The Role of Cyclodextrins in COVID-19 Therapy—A Literature Review
Abstract
:1. Introduction
2. COVID-19 Etiopathology
3. COVID-19 Prevention and Treatment Approaches
3.1. Vaccines
3.2. Antiviral Drugs
3.3. Convalescent Plasma
3.4. Monoclonal Antibodies
3.5. Interferons
3.6. Corticosteroids
4. Cyclodextrins and Antiretroviral Agents
4.1. Definition and Structure
4.2. Cyclodextrins and Anti-SARS-COVID-19 Molecules
4.2.1. Favipiravir
4.2.2. Remdesivir
4.2.3. Dexamethasone
4.2.4. Ivermectin
4.2.5. Interferon-Beta
4.2.6. Lopinavir/Ritonavir
4.2.7. Oseltamivir
4.2.8. Fenofibrate
4.2.9. Cetylpyridinium Chloride
5. New Candidates for COVID-19 Treatment
5.1. Bepridil
5.2. Glycyrrhizin
5.3. Plitidepsin
5.4. Thapsigargin
5.5. Polyphenols
6. Regulatory Issues and Toxicity
7. Clinical Trials
8. Final Remarks and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Sivakumar, B.; Deepthi, B. Complexity of COVID-19 dynamics. Entropy 2022, 24, 50. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.U.; Rehman, S.U.; Yoo, H.H. COVID-19 challenges and its therapeutics. Biomed. Pharmacother. 2021, 142, 112015. [Google Scholar] [CrossRef] [PubMed]
- Jicsinszky, L.; Martina, K.; Cravotto, G. Cyclodextrins in the Antiviral Therapy. J. Drug Deliv. Sci. Technol. 2021, 64, 102589. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, M.; Stańczak, A.; Kołodziejczyk, M. Characteristic of Cyclodextrins: Their Role and Use in the Pharmaceutical Technology. Curr. Drug Targets 2020, 21, 1495–1510. [Google Scholar] [CrossRef]
- Global Market Insights Global Cyclodextrin Market Size, Share and Industry Analysis Report by Type (Alpha, Beta, Gamma) and Application (Pharmaceutical, Food & Beverage, Chemicals, Cosmetics & Personal Care), Regional Outlook, Competitive Market Share & Forecast, 2021–2027. Available online: https://www.gminsights.com/industry-analysis/global-cyclodextrin-market (accessed on 5 December 2022).
- Anka, A.U.; Tahir, M.I.; Abubakar, S.D.; Alsabbagh, M.; Zian, Z.; Hamedifar, H.; Sabzevari, A.; Azizi, G. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management. Scand. J. Immunol. 2021, 93, e12998. [Google Scholar] [CrossRef]
- Forchette, L.; Sebastian, W.; Liu, T. A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and Therapeutics. Curr. Med. Sci. 2021, 41, 1037–1051. [Google Scholar] [CrossRef]
- Salian, V.S.; Wright, J.A.; Vedell, P.T.; Nair, S.; Li, C.; Kandimalla, M.; Tang, X.; Carmona Porquera, E.M.; Kalari, K.R.; Kandimalla, K.K. COVID-19 Transmission, Current Treatment, and Future Therapeutic Strategies. Mol. Pharm. 2021, 18, 754–771. [Google Scholar] [CrossRef]
- Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020, 41, 1100–1115. [Google Scholar] [CrossRef]
- Salasc, F.; Lahlali, T.; Laurent, E.; Rosa-Calatrava, M.; Pizzorno, A. Treatments for COVID-19: Lessons from 2020 and new therapeutic options. Curr. Opin. Pharmacol. 2022, 62, 43–59. [Google Scholar] [CrossRef]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef]
- Kotta, S.; Aldawsari, H.M.; Badr-Eldin, S.M.; Alhakamy, N.A.; Md, S.; Nair, A.B.; Deb, P.K. Combating the Pandemic COVID-19: Clinical Trials, Therapies and Perspectives. Front. Mol. Biosci. 2020, 7, 336. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Kamal, T.B.; Sarker, M.M.R.; Zhou, J.R.; Rahman, S.M.A.; Mohamed, I.N. Therapeutic Effectiveness and Safety of Repurposing Drugs for the Treatment of COVID-19: Position Standing in 2021. Front. Pharmacol. 2021, 12, 659577. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R.; Khanna, G.; Kuhad, A. Pharmacological insight into potential therapeutic agents for the deadly COVID-19 pandemic. Eur. J. Pharmacol. 2021, 890, 173643. [Google Scholar] [CrossRef]
- Santos, J.C.; Ribeiro, M.L.; Gambero, A. The Impact of Polyphenols-Based Diet on the Inflammatory Profile in COVID-19 Elderly and Obese Patients. Front. Physiol. 2021, 11, 1783. [Google Scholar] [CrossRef] [PubMed]
- Alanagreh, L.; Alzoughool, F.; Atoum, M. The Human Coronavirus Disease COVID-19: Its Origin, Characteristics, and Insights into Potential Drugs and Its Mechanisms. Pathogens 2020, 9, 331. [Google Scholar] [CrossRef]
- Khani, E.; Khiali, S.; Entezari-Maleki, T. Potential COVID-19 Therapeutic Agents and Vaccines: An Evidence-Based Review. J. Clin. Pharmacol. 2021, 61, 429–460. [Google Scholar] [CrossRef]
- Angel, M. Compounds with Therapeutic Potential against Novel Respiratory 2019 Coronavirus Miguel. Antimicrob. Agents Chemother. 2020, 64, e00399-20. [Google Scholar]
- Fang, E.; Liu, X.; Li, M.; Zhang, Z.; Song, L.; Zhu, B.; Wu, X.; Liu, J.; Zhao, D.; Li, Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct. Target. Ther. 2022, 7, 94. [Google Scholar] [CrossRef]
- Barbier, A.J.; Jiang, A.Y.; Zhang, P.; Wooster, R.; Anderson, D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 2022, 40, 840–854. [Google Scholar] [CrossRef]
- Hidayati, H.B.; Octavia, E.; Srisetyaningrum, C.T. Antiviral therapy for COVID-2019. Anaesth. Pain Intensive Care 2021, 25, 387–392. [Google Scholar] [CrossRef]
- Negrut, N.; Codrean, A.; Hodisan, I.; Bungau, S.; Tit, D.; Marin, R.; Behl, T.; Banica, F.; Diaconu, C.; Nistor-Cseppento, D. Efficiency of antiviral treatment in COVID-19. Exp. Ther. Med. 2021, 21, 648. [Google Scholar] [CrossRef] [PubMed]
- Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Korompoki, E.; Fotiou, D.; Migkou, M.; Tzanninis, I.G.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Emerging treatment strategies for COVID-19 infection. Clin. Exp. Med. 2021, 21, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Ming, L.; Chen, L.; Zhu, X.; Shi, Y. The Effectiveness of Convalescent Plasma for the Treatment of Novel Corona Virus Disease 2019: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 1618. [Google Scholar] [CrossRef]
