V.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Use of Pulsed Electric Field as a Low-Temperature and High-Performance “Green” Extraction Technique for the Recovery of High Added Value Compounds from Olive Leaves. Beverages 2021, 7, 45. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Athanasiadis, V.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Optimization of Pulsed Electric Field as Standalone “Green” Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves. Antioxidants 2021, 10, 1554. [Google Scholar] [CrossRef]
- Segovia, F.J.; Luengo, E.; Corral-Pérez, J.J.; Raso, J.; Almajano, M.P. Improvements in the Aqueous Extraction of Polyphenols from Borage (Borago Officinalis L.) Leaves by Pulsed Electric Fields: Pulsed Electric Fields (PEF) Applications. Ind. Crops Prod. 2015, 65, 390–396. [Google Scholar] [CrossRef]
- Boussetta, N.; Soichi, E.; Lanoisellé, J.; Vorobiev, E. Valorization of Oilseed Residues: Extraction of Polyphenols from Flaxseed Hulls by Pulsed Electric Fields. Ind. Crops Prod. 2014, 52, 347–353. [Google Scholar] [CrossRef]
- Yu, X.; Bals, O.; Grimi, N.; Vorobiev, E. A New Way for the Oil Plant Biomass Valorization: Polyphenols and Proteins Extraction from Rapeseed Stems and Leaves Assisted by Pulsed Electric Fields. Ind. Crops Prod. 2015, 74, 309–318. [Google Scholar] [CrossRef]
- Yu, X.; Gouyo, T.; Grimi, N.; Bals, O.; Vorobiev, E. Pulsed Electric Field Pretreatment of Rapeseed Green Biomass (Stems) to Enhance Pressing and Extractives Recovery. Bioresour. Technol. 2016, 199, 194–201. [Google Scholar] [CrossRef]
- Teh, S.S.; Niven, B.E.; Bekhit, A.E.D.A.; Carne, A.; Birch, J. Optimization of Polyphenol Extraction and Antioxidant Activities of Extracts from Defatted Flax Seed Cake (Linum Usitatissimum L.) Using Microwave-Assisted and Pulsed Electric Field (PEF) Technologies with Response Surface Methodology. Food Sci. Biotechnol. 2015, 24, 1649–1659. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Neri, L.; Giancaterino, M.; Rocchi, R.; Tylewicz, U.; Valbonetti, L.; Faieta, M.; Pittia, P. Pulsed Electric Fields (PEF) as Hot Air Drying Pre-Treatment: Effect on Quality and Functional Properties of Saffron (Crocus Sativus L.). Innov. Food Sci. Emerg. Technol. 2021, 67, 102592. [Google Scholar] [CrossRef]
- Ahmed, Z.; Faisal Manzoor, M.; Hussain, A.; Hanif, M.; Zia-ud-Din; Zeng, X.A. Study the Impact of Ultra-Sonication and Pulsed Electric Field on the Quality of Wheat Plantlet Juice through FTIR and SERS. Ultrason. Sonochem. 2021, 76, 105648. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Lakka, A.; Palaiogiannis, D.; Pappas, V.M.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Pulsed Electric Field and Salvia Officinalis l. Leaves: A Successful Combination for the Extraction of High Value Added Compounds. Foods 2021, 10, 2014. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Almond Hull Biomass: Preliminary Characterization and Development of Two Alternative Valorization Routes by Applying Innovative and Sustainable Technologies. Ind. Crops Prod. 2022, 179, 114697. [Google Scholar] [CrossRef]
