The Greater Impact of Paternal, Compared to Maternal, Hereditary Background on Depressive-Like Behavior in Wistar Kyoto Rats with Different Amino Acid Metabolism in the Pup Brain
Abstract
:1. Introduction
2. Results
2.1. Maternal Behavior
2.2. Body Weight
2.3. OFT
2.4. FST
2.5. Amino Acids
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Procedure
4.3. Behavioral Tests
4.3.1. OFT
4.3.2. FST
4.3.3. Maternal Behavior
4.4. Free Amino Acid Analysis
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 13 September 2021).
- Hyde, C.L.; Nagle, M.W.; Tian, C.; Chen, X.; Paciga, S.A.; Wendland, J.R.; Tung, J.Y.; Hinds, D.A.; Perlis, R.H.; Winslow, A.R. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 2016, 48, 1031–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, R.C.; McGonagle, K.A.; Swartz, M.; Blazer, D.G.; Nelson, C.B. Sex and depression in the National Comorbidity Survey. I: Lifetime prevalence, chronicity, and recurrence. J. Affect. Disord. 1993, 29, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Pincus, H.A.; Pettit, A.R. The societal costs of chronic major depression. J. Clin. Psychiatry 2001, 62, 5–9. [Google Scholar] [PubMed]
- Kornstein, S.G.; Schatzberg, A.F.; Thase, M.E.; Yonkers, K.A.; McCullough, J.P.; Keitner, G.I.; Gelenberg, A.J.; Davis, S.M.; Harrison, W.M.; Keller, M.B. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry 2000, 157, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, M.G.; Steyerberg, E.W.; Stage, K.B.; Passchier, J.; Kragh-Soerensen, P. Are gender differences important for the clinical effects of antidepressants? Am. J. Psychiatry 2003, 160, 1643–1650. [Google Scholar] [CrossRef] [Green Version]
- Dadi, A.F.; Akalu, T.Y.; Wolde, H.F.; Baraki, A.G. Effect of perinatal depression on birth and infant health outcomes: A systematic review and meta-analysis of observational studies from Africa. Arch. Public Health 2022, 80, 34. [Google Scholar] [CrossRef]
- Paré, W.P. Technique and strain comparisons in stress ulcer. Ann. N. Y. Acad. Sci. 1990, 597, 223–230. [Google Scholar] [CrossRef]
- Paré, W.P. Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol. Behav. 1994, 55, 433–439. [Google Scholar] [CrossRef]
- Tejani-Butt, S.; Kluczynski, J.; Paré, W.P. Strain-dependent modification of behavior following antidepressant treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2003, 27, 7–14. [Google Scholar] [CrossRef]
- Lahmame, A.; Armario, A. Differential responsiveness of inbred strains of rats to antidepressants in the forced swimming test: Are Wistar-Kyoto rats an animal model of subsensitively to antidepressant? Psychopharmacology 1996, 123, 191–198. [Google Scholar] [CrossRef]