- Tao, K.; Jagannathan, P.; Shafer, W. SARS-CoV-2 Antiviral Therapy. Clin. Microbiol. Rev. 2021, 34, e00109-21. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, F.; Shen, C.; Peng, W.; Li, D.; Zhao, C.; Li, Z.; Li, S.; Bi, Y.; Yang, Y.; et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 2020, 368, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Zost, S.J.; Gilchuk, P.; Case, J.B.; Binshtein, E.; Chen, R.E.; Nkolola, J.P.; Schäfer, A.; Reidy, J.X.; Trivette, A.; Nargi, R.S.; et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020, 584, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 2020, 369, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, P.; Nair, M.S.; Yu, J.; Rapp, M.; Wang, Q.; Luo, Y.; Chan, J.F.W.; Sahi, V.; Figueroa, A.; et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 2020, 584, 450–456. [Google Scholar] [CrossRef]
- Taylor, P.C.; Adams, A.C.; Hufford, M.M.; de la Torre, I.; Winthrop, K.; Gottlieb, R.L. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 2021, 21, 382–393. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Zhang, G.; Peng, W.; Chang, Z.; Zhang, X.; Fan, Z.; Chai, Y.; Wang, F.; Zhao, X.; et al. An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nat. Immunol. 2022, 23, 423–430. [Google Scholar] [CrossRef]
- Abraham, J. Monoclonal Antibodies with Extended Half-Life to Prevent COVID-19. N. Engl. J. Med. 2022, 386, 2236–2238. [Google Scholar] [CrossRef] [PubMed]
- Sodeifian, F.; Nikfarjam, M.; Kian, N.; Mohamed, K.; Rezaei, N. The role of type I interferon in the treatment of COVID-19. J. Med. Virol. 2022, 94, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, V.; Guffanti, M.; Galli, L.; Poli, A.; Querini, P.R.; Ripa, M.; Clementi, M.; Scarpellini, P.; Lazzarin, A.; Tresoldi, M.; et al. Viral clearance after early corticosteroid treatment in patients with moderate or severe COVID-19. Sci. Rep. 2020, 10, 21291. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; Cavalcanti, A.B.; et al. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-analysis. JAMA-J. Am. Med. Assoc. 2020, 324, 1330–1341. [Google Scholar] [CrossRef]
- van de Veerdonk, F.L.; Giamarellos-Bourboulis, E.; Pickkers, P.; Derde, L.; Leavis, H.; van Crevel, R.; Engel, J.J.; Wiersinga, W.J.; Vlaar, A.P.J.; Shankar-Hari, M.; et al. A guide to immunotherapy for COVID-19. Nat. Med. 2022, 28, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.U.; Lee, S.S.; Lee, S.; Oh, H. Bin Noncovalent complexes of cyclodextrin with small organic molecules: Applications and insights into host–guest interactions in the gas phase and condensed phase. Molecules 2020, 25, 4048. [Google Scholar] [CrossRef]
- Soni, S.S.; Alsasa, A.; Rodell, C.B. Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Front. Chem. 2021, 9, 190. [Google Scholar] [CrossRef]
- Garrido, P.F.; Calvelo, M.; Blanco-González, A.; Veleiro, U.; Suárez, F.; Conde, D.; Cabezón, A.; Piñeiro, Á.; Garcia-Fandino, R. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int. J. Pharm. 2020, 588, 119689. [Google Scholar] [CrossRef]
- Chaves, O.A.; Sacramento, C.Q.; Ferreira, A.C.; Mattos, M.; Fintelman-Rodrigues, N.; Temerozo, J.R.; Vazquez, L.; Pinto, D.P.; da Silveira, G.P.E.; da Fonseca, L.B.; et al. Atazanavir Is a Competitive Inhibitor of SARS-CoV-2 Mpro, Impairing Variants Replication In Vitro and In Vivo. Pharmaceuticals 2021, 15, 21. [Google Scholar] [CrossRef]
- Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. [Google Scholar] [CrossRef]
- Hau, R.K.; Wright, S.H.; Cherrington, N.J. PF-07321332 (Nirmatrelvir) does not interact with human ENT1 or ENT2: Implications for COVID-19 patients. Clin. Transl. Sci. 2022, 15, 1599–1605. [Google Scholar] [CrossRef]
- Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2021, 102, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Łagocka, R.; Dziedziejko, V.; Kłos, P.; Pawlik, A. Favipiravir in therapy of viral infections. J. Clin. Med. 2021, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Braga, S.S.; Barbosa, J.S.; Santos, N.E.; El-Saleh, F.; Paz, F.A.A. Cyclodextrins in antiviral therapeutics and vaccines. Pharmaceutics 2021, 13, 409. [Google Scholar] [CrossRef] [PubMed]
- Várnai, B.; Malanga, M.; Sohajda, T.; Béni, S. Molecular interactions in remdesivir-cyclodextrin systems. J. Pharm. Biomed. Anal. 2022, 209, 114482. [Google Scholar] [CrossRef] [PubMed]
- Szente, L.; Puskás, I.; Sohajda, T.; Varga, E.; Vass, P.; Nagy, Z.K.; Farkas, A.; Várnai, B.; Béni, S.; Hazai, E. Sulfobutylether-beta-cyclodextrin-enabled antiviral remdesivir: Characterization of electrospun- and lyophilized formulations. Carbohydr. Polym. 2021, 264, 118011. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, Á.; Pipkin, J.; Antle, V.; Garcia-Fandino, R. Remdesivir interactions with sulphobutylether-β-cyclodextrins: A case study using selected substitution patterns. J. Mol. Liq. 2022, 346, 117157. [Google Scholar] [CrossRef]
- Piñeiro, Á.; Pipkin, J.; Antle, V.; Garcia-Fandino, R. Aggregation versus inclusion complexes to solubilize drugs with cyclodextrins. A case study using sulphobutylether-β-cyclodextrins and remdesivir. J. Mol. Liq. 2021, 343, 117588. [Google Scholar] [CrossRef]
- Adamsick, M.L.; Gandhi, R.G.; Bidell, M.R.; Elshaboury, R.H.; Bhattacharyya, R.P.; Kim, A.Y.; Nigwekar, S.; Rhee, E.P. Remdesivir in patients with acute or chronic kidney disease and COVID-19. J. Am. Soc. Nephrol. 2020, 31, 1384–1386. [Google Scholar] [CrossRef]
- Gilead Sciences Inc. A Phase 2/3 Single-Arm, Open-Label Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Efficacy of Remdesivir (GS-5734TM) in Participants from Birth to <18 Years of Age with COVID-19. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04431453 (accessed on 23 January 2023).
