Correlation of Redondovirus and Entamoeba gingivalis Detections in the Human Oral Cavity Suggests That This Amoeba Is Possibly the Redondovirus Host
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population and Sample Collection
4.2. Redondovirus and Entamoeba gingivalis DNA
4.3. Detection of Eukaryotic and Prokaryotic Genomic Sequences in Redondovirus Genomes
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martínez, A.; Kuraji, R.; Kapila, Y.L. The human oral virome: Shedding light on the dark matter. Periodontol 2000 2021, 87, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Bushman, F.D. The human virome: Assembly, composition and host interactions. Nat. Rev. Microbiol. 2021, 19, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, T.; Lamba, A.K.; Faraz, F.; Tandon, S. Viruses: Bystanders of periodontal disease. Microb. Pathog. 2017, 102, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.C. Periodontal disease. N. Engl. J. Med. 1990, 322, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Albandar, J.M.; Rams, T.E. Global epidemiology of periodontal diseases: An overview. Periodontol 2000 2002, 29, 7–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eke, P.I.; Thornton-Evans, G.O.; Wei, L.; Borgnakke, W.S.; Dye, B.A.; Genco, R.J. Periodontitis in US Adults: National Health and Nutrition Examination Survey 2009-2014. J. Am. Dent. Assoc. 2018, 149, 576–588.e6. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.A.; Taylor, L.J.; Dothard, M.I.; Leiby, J.S.; Fitzgerald, A.S.; Khatib, L.A.; Collman, R.G.; Bushman, F.D. Redondoviridae, a Family of Small, Circular DNA Viruses of the Human Oro-Respiratory Tract Associated with Periodontitis and Critical Illness. Cell Host Microbe 2019, 25, 719–729.e4. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M.; Varsani, A.; Kazlauskas, D.; Breitbart, M.; Delwart, E.; Rosario, K.; Yutin, N.; Wolf, Y.I.; Harrach, B.; Zerbini, F.M.; et al. Cressdnaviricota: A Virus Phylum Unifying Seven Families of Rep-Encoding Viruses with Sin-gle-Stranded, Circular DNA Genomes. J. Virol. 2020, 94, e00582-20. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Taylor, L.J.; Collman, R.G.; Bushman, F.D. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Redondoviridae. J. Gen. Virol. 2021, 102, jgv001526. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wu, B.; Zhu, X.; Guo, X.; Ge, Y.; Zhao, K.; Qi, X.; Shi, Z.; Zhu, F.; Sun, L.; et al. Identification and genetic characteriza-tion of a novel circular single-stranded DNA virus in a human upper respiratory tract sample. Arch. Virol. 2017, 162, 3305–3312. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Feng, X.; Chen, X.; Zhang, W. Redondoviridae and periodontitis: A case-control study and identification of five novel redondoviruses from periodontal tissues. Virus Evol. 2021, 7, veab033. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.J.; Dothard, M.I.; Rubel, M.A.; Allen, A.A.; Hwang, Y.; Roche, A.M.; Graham-Wooten, J.; Fitzgerald, A.S.; Khatib, L.A.; Ranciaro, A.; et al. Redondovirus Diversity and Evolution on Global, Individual, and Molecular Scales. J. Virol. 2021, 95, e0081721. [Google Scholar] [CrossRef] [PubMed]