- López-Rubalcava, C.; Lucki, I. Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 2000, 22, 191–199. [Google Scholar] [CrossRef] [Green Version]
- De La Garza, R., II.; Mahoney, J.J., III. A distinct neurochemical profile in WKY rats at baseline and in response to acute stress: Implications for animal models of anxiety and depression. Brain Res. 2004, 1021, 209–218. [Google Scholar] [CrossRef]
- Nagasawa, M.; Ogino, Y.; Kurata, K.; Otsuka, T.; Yoshida, J.; Tomonaga, S.; Furuse, M. Hypothesis with abnormal amino acid metabolism in depression and stress vulnerability in Wistar Kyoto rats. Amino Acids 2012, 43, 2101–2111. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, M.; Otsuka, T.; Ogino, Y.; Yoshida, J.; Tomonaga, S.; Yasuo, S.; Furuse, M. Orally administered whole egg demonstrates antidepressant-like effects in the forced swimming test on rats. Acta Neuropsychiatr. 2014, 26, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, M.; Otsuka, T.; Togo, Y.; Yamanaga, M.; Yoshida, J.; Uotsu, N.; Teramoto, S.; Yasuo, S.; Furuse, M. Single and chronic L-serine treatments exert antidepressant-like effects in rats possibly by different means. Amino Acids 2017, 49, 1561–1570. [Google Scholar] [CrossRef]
- Parker, G.; Brotchie, H. Mood effects of the amino acids tryptophan and tyrosine: ‘Food for Thought’ III. Acta Psychiatr. Scand. 2011, 124, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, M.; Otsuka, T.; Yasuo, S.; Furuse, M. Chronic imipramine treatment differentially alters the brain and plasma amino acid metabolism in Wistar and Wistar Kyoto rats. Eur. J. Pharmacol. 2015, 762, 127–135. [Google Scholar] [CrossRef] [PubMed]
- McAuley, J.D.; Stewart, A.L.; Webber, E.S.; Cromwell, H.C.; Servatius, R.J.; Pang, K.C. Wistar-Kyoto rats as an animal model of anxiety vulnerability: Support for a hypervigilance hypothesis. Behav. Brain Res. 2009, 204, 162–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosso, M.; Wirz, R.; Loretan, A.V.; Sutter, N.A.; Pereira da Cunha, C.T.; Jaric, I.; Würbel, H.; Voelkl, B. Reliability of common mouse behavioural tests of anxiety: A systematic review and meta-analysis on the effects of anxiolytics. Neurosci. Biobehav. Rev. 2022, 143, 104928. [Google Scholar] [CrossRef] [PubMed]
- Masuyama, H.; Hiramatsu, Y. Additive effects of maternal high fat diet during lactation on mouse offspring. PLoS ONE 2014, 9, e92805. [Google Scholar] [CrossRef]
- Nishigawa, T.; Nagamachi, S.; Chowdhury, V.S.; Yasuo, S.; Furuse, M. Taurine and β-alanine intraperitoneal injection in lactating mice modifies the growth and behavior of offspring. Biochem. Biophys. Res. Commun. 2018, 495, 2024–2029. [Google Scholar] [CrossRef] [PubMed]