- Noreen, S.; Maqbool, I.; Madni, A. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur. J. Pharmacol. 2020, 894, 173854. [Google Scholar] [CrossRef]
- Belhocine, Y.; Rahali, S.; Allal, H.; Assaba, I.M.; Ghoniem, M.G.; Ali, F.A.M. A dispersion corrected DFT investigation of the inclusion complexation of dexamethasone with β-cyclodextrin and molecular docking study of its potential activity against COVID-19. Molecules 2021, 26, 7622. [Google Scholar] [CrossRef] [PubMed]
- Canga, A.G.; Prieto, A.M.S.; Diez Liébana, M.J.; Martínez, N.F.; Sierra Vega, M.; García Vieitez, J.J. The pharmacokinetics and interactions of ivermectin in humans—A mini-review. AAPS J. 2008, 10, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Armon-Omer, A.; Rosenbluh, J.; Melamed-Book, N.; Graessmann, A.; Waigmann, E.; Loyter, A. Inhibition of HIV-1 integrase nuclear import and replication by a peptide bearing integrase putative nuclear localization signal. Retrovirology 2009, 6, 112. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, K.M.; Headey, S.; Telwatte, S.; Tyssen, D.; Hearps, A.C.; Thomas, D.R.; Tachedjian, G.; Jans, D.A. Molecular dissection of an inhibitor targeting the HIV integrase dependent preintegration complex nuclear import. Cell. Microbiol. 2019, 21, e12953. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, M.; Pati, I.; Masiello, F.; Malena, M.; Pupella, S.; De Angelis, V. Ivermectin for prophylaxis and treatment of COVID-19: A systematic review and meta-analysis. Diagnostics 2021, 11, 1645. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, A.; Singh, G.P.; Jamil, S. Ivermectin as a multifaceted drug in COVID-19: Current insights. Med. J. Armed Forces India 2021, 77, S254–S256. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.M.; Shamma, R.N.; Ahmed, K.A.; Sabry, N.A.; Esmat, G.; Mahmoud, A.A.; Maged, A. Safety of inhaled ivermectin as a repurposed direct drug for treatment of COVID-19: A preclinical tolerance study. Int. Immunopharmacol. 2021, 99, 108004. [Google Scholar] [CrossRef]
- Sosa, J.P.; Caceres, M.M.F.; Comptis, J.R.; Quiros, J.; Príncipe-Meneses, F.S.; Riva-Moscoso, A.; Belizaire, M.P.; Malanyaon, F.Q.; Agadi, K.; Jaffery, S.S.; et al. Effects of interferon beta in COVID-19 adult patients: Systematic review. Infect. Chemother. 2021, 53, 247–260. [Google Scholar] [CrossRef]
- Acu, E.; Arellano, G.; Morales, P.; Sotomayor, P.; Gonz, L.F.; Oyarzun-ampuero, F.; Naves, R. Intranasal delivery of interferon- β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy. J. Control. Release 2021, 331, 443–459. [Google Scholar] [CrossRef]
- Adeoye, O.; Conceição, J.; Serra, P.A.; Bento da Silva, A.; Duarte, N.; Guedes, R.C.; Corvo, M.C.; Aguiar-Ricardo, A.; Jicsinszky, L.; Casimiro, T.; et al. Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; Effects of derivatization, molar ratio and preparation method. Carbohydr. Polym. 2020, 227, 115287. [Google Scholar] [CrossRef]
- Cvetkovic, R.S.; Goa, K.L. Lopinavir/ritonavir: A review of its use in the management of HIV infection. Drugs 2003, 63, 769–802. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.K.; Patel, P.B.; Barvaliya, M.; Saurabh, M.K.; Bhalla, H.L.; Khosla, P.P. Efficacy and safety of lopinavir-ritonavir in COVID-19: A systematic review of randomized controlled trials. J. Infect. Public Health 2021, 14, 740–748. [Google Scholar] [CrossRef]
- Adeoye, O.; Bártolo, I.; Conceição, J.; da Silva, A.B.; Duarte, N.; Francisco, A.P.; Taveira, N.; Cabral-Marques, H. Pyromellitic dianhydride crosslinked soluble cyclodextrin polymers: Synthesis, lopinavir release from sub-micron sized particles and anti-HIV-1 activity. Int. J. Pharm. 2020, 583, 119356. [Google Scholar] [CrossRef] [PubMed]
- Rajamohan, R.; Mohandoss, S.; Ashokkumar, S.; Madi, F.; Leila, N.; Murugavel, K.; Lee, Y.R. A novel and water-soluble material for coronavirus inactivation from oseltamivir in the cavity of methyl and sulfated-β-cyclodextrins through inclusion complexation. J. Pharm. Biomed. Anal. 2022, 221, 115057. [Google Scholar] [CrossRef] [PubMed]
- Hasson, K.J. Innovated formulation of oseltamivir powder for suspension with stability study after reconstitution using a developed ion-pair reversed phase high-performance liquid chromatography method. J. Adv. Pharm. Technol. Res. 2022, 13, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Deepak Gunwal; Braham Dutt; Manjusha Choudhary; Vikas Budhwar A Comprehensive Review on the Drug: Fenofibrate. Int. J. Res. Pharm. Sci. 2021, 12, 2164–2172. [CrossRef]