- Lázaro-Perona, F.; Dahdouh, E.; Román-Soto, S.; Jiménez-Rodríguez, S.; Rodríguez-Antolín, C.; de la Calle, F.; Agrifoglio, A.; Membrillo, F.J.; García-Rodríguez, J.; Mingorance, J. Metagenomic Detection of Two Vientoviruses in a Human Sputum Sample. Viruses 2020, 12, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spezia, P.G.; Macera, L.; Mazzetti, P.; Curcio, M.; Biagini, C.; Sciandra, I.; Turriziani, O.; Lai, M.; Antonelli, G.; Pistello, M.; et al. Redondovirus DNA in human respiratory samples. J. Clin. Virol. 2020, 131, 104586. [Google Scholar] [CrossRef]
- Tu, N.T.K.; Deng, X.; Hong, N.T.T.; Ny, N.T.H.; Phuc, T.M.; Tam, P.T.T.; Han, D.A.; Ha, L.T.T.; Thwaites, G.; Doorn, H.R.V.; et al. Redondoviridae: High Prevalence and Possibly Chronic Shedding in Human Respiratory Tract, But No Zoonotic Transmission. Viruses 2021, 13, 533. [Google Scholar] [CrossRef]
- Tochetto, C.; Cibulski, S.P.; Muterle Varela, A.P.; Cerva, C.; Alves de Lima, D.; Fumaco Teixeira, T.; Quoos Mayer, F.; Roehe, P.M. A variety of highly divergent eukaryotic ssDNA viruses in sera of pigs. J. Gen. Virol. 2021, 102, 001706. [Google Scholar] [CrossRef]
- Kinsella, C.M.; Deijs, M.; Becker, C.; Broekhuizen, P.; van Gool, T.; Bart, A.; Schaefer, A.S.; van der Hoek, L. Host prediction for disease-associated gastrointestinal cressdnaviruses. Virus Evol. 2022, 8, veac087. [Google Scholar] [CrossRef]
- Keeler, E.L.; Merenstein, C.; Reddy, S.; Taylor, L.J.; Cobián-Güemes, A.G.; Zankharia, U.; Collman, R.G.; Bushman, F.D. Widespread, human-associated redondoviruses infect the commensal protozoan Entamoeba gingivalis. Cell Host Microbe 2023, 31, 58–68.e5. [Google Scholar] [CrossRef]
- Antezack, A.; Boxberger, M.; Ben Khedher, M.; La Scola, B.; Monnet-Corti, V. Isolation and description of Selenomonas timonae sp. nov., a novel Selenomonas species detected in a gingivitis patient. Int. J. Syst. Evol. Microbiol. 2021, 71, 005040. [Google Scholar] [CrossRef]
- Antezack, A.; Boxberger, M.; Rolland, C.; Monnet-Corti, V.; La Scola, B. Isolation and Characterization of Kingella bonacorsii sp. nov., A Novel Kingella Species Detected in a Stable Periodontitis Subject. Pathogens 2021, 10, 240. [Google Scholar] [CrossRef]
- La Scola, B.; Desnues, C.; Pagnier, I.; Robert, C.; Barrassi, L.; Fournous, G.; Merchat, M.; Suzan-Monti, M.; Forterre, P.; Koonin, E.; et al. The virophage as a unique parasite of the giant mimivirus. Nature 2008, 455, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.G.; Hackl, T. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 2016, 540, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fu, Y.; Li, B.; Yu, X.; Xie, J.; Cheng, J.; Ghabrial, S.A.; Li, G.; Yi, X.; Jiang, D. Widespread horizontal gene transfer from circular single-stranded DNA viruses to eukaryotic genomes. BMC Evol. Biol. 2011, 11, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Cavanaugh, M.; Clark, K.; Pruitt, K.D.; Schoch, C.L.; Sherry, S.T.; Karsch-Mizrachi, I. GenBank. Nucleic Acids Res. 2022, 50, D161–D164. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, C.M.; Bart, A.; Deijs, M.; Broekhuizen, P.; Kaczorowska, J.; Jebbink, M.F.; van Gool, T.; Cotton, M.; van der Hoek, L. Entamoeba and Giardia parasites implicated as hosts of CRESS viruses. Nat. Commun. 2020, 11, 4620. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.L.; Szafrański, S.P.; Jarek, M.; Bhuju, S.; Wagner-Döbler, I. Dysbiosis in chronic periodontitis: Key microbial players and interactions with the human host. Sci. Rep. 2017, 7, 3703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Jin, F. Easy Hi-C: A Low-Input Method for Capturing Genome Organization. Methods Mol. Biol. 2023, 2599, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Contaldo, M.; Lucchese, A.; Lajolo, C.; Rupe, C.; Di Stasio, D.; Romano, A.; Petruzzi, M.; Serpico, R. The Oral Microbiota Changes in Orthodontic Patients and Effects on Oral Health: An Overview. J. Clin. Med. 2021, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Arthofer, P.; Delafont, V.; Willemsen, A.; Panhölzl, F.; Horn, M. Defensive symbiosis against giant viruses in amoebae. Proc. Natl. Acad. Sci. USA 2022, 119, e2205856119. [Google Scholar] [CrossRef]
- Toczewska, J.; Maciejczyk, M.; Zalewska, A.; Konopka, T. Gingival fluid and saliva concentrations of selected non-enzymatic antioxidants in periodontitis. Dent. Med. Probl. 2022, 59, 555–564. [Google Scholar] [CrossRef] [PubMed]
Redondovirus (Query Sequence) | Eukaryotic/Prokaryotic Species (Subject Sequence (Hit)) | Position on Query | Position on Subject (Hit) | Alignment Length (Nucleotides) | BLAST Maximal Score | BLAST E-Value | Query Coverage (%) | Nucleotide Identity (%) |
---|---|---|---|---|---|---|---|---|
Vientovirus XM (MK059771.1) | Elmis aenea (OX393581.1) | 1776–1830 | 27,999,280–2,799,9333 | 56 | 59.9 | 4.0 × 10−3 | 1 | 87.5 |
Caradrina clavipalpis (OW052103.1) | 1776–1818 | 4,879,153–4,879,194 | 43 | 57.2 | 1.5 × 10−2 | 1 | 82.3 | |
Vespula germanica (HG996531.1) | 1777–1818 | 8,520,621–8,520,663 | 43 | 57.2 | 1.5 × 10−2 | 1 | 81.0 | |
Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 | |
Vientovirus MW (MK059772.1) | Entamoeba invadens (XM_004185684.1) | 2214–2301 | 661–773 | 89 | 59 | 4.0 × 10−3 | 2 | 75.3 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus MC (MK059770.1) | Chrysoperla carnea (FR997758.1) | 1770–1837 | 72,667,248–72,667,313 | 68 | 58.1 | 1.5 × 10−2 | 2 | 79.4 |
Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 | |
Vientovirus LZ (MK059769.1) | Entamoeba invadens (XM_004185684.1) | 2210–2294 | 678–762 | 86 | 72.5 | 7.0 × 10−7 | 2 | 80.2 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus EC (MK059768.1) | Agriphila geniculea (OX038883.1) | 1768–1822 | 12,573,469–12,573,521 | 55 | 61.7 | 1.0 × 10−3 | 1 | 85.5 |
Clistopyga incitator (OX382180.1) | 1772–1826 | 8,425,204–8,425,260 | 57 | 60.8 | 1.0 × 10−3 | 1 | 86.0 | |
Agonopterix arenella (OV656709.1) | 1796–1832 | 14,531,762–14,531,798 | 37 | 59 | 4.0 × 10−3 | 1 | 94.6 | |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus AV (MK059767.1) | Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 |
Vientovirus LT ((MK059766.1) | Caradrina kadenii (OX381679.1) | 1275–1329 | 12,497,450–12,497,508 | 59 | 57.2 | 1.5 × 10−2 | 1 | 83.1 |
Vientovirus FB (MK059763.1) | Entamoeba invadens (XM_004185684.1) | 2125–2297 | 673–843 | 174 | 70.7 | 2.0 × 10−6 | 5 | 70.1 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus ES (MK059762.1) | Spiroplasma turonicum (CP013860.1) | 2449–2531 | 840,669–840,750 | 83 | 61.7 | 1.0 × 10−3 | 2 | 77.1 |
Allantophomopsis cytisporea (CP103029.1) | 2888–2936 | 1,082,977–1,083,025 | 49 | 58.1 | 1.0 × 10−2 | 1 | 85.7 | |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus DC (MK059761.1) | Entamoeba invadens (XM_004185684.1) | 2122–2294 | 673–843 | 174 | 70.7 | 2.0 × 10−6 | 5 | 70.1 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus AL (MK059760.1) | No hit | No hit | No hit | No hit | No hit | No hit | – | – |