- Teh, S.S.; Niven, B.E.; Bekhit, A.E.D.A.; Carne, A.; Birch, E.J. The Use of Microwave and Pulsed Electric Field as a Pretreatment Step in Ultrasonic Extraction of Polyphenols from Defatted Hemp Seed Cake (Cannabis Sativa) Using Response Surface Methodology. Food Bioprocess Technol. 2014, 7, 3064–3076. [Google Scholar] [CrossRef]
- Sarkis, J.R.; Boussetta, N.; Blouet, C.; Tessaro, I.C.; Marczak, L.D.F.; Vorobiev, E. Effect of Pulsed Electric Fields and High Voltage Electrical Discharges on Polyphenol and Protein Extraction from Sesame Cake. Innov. Food Sci. Emerg. Technol. 2015, 29, 170–177. [Google Scholar] [CrossRef]
- Quagliariello, V.; Iaffaioli, R.V.; Falcone, M.; Ferrari, G.; Pataro, G.; Donsì, F. Effect of Pulsed Electric Fields—Assisted Extraction on Anti-Inflammatory and Cytotoxic Activity of Brown Rice Bioactive Compounds. Food Res. Int. 2016, 87, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Bouras, M.; Grimi, N.; Bals, O.; Vorobiev, E. Impact of Pulsed Electric Fields on Polyphenols Extraction from Norway Spruce Bark. Ind. Crops Prod. 2016, 80, 50–58. [Google Scholar] [CrossRef]
- Sarraf, M.; Beig-Babaei, A.; Naji-Tabasi, S. Optimizing Extraction of Berberine and Antioxidant Compounds from Barberry by Maceration and Pulsed Electric Field-Assisted Methods. J. Berry Res. 2021, 11, 133–149. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Stavropoulos, G.; Samanidis, I.; Athanasiadis, V.; Dourtoglou, V.G.; Makris, D.P.; Lalas, S.I. Enhancement of Polyphenols Recovery from Rosa Canina, Calendula Officinalis and Castanea Sativa Using Pulsed Electric Field. Beverages 2021, 7, 63. [Google Scholar] [CrossRef]
- Carpentieri, S.; Mazza, L.; Nutrizio, M.; Jambrak, A.R.; Ferrari, G.; Pataro, G. Pulsed Electric Fields- and Ultrasound-Assisted Green Extraction of Valuable Compounds from Origanum Vulgare L. and Thymus Serpyllum L. Int. J. Food Sci. Technol. 2021, 56, 4834–4842. [Google Scholar] [CrossRef]
- Alberto, J.; Costa, V.; Catarina, B.; Freitas, B.; Moraes, L.; Zaparoli, M.; Greque, M. Bioresource Technology Progress in the Physicochemical Treatment of Microalgae Biomass for Value- Added Product Recovery. Bioresour. Technol. 2020, 301, 122727. [Google Scholar] [CrossRef]
- Morais Junior, W.G.; Gorgich, M.; Corrêa, P.S.; Martins, A.A.; Mata, T.M.; Caetano, N.S. Microalgae for Biotechnological Applications: Cultivation, Harvesting and Biomass Processing. Aquaculture 2020, 528, 735562. [Google Scholar] [CrossRef]
- Einarsdóttir, R.; Þórarinsdóttir, K.A.; Aðalbjörnsson, B.V.; Guðmundsson, M.; Marteinsdóttir, G.; Kristbergsson, K. The Effect of Pulsed Electric Field-Assisted Treatment Parameters on Crude Aqueous Extraction of Laminaria digitata. J. Appl. Phycol. 2021, 33, 3287–3296. [Google Scholar] [CrossRef]