- Hamada, M.; Ihara, T.; Furuse, M. Differences in free amino acid concentrations in milk between Wistar and Wistar Kyoto rats. J. Vet. Med. Sci. 2019, 81, 838–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamane, H.; Asechi, M.; Tsuneyoshi, Y.; Kurauchi, I.; Denbow, D.M.; Furuse, M. Intracerebroventricular injection of L-aspartic acid and L-asparagine induces sedative effects under an acute stressful condition in neonatal chicks. Anim. Sci. J. 2009, 80, 286–290. [Google Scholar] [CrossRef]
- Suenaga, R.; Tomonaga, S.; Yamane, H.; Kurauchi, I.; Tsuneyoshi, Y.; Sato, H.; Denbow, D.M.; Furuse, M. Intracerebroventricular injection of L-arginine induces sedative and hypnotic effects under an acute stress in neonatal chicks. Amino Acids 2008, 35, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Asechi, M.; Tomonaga, S.; Tachibana, T.; Han, L.; Hayamizu, K.; Denbow, D.M.; Furuse, M. Intracerebroventricular injection of L-serine analogs and derivatives induces sedative and hypnotic effects under an acute stressful condition in neonatal chicks. Behav. Brain Res. 2006, 170, 71–77. [Google Scholar] [CrossRef]
- Cunha, M.P.; Pazini, F.L.; Ludka, F.K.; Rosa, J.M.; Oliveira, Á.; Budni, J.; Ramos-Hryb, A.B.; Lieberknecht, V.; Bettio, L.E.; Martín-de-Saavedra, M.D.; et al. The modulation of NMDA receptors and L-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino Acids 2015, 47, 795–811. [Google Scholar] [CrossRef] [PubMed]
- Kokras, N.; Antoniou, K.; Mikail, H.G.; Kafetzopoulos, V.; Papadopoulou-Daifoti, Z.; Dalla, C. Forced swim test: What about females? Neuropharmacology 2015, 99, 408–421. [Google Scholar] [CrossRef]
- DeLisi, L.E.; Friedrich, U.; Wahlstrom, J.; Boccio-Smith, A.; Forsman, A.; Eklund, K.; Crow, T.J. Schizophrenia and sex chromosome anomalies. Schizophr. Bull. 1994, 20, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Davies, W. Genomic imprinting on the X chromosome: Implications for brain and behavioral phenotypes. Ann. N. Y. Acad. Sci. 2010, 1204 (Suppl. 1), E14–E20. [Google Scholar] [CrossRef]
- Davies, W.; Isles, A.R.; Wilkinson, L.S. Imprinted gene expression in the brain. Neurosci. Biobehav. Rev. 2005, 29, 421–430. [Google Scholar] [CrossRef]