- Pawar, A.; Pal, A.; Goswami, K.; Squitti, R.; Rongiolettie, M. Molecular basis of quercetin as a plausible common denominator of macrophage-cholesterol-fenofibrate dependent potential COVID-19 treatment axis. Results Chem. 2021, 3, 100148. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Lopez-Jaramillo, P.; Giamarellos-Bourboulis, E.J.; Dávila-del-Carpio, G.H.; Bizri, A.R.; Andrade-Villanueva, J.F.; Salman, O.; Cure-Cure, C.; Rosado-Santander, N.R.; Cornejo Giraldo, M.P.; et al. A randomized clinical trial of lipid metabolism modulation with fenofibrate for acute coronavirus disease 2019. Nat. Metab. 2022, 4, 1847–1857. [Google Scholar] [CrossRef]
- Jagdale, S.K.; Dehghan, M.H.; Paul, N.S. Enhancement of dissolution of fenofibrate using complexation with hydroxy propyl β-cyclodextrin. Turk. J. Pharm. Sci. 2019, 16, 48–53. [Google Scholar] [CrossRef]
- Pérez-Errázuriz, S.; Velasco-Ortega, E.; Jiménez-Guerra, Á.; Aguilera-Navarro, E. Cetylpyridinium Chloride as a Tool Against COVID-19. Int. J. Odontostomatol. 2021, 15, 27–30. [Google Scholar] [CrossRef]
- Okamoto, N.; Saito, A.; Okabayashi, T.; Komine, A. Virucidal activity and mechanism of action of cetylpyridinium chloride against SARS-CoV-2. J. Oral Maxillofac. Surg. Med. Pathol. 2022, 34, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Vilchez-Chavez, A.; Carruitero, M.J.; Chavez-Cruzado, E. Cetylpyridinium chloride mouthwashes: Potential role in COVID-19 control. J. Oral Maxillofac. Surg. Med. Pathol. 2022, 34, 213. [Google Scholar] [CrossRef] [PubMed]
- Hano, C.; Tungmunnithum, D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef]
- Vatansever, E.C.; Yang, K.S.; Drelich, A.K.; Kratch, K.C.; Cho, C.C.; Kempaiah, K.R.; Hsu, J.C.; Mellott, D.M.; Xu, S.; Tseng, C.T.K.; et al. Bepridil is potent against SARS-CoV-2 in vitro. Proc. Natl. Acad. Sci. USA 2021, 118, e2012201118. [Google Scholar] [CrossRef] [PubMed]
- Benet, L.Z.; Broccatelli, F.; Oprea, T.I. BDDCS Applied to Over 900 Drugs. AAPS J. 2011, 13, 519–547. [Google Scholar] [CrossRef]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef]
- Al-Kamel, H.; Grundmann, O. Glycyrrhizin as a Potential Treatment for the Novel Coronavirus (COVID-19). Mini-Rev. Med. Chem. 2021, 21, 2204–2208. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiao, Y.; Xu, L.; Liu, Y.; Jiang, G.; Wang, W.; Li, B.; Zhu, T.; Tan, Q.; Tang, L.; et al. Glycyrrhizic Acid Nanoparticles as Antiviral and Anti-inflammatory Agents for COVID-19 Treatment. ACS Appl. Mater. Interfaces 2021, 13, 20995–21006. [Google Scholar] [CrossRef] [PubMed]
- Oda, M.; Kuroda, M. Molecular dynamics simulations of inclusion complexation of glycyrrhizic acid and cyclodextrins (1:1) in water. J. Incl. Phenom. Macrocycl. Chem. 2016, 85, 271–279. [Google Scholar] [CrossRef]
- Liang, S.; Li, M.; Yu, X.; Jin, H.; Zhang, Y.; Zhang, L.; Zhou, D.; Xiao, S. Synthesis and structure-activity relationship studies of water-soluble β-cyclodextrin-glycyrrhetinic acid conjugates as potential anti-influenza virus agents. Eur. J. Med. Chem. 2019, 166, 328–338. [Google Scholar] [CrossRef]
- Alonso-Álvarez, S.; Pardal, E.; Sánchez-Nieto, D.; Navarro, M.; Caballero, M.D.; Mateos, M.V.; Martin, A. Plitidepsin: Design, development, and potential place in therapy. Drug Des. Devel. Ther. 2017, 11, 253–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, M.A. Plitidepsin: A Repurposed Drug for the Treatment of COVID-19. Antimicrob. Agents Chemother. 2021, 65, e00200-21. [Google Scholar] [CrossRef] [PubMed]
- White, K.M.; Rosales, R.; Yildiz, S.; Kehrer, T.; Miorin, L.; Moreno, E.; Jangra, S.; Uccellini, M.B.; Rathnasinghe, R.; Coughlan, L.; et al. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science 2021, 371, 926–931. [Google Scholar] [CrossRef]
- Papapanou, M.; Papoutsi, E.; Giannakas, T.; Katsaounou, P. Plitidepsin: Mechanisms and clinical profile of a promising antiviral agent against COVID-19. J. Pers. Med. 2021, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Varona, J.F.; Landete, P.; Lopez-Martin, J.A.; Estrada, V.; Paredes, R.; Guisado-Vasco, P.; de Orueta, L.F.; Torralba, M.; Fortun, J.; Vates, R.; et al. Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19. Life Sci. Alliance 2022, 5, e202101200. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.; Thevenot, J.; Garanger, E.; Ibarboure, E.; Calvo, P.; Aviles, P.; Guillen, M.J.; Lecommandoux, S. Nano-encapsulation of plitidepsin: In vivo pharmacokinetics, biodistribution, and efficacy in a renal xenograft tumor model. Pharm. Res. 2014, 31, 983–991. [Google Scholar] [CrossRef]
- Jaskulska, A.; Janecka, A.E.; Gach-Janczak, K. Thapsigargin—From traditional medicine to anticancer drug. Int. J. Mol. Sci. 2021, 22, 4. [Google Scholar] [CrossRef]
- Goulding, L.V.; Yang, J.; Jiang, Z.; Zhang, H.; Lea, D.; Emes, R.D.; Dottorini, T.; Pu, J.; Liu, J.; Chang, K.C. Thapsigargin at non-cytotoxic levels induces a potent host antiviral response that blocks influenza a virus replication. Viruses 2020, 12, 1093. [Google Scholar] [CrossRef]