- Kokkali, M.; Martí-Quijal, F.J.; Taroncher, M.; Ruiz, M.J.; Kousoulaki, K.; Barba, F.J. Improved Extraction Efficiency of Antioxidant Bioactive Compounds from Tetraselmis Chuii and Phaedoactylum Tricornutum Using Pulsed Electric Fields. Molecules 2020, 25, 3921. [Google Scholar] [CrossRef] [PubMed]
- Castejón, N.; Thorarinsdottir, K.A.; Einarsdóttir, R.; Kristbergsson, K.; Marteinsdóttir, G. Exploring the Potential of Icelandic Seaweeds Extracts Produced by Aqueous Pulsed Electric Fields-Assisted Extraction for Cosmetic Applications. Mar. Drugs 2021, 19, 662. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, M.; Berrada, H.; Zhu, Z.; Grimi, N.; Barba, F.J. Pulsed Electric Fields (PEF), Pressurized Liquid Extraction (PLE) and Combined PEF + PLE Process Evaluation: Effects on Spirulina Microstructure, Biomolecules Recovery and Triple TOF-LC-MS-MS Polyphenol Composition. Innov. Food Sci. Emerg. Technol. 2022, 77, 102989. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Esparza, I.; Bimbela, F.; Gandía, L.M.; Ancín-Azpilicueta, C. Valorization of Selected Fruit and Vegetable Wastes as Bioactive Compounds: Opportunities and Challenges. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2061–2108. [Google Scholar] [CrossRef]
- Andreou, V.; Dimopoulos, G.; Dermesonlouoglou, E.; Taoukis, P. Application of Pulsed Electric Fields to Improve Product Yield and Waste Valorization in Industrial Tomato Processing. J. Food Eng. 2020, 270, 109778. [Google Scholar] [CrossRef]
- Niu, D.; Zeng, X.-A.; Ren, E.-F.; Xu, F.-Y.; Li, J.; Wang, M.-S.; Wang, R. Review of the Application of Pulsed Electric Fields (PEF) Technology for Food Processing in China. Food Res. Int. 2020, 137, 109715. [Google Scholar] [CrossRef] [PubMed]
- Aşık-Canbaz, E.; Çömlekçi, S.; Can Seydim, A. Effect of Moderate Intensity Pulsed Electric Field on Shelf-Life of Chicken Breast Meat. Br. Poult. Sci. 2022, 63, 641–649. [Google Scholar] [CrossRef]
- Moretto, G.; Russo, I.; Bolzonella, D.; Pavan, P.; Majone, M.; Valentino, F. An Urban Biorefinery for Food Waste and Biological Sludge Conversion into Polyhydroxyalkanoates and Biogas. Water Res. 2020, 170, 115371. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Flora, G.; Venkatkarthick, R.; SenthilKannan, K.; Kuppam, C.; Mary Stephy, G.; Kamyab, H.; Chen, W.-H.; Thomas, J.; Ngamcharussrivichai, C. Advanced Technologies on the Sustainable Approaches for Conversion of Organic Waste to Valuable Bioproducts: Emerging Circular Bioeconomy Perspective. Fuel 2022, 324, 124313. [Google Scholar] [CrossRef]
- Morone, P.; Koutinas, A.; Gathergood, N.; Arshadi, M.; Matharu, A. Food Waste: Challenges and Opportunities for Enhancing the Emerging Bio-Economy. J. Clean. Prod. 2019, 221, 10–16. [Google Scholar] [CrossRef]
- Bottausci, S.; Midence, R.; Serrano-Bernardo, F.; Bonoli, A. Organic Waste Management and Circular Bioeconomy: A Literature Review Comparison between Latin America and the European Union. Sustainability 2022, 14, 1661. [Google Scholar] [CrossRef]