- Czech, D.P.; Lee, J.; Sim, H.; Parish, C.L.; Vilain, E.; Harley, V.R. The humantestis-determining factor SRY localizes in midbrain dopamine neurons and regulates multiple components of catecholamine synthesis and metabolism. J. Neurochem. 2012, 122, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milsted, A.; Serova, L.; Sabban, E.L.; Dunphy, G.; Turner, M.E.; Ely, D.L. Regulation of tyrosine hydroxylase gene transcription by Sry. Neurosci. Lett. 2004, 369, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.B.; Chen, K.; Li, Y.; Lau, Y.F.; Shih, J.C. Regulation of monoamineoxidase A by the SRY gene on the Y chromosome. FASEB J. 2009, 23, 4029–4038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porsolt, R.D.; Anton, G.; Blavet, N.; Jalfre, M. Behavioural despair in rats: A new model sensitive to antidepressant treatments. Eur. J. Pharmacol. 1978, 47, 379–391. [Google Scholar] [CrossRef]
- Champagne, F.A.; Weaver, I.C.G.; Diorio, J.; Sharma, S.; Meaney, M.J. Natural variations in maternal care are associated with estrogen receptor alpha expression and estrogen sensitivity in the medial preoptic area. Endocrinology 2003, 144, 4720–4724. [Google Scholar] [CrossRef] [Green Version]
- Uriarte, N.; Breigeiron, M.K.; Benetti, F.; Rosa, X.F.; Lucion, A.B. Effects of maternal care on the development, emotionality, and reproductive functions in male and female rats. Dev. Psychobiol. 2007, 49, 451–462. [Google Scholar] [CrossRef]
- Reis, A.R.; de Azevedo, M.S.; de Souza, M.A.; Lutz, M.L.; Alves, M.B.; Izquierdo, I.; Cammarota, M.; Silveira, P.P.; Lucion, A.B. Neonatal handling alters the structure of maternal behavior and affects mother–pup bonding. Behav. Brain Res. 2014, 265, 216–228. [Google Scholar] [CrossRef]
- Ohmori, T.; Mutaguchi, Y.; Yoshikawa, S.; Doi, K.; Ohshima, T. Amino acid components of lees in salmon fish sauce are tyrosine and phenylalanine. J. Biosci. Bioeng. 2011, 112, 256–258. [Google Scholar] [CrossRef]
Strain | WIS♂ × WIS♀ | WIS♂ × WKY♀ | WKY♂ × WIS♀ | WKY♂ × WKY♀ | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex | Male | Female | Male | Female | Male | Female | Male | Female | Father | Mother | Sex | Interaction |
L-Asp | 2.83 ± 0.08 | 2.58 ± 0.12 | 2.42 ± 0.07 | 2.50 ± 0.06 | 2.44 ± 0.12 | 2.66 ± 0.11 | 2.53 ± 0.04 | 2.31 ± 0.05 | NS | p < 0.01 | NS | p < 0.01 (Father × Mother × Sex) |
D-Ser | 0.046 ± 0.004 | 0.048 ± 0.007 | 0.050 ± 0.003 | 0.052 ± 0.002 | 0.048 ± 0.001 | 0.049 ± 0.002 | 0.046 ± 0.004 | 0.053 ± 0.002 | NS | NS | NS | NS |
L-Ser | 0.554 ± 0.02 | 0.497± 0.02 | 0.476 ± 0.01 | 0.472 ± 0.006 | 0.491 ± 0.024 | 0.509 ± 0.02 | 0.481 ± 0.006 | 0.448 ± 0.005 | NS | p < 0.01 | NS | p < 0.05 (Father × Mother × Sex) |
L-Gln | 4.33 ± 0.17 | 4.04 ± 0.11 | 3.89 ± 0.12 | 4.03 ± 0.06 | 4.06 ± 0.13 | 4.05 ± 0.07 | 4.25 ± 0.03 | 3.99 ± 0.08 | NS | NS | NS | p < 0.05 (Father × Mother × Sex) |
L-His | 0.749 ± 0.08 | 0.940 ± 0.02 | 0.943 ± 0.07 | 0.950 ± 0.04 | 1.00 ± 0.06 | 0.932 ± 0.07 | 1.14 ± 0.01 | 1.07 ± 0.03 | p < 0.01 | p < 0.01 | NS | p < 0.05 (Father × Sex) |