- Shaban, M.S.; Mayr-Buro, C.; Meier-Soelch, J.; Albert, B.V.; Schmitz, M.L.; Ziebuhr, J.; Kracht, M. Thapsigargin: Key to new host-directed coronavirus antivirals? Trends Pharmacol. Sci. 2022, 43, 557–568. [Google Scholar] [CrossRef]
- Al-Beltagi, S.; Preda, C.A.; Goulding, L.V.; James, J.; Pu, J.; Skinner, P.; Jiang, Z.; Wang, B.L.; Yang, J.; Banyard, A.C.; et al. Thapsigargin is a broad-spectrum inhibitor of major human respiratory viruses: Coronavirus, respiratory syncytial virus and influenza a virus. Viruses 2021, 13, 234. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Lee, Y.H.; Hsu, Y.H.; Chiu, I.J.; Chiu, Y.J.; Lin, Y.F.; Chiu, H.W. Promising therapeutic effect of thapsigargin nanoparticles on chronic kidney disease through the activation of Nrf2 and FoxO1. Aging 2019, 11, 9875–9892. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Cai, F.; Li, Y.; Chen, J.; Han, F.; Lin, W. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Bioact. Mater. 2020, 5, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Krutetskaya, Z.I.; Milenina, L.S.; Naumova, A.A.; Butov, S.N.; Antonov, V.G.; Nozdrachev, A.D. Methyl-β-cyclodextrin modulates thapsigargin-induced store-dependent Ca2+ entry in macrophages. Dokl. Biochem. Biophys. 2017, 473, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Amawi, H.; Ashby, C.R.; Samuel, T.; Peraman, R.; Tiwari, A.K. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients 2017, 9, 911. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef] [PubMed]
- Turuvekere Vittala Murthy, N.; Agrahari, V.; Chauhan, H. Polyphenols against infectious diseases: Controlled release nano-formulations. Eur. J. Pharm. Biopharm. 2021, 161, 66–79. [Google Scholar] [CrossRef]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Polyphenols and their potential role to fight viral diseases: An overview. Sci. Total Environ. 2021, 801, 149719. [Google Scholar] [CrossRef]
- Alzaabi, M.M.; Hamdy, R.; Ashmawy, N.S.; Hamoda, A.M.; Alkhayat, F.; Khademi, N.N.; Al Joud, S.M.A.; El-Keblawy, A.A.; Soliman, S.S.M. Flavonoids are promising safe therapy against COVID-19. Phytochem. Rev. 2022, 21, 291–312. [Google Scholar] [CrossRef]
- Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Evaluation of green tea polyphenols as novel corona virus (SARS-CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2021, 39, 4362–4374. [Google Scholar] [CrossRef]
- Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Identification of polyphenols from Broussonetia papyrifera as SARS-CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn. 2021, 39, 6747–6760. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Pegan, S.D.; Crich, D.; Desrochers, E.; Starling, E.B.; Hansen, M.C.; Booth, C.; Nicole Mullininx, L.; Lou, L.; Chang, K.Y.; et al. Polyphenols as alternative treatments of COVID-19. Comput. Struct. Biotechnol. J. 2021, 19, 5371–5380. [Google Scholar] [CrossRef] [PubMed]
- Milinčić, D.D.; Popović, D.A.; Lević, S.M.; Kostić, A.; Tešić, Ž.L.; Nedović, V.A.; Pešić, M.B. Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials 2019, 9, 1629. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Dinda, A.K.; Chaudhury, S.; Dasgupta, S. β-cyclodextrin encapsulated polyphenols as effective antioxidants. Biopolymers 2018, 109, e23084. [Google Scholar] [CrossRef]
- Gautam, S.; Karmakar, S.; Batra, R.; Sharma, P.; Pradhan, P.; Singh, J.; Kundu, B.; Chowdhury, P.K. Polyphenols in combination with β-cyclodextrin can inhibit and disaggregate α-synuclein amyloids under cell mimicking conditions: A promising therapeutic alternative. Biochim. Biophys. Acta-Proteins Proteom. 2017, 1865, 589–603. [Google Scholar] [CrossRef]
- Krstić, L.; Jarho, P.; Ruponen, M.; Urtti, A.; González-García, M.J.; Diebold, Y. Improved ocular delivery of quercetin and resveratrol: A comparative study between binary and ternary cyclodextrin complexes. Int. J. Pharm. 2022, 624, 122028. [Google Scholar] [CrossRef]
- Fernández-Romero, A.M.; Maestrelli, F.; García-Gil, S.; Talero, E.; Mura, P.; Rabasco, A.M.; González-Rodríguez, M.L. Preparation, characterization and evaluation of the anti-inflammatory activity of epichlorohydrin-β-cyclodextrin/curcumin binary systems embedded in a pluronic®/hyaluronate hydrogel. Int. J. Mol. Sci. 2021, 22, 13566. [Google Scholar] [CrossRef]
- Jeandet, P.; Sobarzo-Sánchez, E.; Uddin, M.S.; Bru, R.; Clément, C.; Jacquard, C.; Nabavi, S.F.; Khayatkashani, M.; Batiha, G.E.S.; Khan, H.; et al. Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnol. Adv. 2021, 53, 107844. [Google Scholar] [CrossRef]
- Gligorijević, N.; Stanić-Vučinić, D.; Radomirović, M.; Stojadinović, M.; Khulal, U.; Nedić, O.; Ćirković Veličković, T. Role of resveratrol in prevention and control of cardiovascular disorders and cardiovascular complications related to COVID-19 disease: Mode of action and approaches explored to increase its bioavailability. Molecules 2021, 26, 2834. [Google Scholar] [CrossRef]