Vientovirus VN (MT759843.1) | Entamoeba invadens (XM_004185684.1) | 2207–2284 | 685–762 | 79 | 59.9 | 4.0 × 10−3 | 2 | 78.5 |
Boloria selene (HG993153.1) | 2937–3001 | 6,447,257–6,447,322 | 66 | 58.1 | 1.5 × 10−2 | 2 | 80.3 | |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus JB (MK059764.1) | Allantophomopsis cytisporea (CP103029.1) | 2884–2942 | 1,082,977–1,083,034 | 59 | 59 | 4.0 × 10−3 | 1 | 83.1 |
Iphiclides podalirius (OW152837.1) | 1782–1843 | 3,451,464–3,451,522 | 62 | 57.2 | 1.5 × 10−2 | 2 | 82.3 | |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus JY (MK059765.1) | Allantophomopsis cytisporea (CP103029.1) | 2885–2933 | 1,082,977–1,083,025 | 49 | 58.1 | 1.5 × 10−2 | 1 | 85.7 |
Brisavirus II (MK059755.1) | Lymantria monacha (LR991098.1) | 1804–1881 | 24,094,134–24,094,211 | 78 | 60.8 | 1.0 × 10−3 | 2 | 76.9 |
Myopa tessellatipennis (OX031314.1) | 1828–1866 | 67,193,903–67,193,941 | 39 | 58.1 | 1.5 × 10−2 | 1 | 92.3 | |
Abrostola triplasia (OX276447.1) | 1764–1854 | 919,903–919,988 | 91 | 57.2 | 1.5 × 10−2 | 3 | 74.7 | |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Brisavirus MD (MK059756.1) | Micropterix aruncella (OX155967.1) | 1111–1167 | 11,485,724–11,485,780 | 58 | 58.1 | 1.5 × 10−2 | 1 | 84.5 |
Brisavirus VW (MK059759.1) | Ananas comosus (LR862130.1) | 2453–2508 | 1,939,365–1,939,420 | 56 | 66.2 | 3.0 × 10−5 | 1 | 85.7 |
Amphipyra berbera (OU343149.1) | 1773–1824 | 6,458,724–6,458,776 | 53 | 57.2 | 1.4 × 10−2 | 1 | 84.9 | |
Brisavirus RC (MK059757.1) | Lochmaea capreae (OX421399.1) | 2504–2577 | 6,703,802–6,703,876 | 75 | 65.3 | 1.0 × 10−4 | 2 | 80.0 |
Teleiodes luculella (OX419593.1) | 2430–2510 | 1,146,107–1,146,186 | 82 | 57.2 | 1.5 × 10−2 | 2 | 78.1 | |
Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 | |
Brisavirus YH (MK059758.1) | Entamoeba invadens (XM_004185684.1) | 2061–2242 | 688–866 | 182 | 61.7 | 1.0 × 10−3 | 5 | 68.1 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Brisavirus AA (MK059754.1) | Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 |
Human respiratory circular DNA virus isolate 15232 (KY328746.1) | Entamoeba invadens (XM_004185684.1) | 2211–2295 | 678–762 | 86 | 72.5 | 7.0 × 10−7 | 2 | 80.2 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Human respiratory circular DNA virus isolate 15037 (KY328745.1) | Entamoeba invadens (XM_004185684.1) | 2211–2295 | 678–762 | 86 | 77 | 2.0 × 10−8 | 2 | 81.4 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Human respiratory circular DNA virus isolate 15040 (KY244146.1), 15065 (KY579361.1), 15027 (KY579360.1), 15078 (KY579362.1) | Entamoeba invadens (XM_004185684.1) | 2211–2295 | 678–762 | 86 | 72.5 | 7.0 × 10−7 | 2 | 80.2 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.0 × 10−2 | 1 | 87.0 | |
Redondovirus sp. isolate 1 (MT482428.1) | Entamoeba histolytica (AP023130.1) | 989–1030 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 |
Redondovirus sp. isolate 10 (MT482429.1) | Entamoeba invadens (XM_004185684.1) | 2203–2277 | 681–755 | 75 | 55.4 | 5.1 × 10−2 | 2 | 76.0 |
Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 | |
Redondovirus sp. isolate 11 (MT482430.1) | Entamoeba invadens (XM_004185684.1) | 2125–2297 | 673–843 | 174 | 75.2 | 5.0 × 10−8 | 5 | 70.7 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Redondovirus sp. isolate 25 (MT482431.1) | Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 |