- Mohd Basri, M.S.; Abdul Karim Shah, N.N.; Sulaiman, A.; Mohamed Amin Tawakkal, I.S.; Mohd Nor, M.Z.; Ariffin, S.H.; Abdul Ghani, N.H.; Mohd Salleh, F.S. Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. Polymers 2021, 13, 3503. [Google Scholar] [CrossRef] [PubMed]
- Golberg, A.; Sack, M.; Teissie, J.; Pataro, G.; Pliquett, U.; Saulis, G.; Stefan, T.; Miklavcic, D.; Vorobiev, E.; Frey, W. Energy-Efficient Biomass Processing with Pulsed Electric Fields for Bioeconomy and Sustainable Development. Biotechnol. Biofuels 2016, 9, 94. [Google Scholar] [CrossRef]
- Toepfl, S. Pulsed Electric Field Food Treatment—Scale up from Lab to Industrial Scale. Procedia Food Sci. 2011, 1, 776–779. [Google Scholar] [CrossRef]
- Sosa-Hernández, J.E.; Escobedo-Avellaneda, Z.; Iqbal, H.M.N.; Welti-Chanes, J. State-of-the-Art Extraction Methodologies for Bioactive Compounds from Algal Biome to Meet Bio-Economy Challenges and Opportunities. Molecules 2018, 23, 2953. [Google Scholar] [CrossRef] [PubMed]
- Waseem, M.; Majeed, Y.; Nadeem, T.; Naqvi, L.H.; Khalid, M.A.; Sajjad, M.M.; Sultan, M.; Khan, M.U.; Khayrullin, M.; Shariati, M.A. Conventional and Advanced Extraction Methods of Some Bioactive Compounds with Health Benefits of Food and Plant Waste: A Comprehensive Review. Food Front. 2023, 1–21. [Google Scholar] [CrossRef]
- Naliyadhara, N.; Kumar, A.; Girisa, S.; Daimary, U.D.; Hegde, M.; Kunnumakkara, A.B. Pulsed Electric Field (PEF): Avant-Garde Extraction Escalation Technology in Food Industry. Trends Food Sci. Technol. 2022, 122, 238–255. [Google Scholar] [CrossRef]
Sample | PEF Conditions | Treatment Effect | Ref. |
---|---|---|---|
Apricot | 1 kV/cm, pulse frequency 1000 μs, 10 μs pulse duration | Increases by 88% in TPC (from ~3.5 to ~6.5 mg GAE/g dw) and 100% in TFC (from 3.78 to ~7.5 mg RtE/g dw) | [77] |
Blackthorn | 1.0 kV/cm, 1 ms pulse period, 10 μs pulse length | Increased TPC value by 27% (from 24.20 to 30.74 mg GAE/g) when compared to stirring, | [78] |
Cherry | 2.5 kV/cm, 20 μs, 100 Hz, pulse number 385–10,000 | Rutin concentration increased by 54% (from 5.04 to 7.77 μg/g ww) | [83] |
Grape | 5 kV/cm, 1 ms pulse duration, 42–53 kJ/kg | Increase in anthocyanin content by 62% (from 186 to ~301 mg/L) | [84] |
0.7 kV/cm, 200 ms treatment duration | ~19% increase in anthocyanins (from ~480 to ~570 mg/L), 36% increase in tannins (from 2.5 to 3.4 mg/L) | [86] | |
0.7 kV/cm, 40 ms treatment duration | ~10% increase in TPC (from~870 to ~970 mg/L), ~18% increase in tannins (from ~2.7 to ~3.2 g/L) | [87] | |
8 kV/cm, 6.7 kJ/kg, 45 μs pulse duration | TPI increased by ~19% from 61.15 to 73.15 | [88] | |
4 kV/cm, 3.7 pulses of 100 μs width, 6.2 kJ/kg | High values of TPI (~60 AU compared to ~45 AU from untreated samples), anthocyanins (from ~480 to ~500 mg/L), and tannins (from ~1 to ~1.5 g/L) were achieved | [89] | |
1.5 kV/cm, 10 μs pulse length, 20 kJ/kg, 250 L/h | TPI: 41.3% increase (from 26.3 to 44.8), anthocyanins: 50% increase (from 39 to 78 mg/L), tannins 50% increase (from 1.2 to 2.4 g/L) | [90] | |