- Rajha, H.N.; Chacar, S.; Afif, C.; Vorobiev, E.; Louka, N.; Maroun, R.G. β-Cyclodextrin-Assisted Extraction of Polyphenols from Vine Shoot Cultivars. J. Agric. Food Chem. 2015, 63, 3387–3393. [Google Scholar] [CrossRef] [PubMed]
- Bozinou, E.; Lakka, A.; Poulianiti, K.; Lalas, S.; Makris, D.P. Cyclodextrins as high-performance green co-solvents in the aqueous extraction of polyphenols and anthocyanin pigments from solid onion waste. Eur. Food Res. Technol. 2021, 247, 2831–2845. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I.; Makris, D.P. β-Cyclodextrin-Aided Aqueous Extraction of Antioxidant Polyphenols from Peppermint (Mentha × piperita L.). Oxygen 2022, 2, 424–436. [Google Scholar] [CrossRef]
- Conceicao, J.; Adeoye, O.; Cabral-Marques, H.M.; Lobo, J.M.S. Cyclodextrins as Drug Carriers in Pharmaceutical Technology: The State of the Art. Curr. Pharm. Des. 2018, 24, 1405–1433. [Google Scholar] [CrossRef] [PubMed]
- Braga, S.S. Cyclodextrins: Emerging medicines of the new millennium. Biomolecules 2019, 9, 801. [Google Scholar] [CrossRef] [PubMed]
- Committee for Human Medicinal Products (CHMP). Background Review for Cyclodextrins Used as Excipients; European Medicines Agency: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Committee for Human Medicinal Products (CHMP). Questions and Answers on Cyclodextrins Used as Excipients in Medicinal Products for Human Use; European Medicines Agency: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Ferreira, L.; Campos, J.; Veiga, F.; Cardoso, C.; Paiva-Santos, A.C. Cyclodextrin-based delivery systems in parenteral formulations: A critical update review. Eur. J. Pharm. Biopharm. 2022, 178, 35–52. [Google Scholar] [CrossRef]
- Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Applications of cyclodextrins in food science. A review. Trends Food Sci. Technol. 2020, 104, 132–143. [Google Scholar] [CrossRef]
- Chalmers, J. A Randomised, Double-Blind, Placebo-Controlled Trial of SFX-01 or Placebo on a Backbone of Best Standard Care, to Improve Outcomes in Patients with Community Acquired Pneumonia and Suspected or Confirmed SARS-CoV-2 Infection. Available online: https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-003486-19/GB (accessed on 23 January 2023).
- Raman, R.; Patel, K.J.; Ranjan, K. COVID-19: Unmasking emerging SARS-CoV-2 variants, vaccines and therapeutic strategies. Biomolecules 2021, 11, 993. [Google Scholar] [CrossRef]
- Boroushaki, T.; Dekamin, M.G. Interactions between β-cyclodextrin as a carrier for anti-cancer drug delivery: A molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2022. [Google Scholar] [CrossRef]
- Cao, C.; Deng, C.; Hu, J.; Zhou, Y. Formation and molecular dynamics simulation of inclusion complex of large-ring cyclodextrin and 4-terpineol. J. Food Sci. 2022, 87, 4609–4621. [Google Scholar] [CrossRef]
- Raffaini, G.; Elli, S.; Ganazzoli, F.; Catauro, M. Inclusion Complexes Between β-cyclodextrin and the Anticancer Drug 5-Fluorouracil for its Solubilization: A Molecular Dynamics Study at Different Stoichiometries. Macromol. Symp. 2022, 404, 2100305. [Google Scholar] [CrossRef]
Drug | Drug Class | Mechanism of Action | Reference |
---|---|---|---|
Chloroquine and Hydroxychloroquine | Antimalarials | Increasing endosomal pH; interfering with the glycosylation of cellular receptors of SARS-CoV-2; immunomodulator. | [16] |
Remdesivir | Antivirals | Interfering with the viral replication; inhibiting the viral RNA-dependent RNA polymerase (RdRp). | [7] |
Favipiravir | Antivirals | Binds to the viral RdRp and reduces its reproduction. | [16] |
Lopinavir and Rotinavir | Protease inhibitors | Could act by inhibiting SARS-CoV-2 protease for protein cleavage; interfering with virus replication. | [16] |
Darunavir | Protease inhibitors | Could act by inhibiting SARS-CoV-2 protease for proteins cleavage; interfering with virus replication. | [16] |
Niclosamide | Anthelmintics | Inhibiting replication and 3CL protease enzyme inhibition. | [14] |
Ivermectin | Anthelmintics | Inhibits IMPα/β1 associated nuclear import of proteins of the virus. | [16] |
Convalescent Plasma Therapy | Immunoglobulins | Non-neutralizing antibodies bind to the pathogen and contribute to prophylaxis and recovery. | [14] |
Mesenchymal Stem Cell Therapy | Pluripotent stem cells | Prevent the release of cytokines. | [14] |
Glycyrrhizin | Prenol lipids | Inhibits replication, adsorption, and penetration of the virus. | [14] |
Cinanserin | 5-HT 2A and 5-HT 2C receptor antagonist | Inhibition of the protease enzyme. | [14] |
Dexamethasone | Corticosteroids | Reduces inflammation-induced lung damage and, consequently, inhibits the progression to respiratory failure. | [17] |