Redondovirus sp. isolate 26 (MT482432.1) | Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 |
Vientovirus isolate p67_20161228_ET_WGA_B (MZ405079.1) | Oppiella nova (OC947375.1) | 2921–2975 | 562–614 | 57 | 59.9 | 4.0 × 10−3 | 1 | 86.0 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate p67_20161228_ET_WGA_A (MZ405078.1) | Entamoeba invadens (XM_004185684.1) | 2208–2292 | 678–762 | 86 | 72.5 | 7.0 × 10−7 | 2 | 80.2 |
Oppiella nova (OC947375.1) | 2922–2976 | 562–614 | 57 | 59.9 | 4.0 × 10−3 | 1 | 86.0 | |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate p67_20161223_ET_A1 (MZ405077.1) | Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 |
Vientovirus isolate p67_20161216_ET_C1 (MZ405076.1) | Oppiella nova (OC947375.1) | 2921–2975 | 562–614 | 57 | 59.9 | 4.0 × 10−3 | 1 | 86.0 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate p67_20161216_ET_B10 (MZ405075.1) | Oppiella nova (OC947375.1) | 2918–2972 | 562–614 | 57 | 59.9 | 4.0 × 10−3 | 1 | 86.0 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Brisavirus isolate p67_20161208_OP_D7 (MZ405073.1) | Phlogophora meticulosa (LR990517.1) | 317–370 | 12,271,425–12,271,478 | 55 | 57.2 | 1.5 × 10−2 | 1 | 85.5 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Brisavirus isolate p48_v2_ET_w8_c3 (MZ405057.1) | Entamoeba invadens (XM_004185684.1) | 2069–2250 | 688–866 | 182 | 66.2 | 3.0 × 10−5 | 5 | 68.7 |
Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 | |
Vientovirus isolate p48_v2_ET_w11_c2 (MZ405066.1) | Entamoeba invadens (XM_004185684.1) | 2125–2297 | 673–843 | 174 | 70.7 | 2.0 × 10−6 | 5 | 70.1 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate p48_v2_ET_w10_c4 (MZ405064.1) | Entamoeba invadens (XM_004185684.1) | 2125–2297 | 673–843 | 174 | 70.7 | 2.0 × 10−6 | 5 | 70.1 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate p48_v2_ET_w9_c4 (MZ405062.1) | Entamoeba invadens (XM_004185684.1) | 2125–2297 | 673–843 | 174 | 70.7 | 2.0 × 10−6 | 5 | 70.1 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate p48_v1_ET_w5_c4 (MZ405050.1) | Entamoeba invadens (XM_004185684.1) | 2212–2289 | 685–762 | 79 | 59.9 | 4.0 × 10−3 | 2 | 78.5 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate p48_v1_ET_w4_c3 (MZ405046.1) | Entamoeba invadens (XM_004185684.1) | 2125–2297 | 673–843 | 174 | 70.7 | 2.0 × 10−6 | 5 | 70.1 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate p48_v1_ET_w2_c2 (MZ405041.1) | Entamoeba invadens (XM_004185684.1) | 2125–2297 | 673–843 | 174 | 70.7 | 2.0 × 10−6 | 5 | 70.1 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate p48_v1_ET_w1_c4 (MZ405038.1) | Entamoeba invadens (XM_004185684.1) | 2212–2289 | 685–762 | 79 | 59.9 | 4.0 × 10−3 | 2 | 78.5 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate ET738–12 (MZ405035.1) | Entamoeba invadens (XM_004185684.1) | 2212–2289 | 685–762 | 79 | 59.9 | 4.0 × 10−3 | 2 | 78.5 |
Entamoeba histolytica (AP023130.1) | 986–1031 | 463,656–463,701 | 46 | 57.2 | 1.5 × 10−2 | 1 | 87.0 | |
Vientovirus isolate ET203–9 (MZ405022.1) | Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 |
Vientovirus isolate ET724–8 (MZ405033.1) | Entamoeba invadens (XM_004185684.1) | 2212–2289 | 685–762 | 79 | 72.5 | 7.0 × 10−7 | 2 | 80.2 |
Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 | |
Vientovirus isolate ET724–2 (MZ405030.1) | Entamoeba invadens (XM_004185684.1) | 2194–2278 | 678–762 | 86 | 72.5 | 7.0 × 10−7 | 2 | 80.2 |