1.4 kV/cm, 10 μs pulse duration, 1 ms treatment time | Increases in TPC from to ~56 to ~110 mg GAE/g dw (49.15%), Quercetin-3-rutinoside from 0.012 to 0.083 mg/g dw (85%), Kaempferol-3-glucoside from 0.052 to 0.153 mg/g dw (66%), Gallic acid from 0.045 to 0.0124 mg/g dw (63%) | [91] | |
0.9–3 kV/cm, 10.4–32.5 kJ/kg | TPC increased by ~55% (from 197 to 439 mg GAE/L) | [96] | |
Grape juice | 5 kV/cm, 63.4 kJ/kg, 40 μs pulse width | TPC increased by ~56% (from 916 to 1434 mg GAE/L) | [95] |
Wine | 5 kV/cm, 1 ms treatment duration, 48 kJ/kg | TPC increased by 17–178% (from 130.9 and 305 to 364.1 and 359.8 mg/L) | [85] |
Grape stem | 1 kV/cm, treatment duration 30 min | PEF only: 4% increased TPC (from 0.048 to 0.05 AU) | [98] |
Grape leaf | 0.5–2 kV/cm | High TPC value (97 mg GAE/g dw) | [97] |
Grape pomace/seed | 1.2 kV/cm, 18 kJ/kg | Increases in gallic acid from 4.53 to 7.40 mg/100 g (63%) and TPC from 60.98 to 113.58 mg/100 g (86%) when increasing temperature from 20 to 50 °C | [92] |
13.3 kV/cm, 0.5 Hz | At Zp 0.8, PEF (63.47 mg/L) achieved greater anthocyanin recovery than HVED (40.64 mg/L) | [93] | |
0.86 kV/cm, 13 Hz, pulse duration 900 μs, 75 ms pulse interval, 810 ms treatment time | Comparable TPC (~24 mg GAE/g) with the control sample, which was extracted with 75% ethanol, whereas the PEF-treated sample was extracted with 20% ethanol | [94] | |
4.6 kV/cm, 20 kJ/kg | Increases in TPC from 8.30 to 9.51 mg GAE/g dm (15%), TFC from 36.68 to 58.53 mg QE/g dm (60%), TAC from 0.84 to 1.03 mg C3G/g dm (23%), and in TC from 3.84 to 5.45 mg TC/g dm | [99] | |
0.5–2 kV/cm | High TPC value (31 mg GAE/g dw) | [97] | |
Apple tissue | 3 kV/cm, 100 pulses | TPC increased by ~10% from 426.69 to 472.05 mg chlorogenic acid/100 g dm | [101] |
Apple juice | 30 kV/cm | Non-significant differences in TPC (from 337.51 to 340.70 mg/L), reduction in AA from 17.40 to 16.74 μmol Trolox/mL) | [102] |
Apple pomace | 30 kV/cm, 17 kJ/kg or20 kV/cm, 100 kJ/kg | TPC: the lowest concentration (220 μg GAE/g) when PEF with 30% v/v EtOH was used as extraction solvent compared to UAE (800 μg GAE/g), and ASE (~420 μg GAE/g) | [103] |
Apple | 1 kV/cm, 20 Hz pulse frequency, and 7 μs pulse width | Dry the sample efficiently, TPC measured 1257 mg GAE/100 dm | [104] |
Pomegranate peel | 10 kV/cm, 90–100 kJ/kg | TPC through PEF measured at 39.2 mg GAE/g dm, ~15% lower by HVED, ~169% higher than the US, ~388% higher than IR, ~680% higher than water bath treatment | [107] |
0.5–2 kV/cm | High TPC value (208 mg GAE/g dw) | [97] | |
Citrus juice | 3 kV/cm | TPC increased by ~49%(orange) from ~36 to ~70 mg/100 mL, ~50% (lemon) from ~30 to ~60 mg/100 mL, ~60% (pomelo) from ~32 to ~80 mg/100 mL | [109] |
Citrus peel | 10 kV/cm | Increase in major polyphenols in orange (hesperidin, ~5%) from 4.85 to 5.07 mg/g dm, pomelo (naringin, ~41%) from 7.35 to 10.36 mg/g dm, a decrease in major polyphenol of lemon (eriocitrin, ~112%) from 3.06 to 1.44 mg/g dm | |
Orange peel | 1 kV/cm, 10 μs pulse duration, 1 ms treatment period | TPC increase by 25% (from 27.70 to 34.71 mg GAE/g dw) and hesperidin content by 19% (from 13.67 to 16.26 mg/g dw) | [110] |