IFN-β | Immunomodulators | Increases the production of anti-inflammatory cytokines and downregulates the production of pro-inflammatory cytokines. | [18] |
Baricitinib | Janus kinase (JAK) inhibitors | Interfering with viral entry by inhibiting one of the endocytosis regulators and can prevent the activation of STAT. | [16] |
Tocilizumab Bamlanivimab Etesevimab Lenzilumab Risankizumab CR3022 | Monoclonal Antibodies | Neutralizing antibodies can block the entry of the virus into host cells and recruit host effector pathways to destroy virus-infected cells. | [7,16] |
Camostat Mesylate | Transmembrane protease, serine 2 (TMPRSS2) inhibitor | Interfering with viral entry. | [16] |
Cyclodextrin | α-CD | β-CD | γ-CD |
---|---|---|---|
Height [nm] | 0.78 | 0.78 | 0.78 |
Inner Diameter [nm] | 0.47–0.52 | 0.60–0.65 | 0.75–0.83 |
Outer Diameter [nm] | 1.46 | 1.54 | 1.75 |
Synonyms | Cyclomaltohexaose | Cycloheptaamylose | Cyclomaltooctaose |
Molecular Formula | C36H60O30 | [C6H10O5]7 | C48H80O40 |
Mw [g/mol] | 972 | 1132 | 1297 |
Solubility in Water at Room Temperature [mg/mL] | 130 | 18.40 | 249 |
Hydrogen Bound Donor Count | 18 | 21 | 24 |
Hydrogen Bond Acceptor Count | 30 | 35 | 40 |
NCT Number | Phase | Therapeutic Regimen | ||
---|---|---|---|---|
Dose | Administration Type | Other Drugs | ||
NCT04613271 | 3 | A total of 1600 mg twice a day on day 1 and 600 mg twice a day, on day 7–14 | - | Favipiravir + Azithromycin |
NCT04918927 | 2 | A total of 800 mg twice daily on day 1, followed by 400 mg 4 times daily from day 2 to day 7 | - | Favipiravir + Nitazoxanide |
NCT05014373 | 3 | A total of 1800 mg twice daily for one day, followed by 800 mg (4 tablets) twice daily | Oral | Favipiravir + Standard of Care |
NCT04694612 | 3 | A total of 1800 mg on D1 twice + 800 mg twice a day from day 2 for a total of 5 days | - | Remdesivir |
NCT04718285 | 2 | A total of 200 mg in a regimen of a 1600 mg twice daily loading dose followed by 600 mg twice daily | Oral | Montelukast + Favicovir (Favipiravir) |
NCT05041907 | 2 | A total of 1800 mg on D0 twice + 800 mg twice daily for a further 6/7 days | - | - |
NCT Number | Phase | Therapeutic Regimen | ||
---|---|---|---|---|
Dose | Administration Type | Other Drugs | ||
NCT04431453 | 2/3 | - | IV | - |
NCT04713176 | 3 | 200 mg | IV | DWJ1248 with Remdesivir Placebo with Remdesivir |
NCT04738045 | 4 | A loading dose of 200 mg then 100 mg once daily and lopinavir/ritonavir at a dose of 400/100 once daily for 5 days | IV | Lopinavir/ Ritonavir and Remdesivir |
NCT04970719 | 3 | A total of 200 mg followed by 100 mg once a day | IV | - |
NCT04978259 | 4 | - | IV | - |
NCT04694612 | 3 | A total of 200 mg followed by 100 mg daily | IV | - |
NCT04779047 | 4 | A total of 200 mg on day 1 then 100 mg once daily for 5 days | IV | - |
NCT04693026 | 3 | A total of 200 mg on day 1 then 100 mg daily | IV | Remdesivir + Baricitinib |
NCT04321993 | 2 | A total of 200 mg on day 1 then 100 mg daily | IV | Remdesivir (antiviral) + Barictinib |
NCT04488081 | 2 | A total of 200 mg on day 1 then 100 mg daily | IV | - |
NCT Number | Phase | Therapeutic Regimen | ||
---|---|---|---|---|
Dose | Administration Type | Other Drugs | ||
NCT04663555 | 4 | A total of 20 mg once daily followed by 10 mg once daily | IV | - |
NCT05062681 | 4 | 8 mg 12 h | - | - |
NCT04970719 | 3 | 6 mg | IV | Remdesivir + Dexamethasone |
NCT04836780 | 3 | A total of 6 mg once daily | - | - |
NCT04452565 | 2/3 | 4 mg | - | NA-831+ Dexamethasone Atazanavir + Dexamethasone |
NCT04528329 | 4 | Early vs. late use | Early vs. late use | - |
NCT04890626 | 3 | - | - | Baricitinib + dexamethasone |
NCT04826822 | 3 | A total of 2 mg twice daily | Oral | Spironolactone + Dexamethasone |
NCT05279391 | - | A total of 6–8 mg once daily | - | - |
NCT04784559 | 3 | Country-specific product information | Country-specific product information | Plitidepsin + Dexamethasone |
NCT04545242 | 4 | A total of 6 mg/day or 20 mg daily | IV | - |
NCT04488081 | 2 | A total of 6 mg once daily | IV or oral | - |
NCT Number | Phase | Therapeutic Regimen | ||
---|---|---|---|---|
Dose | Administration Type | Other Drugs | ||
NCT05155527 | 2 | A total of 600 mcg/kg once daily | Oral | Ivermectin + Favipiravir |
NCT04681053 | 3 | 6 mg | Oral and inhaled | - |
NCT05305560 | 2 | A total of 200 mcg/kg on D1 then 100 mcg/kg daily from D2 to D28 | Oral | - |
NCT04723459 | - | - | - | Ivermectin impregnated mask |
NCT04729140 | 4 | 200 mcg/kg (3 mg) | Oral | Ivermectin + Doxycycline |
NCT04834115 | 3 | A 200 mcg/kg single dose, maximum dose of 18 mg | Oral | - |
NCT04716569 | 2/3 | - | Intranasal spray | - |
NCT04472585 | 1/2 | A total of 200 ug/kg body weight once every 48 h | Subcutaneous | Ivermectin with Zinc |
0.2 mg/kg/day | Oral | |||