Chrysoperla carnea (FR997758.1) | 1771–1837 | 72,667,248–72,667,313 | 67 | 59.9 | 4.0 × 10−3 | 2 | 80.6 | |
Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 | |
Vientovirus isolate ET207–1 (MZ405023.1) | Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 |
Vientovirus isolate CM895–9 (MZ405019.1) | Entamoeba histolytica (AP023130.1) | 986–1027 | 463,656–463,697 | 42 | 54.5 | 1.8 × 10−1 | 1 | 88.1 |
Brisavirus isolate ET239–2 (MZ405025.1) | Gossypium turneri (CP032573.1) | 1795–1848 | 4,332,814–4,332,869 | 56 | 59 | 4.0 × 10−3 | 1 | 83.9 |
Clostridium perfringens (LR607381.1) | 2443–2502 | 2,174,153–2,174,213 | 61 | 58.1 | 1.5 × 10−2 | 1 | 82.0 | |
Pherbina coryleti (OX030953.1) | 1785–1846 | 1,527,490–1,527,547 | 63 | 57.2 | 1.5 × 10−2 | 2 | 82.5 |
Redondovirus DNA Detection Using qPCR | |||
---|---|---|---|
Positive | Negative | ||
Entamoeba gingivalis DNA detection using qPCR | Positive | 12 | 1 |
Negative | 1 | 14 |
Primer/Probe Name | Sequence (5′-3′) | Targeted Gene and Coordinates (Nucleotides a) | PCR Product Size (Base Pairs) |
---|---|---|---|
Pan-Redondo-Cp-Fwd (forward primer) | TAATGATGCTCTTAATCARTATG | Capsid gene (1443–1465) | 53 |
Pan-HCRV-AA-Rev [7] (reverse primer) | CTCGAAATCTTCCTATACTGGTAT | Capsid gene (1518–1541) | |
Pan-HCRV-AA-Probe [7] (probe) | AAATGGAAGGGAGAGAGGCCTTTGG | Capsid gene (1492–1516) | |
Redondo-Cp-2F (forward primer) | CTAAGMGATATGCATCAAGAAAGAG | Capsid gene (5–29) | 162 |
Redondo-Cp-2R (reverse primer) | CTGGCAAAGGTGTTAAGAATAAAT | Capsid gene (191–214) | |
Redondo-Cp-2P (probe) | AAGAAGATTAGAAGGGCTAAAAGGCAATATAA | Capsid p gene (151–182) | |
E. gingivalis-F (forward primer) | GAATCAATGARAATATCTGATCTATC | 18S rRNA gene (115–140) | 145 |
E. gingivalis-R (reverse primer) | GGTAGTGACGACAAATAACTCTATT | 18S rRNA gene (285–309) | |
E. gingivalis-P (probe) | AATTAGGGTTTGACATCGGAGAAG | 18S rRNA gene (190–213) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makoa-Meng, M.; Semmar, R.; Antezack, A.; Penant, G.; La Scola, B.; Monnet-Corti, V.; Colson, P. Correlation of Redondovirus and Entamoeba gingivalis Detections in the Human Oral Cavity Suggests That This Amoeba Is Possibly the Redondovirus Host. Int. J. Mol. Sci. 2023, 24, 6303. https://doi.org/10.3390/ijms24076303
Makoa-Meng M, Semmar R, Antezack A, Penant G, La Scola B, Monnet-Corti V, Colson P. Correlation of Redondovirus and Entamoeba gingivalis Detections in the Human Oral Cavity Suggests That This Amoeba Is Possibly the Redondovirus Host. International Journal of Molecular Sciences. 2023; 24(7):6303. https://doi.org/10.3390/ijms24076303
Chicago/Turabian StyleMakoa-Meng, Marine, Rayan Semmar, Angéline Antezack, Gwilherm Penant, Bernard La Scola, Virginie Monnet-Corti, and Philippe Colson. 2023. "Correlation of Redondovirus and Entamoeba gingivalis Detections in the Human Oral Cavity Suggests That This Amoeba Is Possibly the Redondovirus Host" International Journal of Molecular Sciences 24, no. 7: 6303. https://doi.org/10.3390/ijms24076303
APA StyleMakoa-Meng, M., Semmar, R., Antezack, A., Penant, G., La Scola, B., Monnet-Corti, V., & Colson, P. (2023). Correlation of Redondovirus and Entamoeba gingivalis Detections in the Human Oral Cavity Suggests That This Amoeba Is Possibly the Redondovirus Host. International Journal of Molecular Sciences, 24(7), 6303. https://doi.org/10.3390/ijms24076303