1–7 kV/cm, 5–50 pulses of 3 s each | Increased concentrations of naringin from 1 to 3.1 mg/100 g fw (210%), hesperidin from 1.3 to 4.6 mg/100 g fw (253%) | [111] | |
Lemon peel | 7 kV/cm, 90 μs pulse duration | TPC increased by 150% from ~64 to 160 mg GAE/100 g dw, eriocitrin concentration from 30.39 to 176.35 mg/100 g fw, and hesperidin concentration from 15.90 to 84.44 mg/100 g dw both increased by above 400% | [112] |
1.0 kV/cm, 1 ms pulse period, 10 μs pulse length | Negative impact in TPC (277% decrease) compared to conventional extraction from 51.24 to 13.56 mg GAE/g | [113] | |
Quince peel | 1 kV/cm, 1000 Hz, 10 μs pulse duration, 1 ms pulse period | Initial increase through RSM in TPC by 8% (from 32.78 to 35.43 mg GAE/g dw), and a further increase by 34% through the PLS model as TPC reached 43.99 mg GAE/g dw | [114] |
Blueberry pomace | 20 kV/cm, 41.03 kJ/kg, 100 pulses | Higher values of TPC (10.52 mg GAE/g dw) than HVED (~5 mg GAE/g dw) and US methods (~6 mg GAE/g dw) | [115] |
Red raspberry puree | 25 kV/cm, 300 mL/min | Non-significant impact on TFC (~150 μg/mL), but increased ~16% total anthocyanin content (from ~125 to ~145 mg/L) and ~9% TPC (from ~430 to ~470 mg/L) | [116] |
Blueberry puree | Non-significant impact on TFC (~310 μg/mL), increased ~15% total anthocyanin content (from ~650 to ~750 mg/L) but decreased ~6% TPC (from ~520 μg/mL) | ||
Cranberrybush puree | 3 kV/cm, 2 Hz, 20 μs pulse width | TPC increased by ~4–14% (from initially ~400 mg GAE/100 g fw), CUPRAC antioxidant activity by ~7% (from 1500 mg TE/100 g fw) | [117] |
Blackcurrants | 1318 V/cm, 315 pulses | 19% increase in TPC (from 3.18 mg GAE/g extract), 45% increase in AA (from 1.12 mg GAE/g extract), and 6% increase in monomeric anthocyanins content (from 1.30 mg cyanidin-3-glucoside/g extract) | [118] |
Strawberry puree and juice (kale) | 11.9 kV/cm, 120 kJ/kg, 20 μs pulse width | Increase in anthocyanins content from almost ~32 to 35 mg pelargonidin-3-glucoside/L in kale mix by 9%, and from 40 to 45 mg pelargonidin-3-glucoside/L (PEF-treated) in the strawberry puree by 12.5% | [119] |
Tomato juice | MIPEF: 1 kV/cm, 0.1 Hz, 16 pulses of 4 μs HIPEF: 35 kV/cm, 100 Hz, 4 μs pulses | MIPEF: TPC increased by 25% from ~148 to ~180 μg/g fw, HIPEF: TPC increased by 5% from ~148 to ~155 μg/g fw | [120] |
Tomato fruit | 1.2 kV/cm, 30 pulses | TPC increased by 44%, as it had 144.61% relative TPC | [121] |
Red prickly pear fruit | 1200 V/cm, 11.44 kJ/kg, 10 Hz | PEF-treated samples increased in juice yield by 3.3 (from 16.69%) and betalain extraction by 1.48 (from 19.5 mg/100 g) compared to untreated samples | [122] |
Sample | PEF Conditions | Treatment Effect | Ref. |
---|---|---|---|
Potato peel | 5 kV/cm, 10 kJ/kg | Increased TPC by ~10% (from ~1160 to 1295 mg GAE/kg fw) | [125] |