NCT04959786 | 2/3 | - | - | Ivermectin, ribavirin, nitazoxanide and zinc |
NCT04435587 | 4 | A total of 600 mcg/kg/day once daily for 3 days | Oral | - |
NCT04779047 | 4 | 36 mg | - | Hydroxychloroquine, Tocilizumab, Ivermectin |
NCT05045937 | - | 0.4 mg/kg | - | - |
NCT04885530 | 3 | 7 mg tablets | Oral | - |
NCT04951362 | 2/3 | - | Intranasal spray | - |
NCT04351347 | 2/3 | Larger doses | - | - |
NCT05041907 | 2 | A total of 600 mcg kg/day for 7/7 days | - | - |
NCT04703608 | 3 | A total of 0.3–0.4 mg/Kg daily for 3 days | - | - |
NCT02735707 | 3 | A total of 0.2 mg/kg once daily with a maximum daily dose of 24 mg/day. | Enteral | - |
NCT Number | Phase | Therapeutic Regimen | ||
---|---|---|---|---|
Dose | Administration Type | Other Drugs | ||
NCT04738045 | 4 | A Remdesivir 200 mg loading dose then 100 mg once daily and lopinavir/ritonavir at a dose of 400/100 once daily for 5 days | IV | Lopinavir/ Ritonavir and Remdesivir |
NCT04779047 | 4 | A dose of remdesivir 200 mg at day 1 then 100 mg once daily for 5 days and lopinavir/ritonavir at a dose of 400/100 once daily for 5 days, plus 800 mg of tocilizumab once | IV | Lopinavir/ Ritonavir, Remdesivir, Tocilizumab |
NCT04403100 | 3 | Hydroxychloroquine 400 mg: Loading dose of two tablets followed by one tablet of 400 mg on the following 9 days. Lopinavir/ ritonavir 200/50 mg: Loading dose of four tablets twice a day on day 1 followed by two tablets twice a day on the following 9 days | Oral | Hydroxychloroquine plus Lopinavir/ Ritonavir |
NCT04466241 | 2/3 | Lopinavir/ritonavir 200 mg/50 mg: two tablets morning and evening from day 1 to day 10. Telmisartan 40 mg: 1 tablet daily from day 1 to day 10 | Oral | Lopinavir/ritonavir + telmisartan |
Lopinavir/ritonavir 200 mg/50 mg: two tablets morning and evening from day 1 to day 10. Atorvastatin 20 mg: 1 tablet daily from day 1 to day 10 | Lopinavir/ritonavir + atorvastatin | |||
NCT04351724 | 2/3 | A dose of 200 mg/50 mg 4-0-4 on day 1 and 3-0-3 thereafter | - | - |
NCT04381936 | 2/3 | Lopinavir/ritonavir 400 mg/100 mg every 12 h for 10 days | By mouth (or nasogastric tube) | - |
NCT04390152 | 1/2 | Hydroxychloroquine 400 mg + lopinavir/ritonavir 400/100 or azithromycin 500 mg | - | Hydroxychloroquine, lopinavir/ritonavir and ventilation support plus placebo |
NCT04380818 | - | Ritonavir/lopinavir 400/100 mg/12 h for 7–10 days | - | - |
NCT04410510 | 2/3 | Lopinavir/ritonavir: 200/50 mg or 400/100 mg capsules every 12 h for 7 to 14 days. Hydroxychloroquine: 200 mg tab with a load of 400 mg every 12 h the first day, followed by 200 mg every 12 h for 10 days. P2Et active extract capsule equivalent to 250 mg of P2Et every 12 h for 14 days | - | Lopinavir/ritonavir, Hydroxychloroquine, P2Et active extract capsule |
NCT02735707 | 3 | Lopinavir/ritonavir-400/100 mg | Enteral | - |
or 5 mL 80/20 mg per mL solution suspension, every 12 h | Via gastric tube |
Trial ID | Date Registration | National Competent Authority | Active Substances | Pharmaceutical Form | Doses and Route of Administration | Trial Status |
---|---|---|---|---|---|---|
CTRI/2021/05/033744 | 24 May 2021 | IN-CDSCO | Remdesivir (GS-5734) | Lyophilizate for solution for infusion | A total of 200 mg on day 1, followed by 100 mg for the next 4 days Intravenous | Ongoing |
EUCTR2020-003486-19-GB | 14 August 2020 | UK - MHRA | Sulforadex or Sulforaphane/α-Cyclodextrin complex (SFX-01) | Hard Capsules | 300 mg Oral | GB-no longer in EU/EEA |
EUCTR2020-001803-17-GB | 5 June 2020 | UK–MHRA | Remdesivir (GS-5734) | Lyophilizate for solution for infusion | 100 mg Intravenous | GB-no longer in EU/EEA |
10 August 2020 | IT-Italian Medicines Agency | Ongoing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, B.; Domingues, C.; Mascarenhas-Melo, F.; Silva, I.; Jarak, I.; Veiga, F.; Figueiras, A. The Role of Cyclodextrins in COVID-19 Therapy—A Literature Review. Int. J. Mol. Sci. 2023, 24, 2974. https://doi.org/10.3390/ijms24032974
Almeida B, Domingues C, Mascarenhas-Melo F, Silva I, Jarak I, Veiga F, Figueiras A. The Role of Cyclodextrins in COVID-19 Therapy—A Literature Review. International Journal of Molecular Sciences. 2023; 24(3):2974. https://doi.org/10.3390/ijms24032974
Chicago/Turabian StyleAlmeida, Beatriz, Cátia Domingues, Filipa Mascarenhas-Melo, Inês Silva, Ivana Jarak, Francisco Veiga, and Ana Figueiras. 2023. "The Role of Cyclodextrins in COVID-19 Therapy—A Literature Review" International Journal of Molecular Sciences 24, no. 3: 2974. https://doi.org/10.3390/ijms24032974
APA StyleAlmeida, B., Domingues, C., Mascarenhas-Melo, F., Silva, I., Jarak, I., Veiga, F., & Figueiras, A. (2023). The Role of Cyclodextrins in COVID-19 Therapy—A Literature Review. International Journal of Molecular Sciences, 24(3), 2974. https://doi.org/10.3390/ijms24032974