L-Arg | 0.502 ± 0.04 | 0.316 ± 0.02 | 0.320 ± 0.03 | 0.320 ± 0.03 | 0.303 ± 0.04 | 0.377 ± 0.04 | 0.277 ± 0.01 | 0.265 ± 0.02 | p < 0.01 | p < 0.01 | NS | p < 0.01 (Father × Sex) p < 0.01 (Father × Mother × Sex) |
Tau | 2.36 ± 0.05 | 2.21 ± 0.05 | 2.35 ± 0.06 | 2.33 ± 0.03 | 2.36 ± 0.08 | 2.40 ± 0.06 | 2.60 ± 0.02 | 2.48 ± 0.05 | p < 0.01 | p < 0.01 | NS | p < 0.05 (Father × Mother × Sex) |
L-Ala | 0.602 ± 0.02 | 0.554 ± 0.02 | 0.499 ± 0.02 | 0.491 ± 0.01 | 0.513 ± 0.02 | 0.518 ± 0.02 | 0.480 ± 0.01 | 0.460 ± 0.03 | p < 0.01 | p < 0.01 | NS | NS |
GABA | 3.08 ± 0.10 | 2.82 ± 0.06 | 2.58 ± 0.06 | 2.69 ± 0.06 | 2.64 ± 0.11 | 2.94 ±0.14 | 2.63 ± 0.05 | 2.63 ± 0.10 | NS | p < 0.01 | NS | p < 0.05 (Father × Mother × Sex) |
L-Tyr | 0.092 ± 0.003 | 0.081 ± 0.005 | 0.079 ± 0.004 | 0.054 ± 0.003 | 0.090 ± 0.006 | 0.087 ± 0.01 | 0.088 ± 0.005 | 0.066 ± 0.003 | NS | p < 0.01 | p < 0.01 | p < 0.05 (Mother × Sex) |
L-Val | 0.164 ± 0.005 | 0.152 ± 0.007 | 0.132 ± 0.006 | 0.133 ± 0.004 | 0.140 ± 0.004 | 0.151 ± 0.008 | 0.135 ± 0.003 | 0.135 ± 0.007 | NS | p < 0.01 | NS | NS |
L-Met | 0.605 ± 0.03 | 0.625 ± 0.03 | 0.486 ± 0.01 | 0.577 ± 0.02 | 0.504 ± 0.02 | 0.619 ± 0.05 | 0.529 ± 0.01 | 0.586 ± 0.03 | NS | p < 0.05 | p < 0.01 | p < 0.05 (Father × Mother) |
L-Phe | 0.128 ± 0.01 | 0.100 ± 0.03 | 0.103 ± 0.01 | 0.106 ± 0.02 | 0.091 ± 0.007 | 0.107 ± 0.01 | 0.087 ± 0.004 | 0.080 ± 0.005 | p < 0.05 | NS | NS | NS |
L-Ile | 0.093 ± 0.02 | 0.070 ± 0.005 | 0.055 ± 0.004 | 0.070 ± 0.002 | 0.063 ± 0.005 | 0.066 ± 0.09 | 0.051 ± 0.004 | 0.048 ± 0.005 | p < 0.05 | p < 0.01 | NS | NS |
L-Leu | 0.216 ± 0.02 | 0.144 ± 0.006 | 0.161 ± 0.01 | 0.14 ± 0.005 | 0.150 ± 0.02 | 0.163 ± 0.01 | 0.127 ± 0.005 | 0.132 ± 0.009 | p < 0.01 | p < 0.01 | p < 0.05 | p < 0.01 (Father × Sex) |
Strain | WIS♂ × WIS♀ | WIS♂ × WKY♀ | WKY♂ × WIS♀ | WKY♂ × WKY♀ | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex | Male | Female | Male | Female | Male | Female | Male | Female | Father | Mother | Sex | Interaction |
L-Asp | 1.83 ± 0.05 | 1.99 ± 0.07 | 1.69 ± 0.11 | 1.97 ± 0.05 | 1.58 ± 0.14 | 1.95 ± 0.03 | 1.72 ± 0.05 | 1.75 ± 0.09 | p < 0.05 | NS | p < 0.01 | NS |
D-Ser | 0.299 ± 0.005 | 0.331 ± 0.005 | 0.266 ± 0.02 | 0.306 ± 0.006 | 0.262 ± 0.02 | 0.312 ± 0.003 | 0.265 ± 0.004 | 0.270 ± 0.008 | p < 0.01 | p < 0.01 | p < 0.01 | NS |
L-Ser | 0.930 ± 0.02 | 1.05 ± 0.01 | 0.832 ± 0.04 | 0.951 ± 0.006 | 0.813 ± 0.07 | 0.953 ± 0.009 | 0.824 ± 0.02 | 0.824 ± 0.03 | p < 0.01 | p < 0.01 | p < 0.01 | NS |
L-Gln | 5.64 ± 0.16 | 5.60 ± 0.07 | 5.01 ± 0.29 | 5.90 ± 0.09 | 4.95 ± 0.39 | 5.61 ± 0.09 | 5.54 ± 0.09 | 5.49 ± 0.19 | NS | NS | p < 0.05 | p < 0.01 (Father × Mother × Sex) |