Asparagus root | 1.6 kV/cm, 200 Hz, 20 μs pulse width | Increased values of extraction yield from 47.7 to 58.8% (23%), TPC from 32.6 to 34.4 mg GAE/g extract (5%), TFC from 0.16 to 0.17 mg RE/g extract (6%), and FRAP from 1363 to 1418 mM FeSO4 E/g extract (4%) | [126] |
Mushrooms | 38.4 kV/cm, 272 μs duration | Estimated ~26% or 1.6 mg GAE/g higher polyphenol extraction yield | [129] |
Olive | 0.5–2 kV/cm | High TPC value (12 mg GAE/g dw) | [97] |
Olive pomace | 3 kV/cm, 15 μs pulse width | Notable increase in TPC (91.6%) from ~1500 to ~2900 mg/L | [132] |
Olive paste | 1.5 kV/cm, 100 pulses | Increased recovery yield to 25.4% (by ~3%), TPC (by ~7%) from ~760 mg GAE/Kg oil | [133] |
Olive leaf | 1 kV/cm, 10 ns pulse duration | Increased TPC (by 31.85%) from 15.74 to 20.75 mg GAE/g dw | [134] |
0.85 kV/cm, 100 μs pulse period, 2 μs pulse duration | TPC increase by 38.5% (from 18.30 to 25.35 mg GAE/g dw) | [135] | |
0.5–2 kV/cm | High TPC value (105 mg GAE/g dw) | [97] |
Sample | PEF Conditions | Treatment Effect | Ref. |
---|---|---|---|
Borage leaf | 0–5 kV/cm, 10–60 min treatment duration | TPC: 1.3–6.6 times increase (from 0.3 mg GAE/g fw), ORAC: 2.0–13.7 times increase (from ~10 mg TE/g fw) | [136] |
Rapeseed stem | 5 kV/cm | High TPC value (0.17 g/100 g dm) | [138] |
Rapeseed leaf | High TPC value (0.25 g/100 g dm) | ||
Rapeseed stem | 8 kV/cm, 2 ms treatment duration | TPC increased by 380% (from 0.10 to 0.48 g GAE/100 g dm) | [139] |
Canola seed cake | 1.1 kV/cm, 30 Hz, 10 s exposure time | High TPC (2624.18 mg GAE/100 g fw) yielded in a short time | [140] |
Cocoa bean shell | 1.93–3 kV/cm, 9–16 μs pulse duration | Up to 22% increase in TPC (from ~26–54 mg GAE/g dw) | [141] |
Coffee silver skin | Up to 13% increase in TPC (from ~8–12 mg GAE/g dw) | ||
Saffron | 2 kV/cm, 1.5 kJ/kg | Non-significant increase in TPC compared to untreated samples (~4 mg GAE/g dm), significant decrease in AA to ~18 μmol/g dm (~86%) when aging after 10 months | [142] |
T. chuii | 3 kV/cm, 45 pulses, 100 kJ/kg | High TPC yield (~6.7 mg GAE/g dw) | [156] |
P. tricornutum | 1 kV/cm, 400 pulses, 100 kJ/kg | High TPC yield (~8 mg GAE/g dw) | |
Wheat plantlet | 9 kV/cm, 1 kHz, 80 μs pulse width, 335 μs treatment time | Increase in TPC from 305.23 μg GAE/g (5.35%), in TFC from 178.34 μg CE/g (5.51%), in DPPH from 1.63 mmol TE/L (4.91%), and in ORAC from 5.12 mmol TE/L (1.36%) | [143] |
Sage leaf | 1 kV/cm, 100 μs pulse duration | Increase in TPC by 73.2% from ~24 mg GAE/g dm) and in rosmarinic acid concentration by 403.1% from 0.37 mg/g | [144] |
Almond hull | 3 kV/cm, 2 Hz, 100 kJ/kg, 100 ms pulse duration | Slight increase in TPC (~19%) from 2.27 to 2.72 mg GAE/mL | [145] |
Hemp seed | 30 V, 30 Hz, 10 s treatment time | High TPC (1025.57 mg GAE/100 g fw) and TFC (15.76 mg LUE/100 g fw) | [146] |
Sesame cake | 13.3 kV/cm, 0.5 Hz, 10 μs | TPC increased by ~25% from ~320 to ~400 mg GAE/100 g dm | [147] |
Rice | 2 kV/cm, 64 kJ/kg, 1000 pulses | TPC increased by ~50% from ~260 to ~390 μg AAE/g | [148] |
Spruce bark | 20 kV/cm, 10 μs pulse duration, 1–400 pulses | TPC increased 8 times (from 0.96 to 8.52 g GAE/100 g dm) | [149] |