L-His | 0.641 ± 0.01 | 0.624 ± 0.02 | 0.579 ± 0.02 | 0.605 ± 0.01 | 0.583 ± 0.05 | 0.621 ± 0.02 | 0.702 ± 0.006 | 0.595 ± 0.008 | NS | NS | NS | p < 0.01 (Father × Mother) p < 0.01 (Father × Mother × Sex) |
L-Arg | 0.187 ± 0.01 | 0.219 ± 0.006 | 0.166 ± 0.01 | 0.233 ± 0.02 | 0.151 ± 0.02 | 0.232 ± 0.008 | 0.172 ± 0.007 | 0.211 ± 0.02 | NS | NS | p < 0.01 | p < 0.05 (Father × Mother × Sex) |
Tau | 6.82 ± 0.11 | 6.47 ± 0.09 | 6.12 ± 0.31 | 6.41 ± 0.07 | 5.81 ± 0.52 | 6.45 ± 0.05 | 6.48 ± 0.11 | 6.12 ± 0.16 | NS | NS | NS | p < 0.05 (Father × Mother × Sex) |
L-Ala | 1.04 ± 0.05 | 1.09 ± 0.03 | 0.890 ± 0.05 | 1.00 ± 0.02 | 0.831 ± 0.07 | 0.963 ± 0.02 | 0.854 ± 0.03 | 0.831 ± 0.03 | p < 0.01 | p < 0.01 | p < 0.05 | NS |
GABA | 2.18 ± 0.08 | 2.68 ± 0.05 | 1.96 ± 0.11 | 2.45 ± 0.04 | 1.89 ± 0.15 | 2.44 ± 0.04 | 1.99 ± 0.07 | 2.34 ± 0.10 | p < 0.05 | NS | p < 0.01 | NS |
L-Tyr | 0.092 ± 0.006 | 0.093 ± 0.007 | 0.085 ± 0.005 | 0.076 ± 0.005 | 0.090 ± 0.007 | 0.095 ± 0.008 | 0.102 ± 0.008 | 0.080 ± 0.006 | NS | NS | NS | NS |
L-Val | 0.162 ± 0.005 | 0.152 ± 0.004 | 0.135 ± 0.007 | 0.147 ± 0.003 | 0.100 ± 0.02 | 0.144 ± 0.001 | 0.135 ± 0.006 | 0.136 ± 0.007 | p < 0.01 | NS | NS | p < 0.05 (Father × Mother × Sex) |
L-Met | 0.474 ± 0.03 | 0.552 ± 0.01 | 0.435 ± 0.03 | 0.505 ± 0.01 | 0.397 ± 0.03 | 0.485 ± 0.01 | 0.420 ± 0.02 | 0.431 ± 0.02 | p < 0.01 | NS | p < 0.01 | NS |
L-Phe | 0.094 ± 0.01 | 0.094 ± 0.002 | 0.079 ± 0.006 | 0.096 ± 0.001 | 0.076 ± 0.006 | 0.104 ± 0.01 | 0.090 ± 0.002 | 0.101 ± 0.004 | NS | NS | p < 0.01 | NS |
L-Ile | 0.057 ± 0.004 | 0.074 ± 0.01 | 0.045 ± 0.004 | 0.058 ± 0.004 | 0.049 ± 0.005 | 0.054 ± 0.004 | 0.046 ± 0.002 | 0.057 ± 0.004 | NS | NS | p < 0.05 | NS |
L-Leu | 0.144 ± 0.007 | 0.156 ± 0.007 | 0.128 ± 0.01 | 0.160 ± 0.01 | 0.126 ± 0.01 | 0.154 ± 0.007 | 0.131 ± 0.008 | 0.150 ± 0.01 | NS | NS | p < 0.01 | NS |
Strain | WIS♂ × WIS♀ | WIS♂ × WKY♀ | WKY♂ × WIS♀ | WKY♂ × WKY♀ | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex | Male | Female | Male | Female | Male | Female | Male | Female | Father | Mother | Sex | Interaction |
L-Asp | 2.83 ± 0.11 | 2.85 ± 0.20 | 3.06 ± 0.17 | 2.78 ± 0.31 | 2.61 ± 0.13 | 2.39 ± 0.02 | 2.49 ± 0.07 | 2.23 ± 0.02 | p < 0.01 | NS | NS | NS |
D-Ser | 0.221 ± 0.007 | 0.314 ± 0.03 | 0.191 ± 0.004 | 0.283 ± 0.03 | 0.206 ± 0.01 | 0.209 ± 0.008 | 0.176 ± 0.005 | 0.183 ± 0.008 | p < 0.01 | p < 0.01 | p < 0.01 | p < 0.01 (Father × Sex) |
L-Ser | 0.841 ± 0.02 | 1.07 ± 0.12 | 0.799 ± 0.03 | 0.952 ± 0.10 | 0.756 ± 0.01 | 0.695 ± 0.01 | 0.722 ± 0.03 | 0.629 ± 0.01 | p < 0.01 | NS | NS | p < 0.01 (Father × Sex) |
L-Gln | 6.41 ± 0.17 | 8.26 ± 0.69 | 6.09 ± 0.14 | 8.28 ± 0.84 | 6.07 ± 0.18 | 6.23 ± 0.12 | 5.92 ± 0.07 | 6.12 ± 0.11 | p < 0.01 | NS | p < 0.01 | p < 0.01 (Father × Sex) |
L-His | 0.627 ± 0.05 | 1.22 ± 0.11 | 0.544 ± 0.03 | 1.14 ± 0.11 | 0.637 ± 0.06 | 0.896 ± 0.02 | 0.669 ± 0.04 | 0.949 ± 0.03 | p < 0.05 | NS | p < 0.01 | p < 0.01 (Father × Sex) |
L-Arg | 0.412 ± 0.04 | 0.315 ± 0.04 | 0.417 ± 0.02 | 0.345 ± 0.04 | 0.319 ± 0.02 | 0.245 ± 0.01 | 0.349 ± 0.02 | 0.161 ± 0.006 | p < 0.01 | NS | p < 0.01 | NS |
Tau | 5.16 ± 0.21 | 6.43 ± 0.56 | 4.61 ± 0.10 | 6.20 ± 0.61 | 4.93 ± 0.26 | 4.59 ± 0.16 | 4.71 ± 0.10 | 4.46 ± 0.17 | p < 0.01 | NS | p < 0.05 | p < 0.01 (Father × Sex) |
GABA | 7.11 ± 0.25 | 8.16 ± 0.80 | 7.04 ± 0.24 | 7.81 ± 1.2 | 6.11 ± 0.25 | 5.96 ± 0.14 | 5.86 ± 0.27 | 5.52 ± 0.12 | p < 0.01 | NS | NS | NS |
L-Tyr | 0.127 ± 0.005 | 0.138 ± 0.02 | 0.125 ± 0.009 | 0.117 ± 0.02 | 0.124 ± 0.003 | 0.105 ± 0.01 | 0.123 ± 0.006 | 0.082 ± 0.01 | p < 0.05 | NS | NS | p < 0.05 (Father × Sex) |
L-Val | 0.203 ± 0.01 | 0.221 ± 0.02 | 0.189 ± 0.009 | 0.208 ± 0.02 | 0.191 ± 0.009 | 0.172 ± 0.004 | 0.178 ± 0.005 | 0.162 ± 0.008 | p < 0.01 | NS | NS | p < 0.05 (Father × Sex) |
L-Met | 1.62 ± 0.07 | 1.75 ± 0.16 | 1.51 ± 0.04 | 1.57 ± 0.19 | 1.36 ± 0.06 | 1.36 ± 0.05 | 1.39 ± 0.06 | 1.28 ± 0.05 | p < 0.01 | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ihara, T.; Hamada, M.; Furuse, M. The Greater Impact of Paternal, Compared to Maternal, Hereditary Background on Depressive-Like Behavior in Wistar Kyoto Rats with Different Amino Acid Metabolism in the Pup Brain. Int. J. Mol. Sci. 2023, 24, 4199. https://doi.org/10.3390/ijms24044199
Ihara T, Hamada M, Furuse M. The Greater Impact of Paternal, Compared to Maternal, Hereditary Background on Depressive-Like Behavior in Wistar Kyoto Rats with Different Amino Acid Metabolism in the Pup Brain. International Journal of Molecular Sciences. 2023; 24(4):4199. https://doi.org/10.3390/ijms24044199
Chicago/Turabian StyleIhara, Tsubasa, Mizuki Hamada, and Mitsuhiro Furuse. 2023. "The Greater Impact of Paternal, Compared to Maternal, Hereditary Background on Depressive-Like Behavior in Wistar Kyoto Rats with Different Amino Acid Metabolism in the Pup Brain" International Journal of Molecular Sciences 24, no. 4: 4199. https://doi.org/10.3390/ijms24044199
APA StyleIhara, T., Hamada, M., & Furuse, M. (2023). The Greater Impact of Paternal, Compared to Maternal, Hereditary Background on Depressive-Like Behavior in Wistar Kyoto Rats with Different Amino Acid Metabolism in the Pup Brain. International Journal of Molecular Sciences, 24(4), 4199. https://doi.org/10.3390/ijms24044199