Barberry | 1.0 kV/cm, 100 pulses | Increase in TPC by 30% (from 11.11 to 14.57 mg GAE/g) and berberine content by 49% (from 1.86 to 2.78 mg/g) | [150] |
R. canina | 1.4 kV/cm, 10 μs pulse duration | Increase in TPC by 63.79% (from ~42 mg GAE/g dw) and in eriodictyol-7-O-rutinoside concentration by 84% (from 0.032 mg/g dw) | [151] |
C. officinalis | 1.2 kV/cm, 10 μs pulse duration | Increase in TPC by55.02% (from ~35 mg GAE/g dw) and in isorhamnetin-3-O-rutinoside concentration by 73% (from 7.868 mg/g dw) | |
C. sativa | Increase in TPC by 48.41% (from ~115 mg GAE/g dw) and isorhamnetin-3-O-rutinoside concentration by 82% (from 1.153 mg/g dw) | ||
L. digitata | 7.5 kV/cm, 1.2 Hz | High extraction yield (15%), supernatant yield (70%), TPC (4 mg GAE/100 g dw) | [155] |
O. vulgare | 3 kV/cm, 10 kJ/kg | Increase in TPC by 36% from ~100 mg GAE/g dw and in FRAP by 29% from 103.9 μmol Fe+2/g dw | [152] |
T. serpyllum | Increase in TPC by 36% from ~40 mg GAE/g dw and in FRAP by 47% from 31.1 μmol Fe+2/g dw | ||
M. officinalis L. leaf | 0.5–2 kV/cm | High TPC value (155 mg GAE/g dw) | [97] |
C. incanus L. spp. creticus leaf | High TPC value (148 mg GAE/g dw) | ||
C. sativus L. petal | High TPC value (147 mg GAE/g dw) | ||
A. melanocarpa L. fruit | High TPC value (67 mg GAE/g dw) | ||
Mixture of C. sativus L. petal and V. vinifera L. cv. Xinomavro fruit | High TPC value (54 mg GAE/g dw) | ||
Flaxseed hull | 20 kV/cm, treatment duration 10 ms, 300 kJ/kg. | PEF: High TPC (1000 mg GAE/100 g) with alkaline hydrolysis compared to acidic hydrolysis (270 mg GAE/100 g dm) | [137] |
Drumstick tree leaves | 7 kV/cm, 20 ms pulse duration, 100 μs pulse interval | Increased TPC by ~45%, achieving 40.24 mg GAE/g dw | [46] |
A. esculenta | 8 kV/cm, 1.2 Hz, 10 min treatment duration, 3 pulses | Both TPC and TFC were slightly increased (by ~5% and ~1.5%) from 8.94 mg GAE/g dw and 12.23 mg QE/g dw, respectively | [157] |
P. palmata | TPC after PEF decreased by 2.43% (1.8 mg GAE/g dw), TFC increased by 16% (0.94 mg QE/g dw) | ||
U. lactuca | Both TPC (1.59 mg GAE/g dw) and TFC (3.43 mg QE/g dw) dramatically decreased after PEF treatment (by –22% and –32%, respectively) | ||
Spirulina | 3 kV/cm, 99 kJ/kg, 44 pulses | Significant TPC increase (by ~900%) from ~2 to ~20 mg/g dw | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int. J. Mol. Sci. 2023, 24, 15914. https://doi.org/10.3390/ijms242115914
Athanasiadis V, Chatzimitakos T, Kotsou K, Kalompatsios D, Bozinou E, Lalas SI. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. International Journal of Molecular Sciences. 2023; 24(21):15914. https://doi.org/10.3390/ijms242115914
Chicago/Turabian StyleAthanasiadis, Vassilis, Theodoros Chatzimitakos, Konstantina Kotsou, Dimitrios Kalompatsios, Eleni Bozinou, and Stavros I. Lalas. 2023. "Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review" International Journal of Molecular Sciences 24, no. 21: 15914. https://doi.org/10.3390/ijms242115914