Genetic Polymorphisms of ENPP2 Are Possibly Associated with Pain Severity and Opioid Dose Requirements in Patients with Inflammatory Pain Conditions: Clinical Observation Study
Abstract
:1. Introduction
2. Results
2.1. Experiment 1
2.2. Experiment 2
3. Discussion
Limitations
4. Materials and Methods
4.1. Experiment 1
4.1.1. Participants
4.1.2. Genotyping Method and Statistical Analysis
4.2. Experiment 2
4.2.1. Participants
4.2.2. Genotyping Method and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldberg, D.S.; McGee, S.J. Pain as a global public health priority. BMC Public Health 2011, 11, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantyselka, P.; Kumpusalo, E.; Ahonen, R.; Kumpusalo, A.; Kauhanen, J.; Viinamaki, H.; Halonen, P.; Takala, J. Pain as a reason to visit the doctor: A study in Finnish primary health care. Pain 2001, 89, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Yatomi, Y.; Kurano, M.; Ikeda, H.; Igarashi, K.; Kano, K.; Aoki, J. Lysophospholipids in laboratory medicine. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2018, 94, 373–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichholtz, T.; Jalink, K.; Fahrenfort, I.; Moolenaar, W.H. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem. J. 1993, 291, 677–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisca, F.; Sabbadini, R.A.; Goldshmit, Y.; Pebay, A. Biological effects of lysophosphatidic acid in the nervous system. Int. Rev. Cell Mol. Biol. 2012, 296, 273–322. [Google Scholar]
- Benesch, M.G.K.; Yang, Z.; Tang, X.; Meng, G.; Brindley, D.N. Lysophosphatidate signaling: The tumor microenvironments new nemesis. Trends Cancer 2017, 3, 748–752. [Google Scholar] [CrossRef]
- Meng, G.; Wuest, M.; Tang, X.; Dufour, J.; McMullen, T.P.W.; Wuest, F.; Murray, D.; Brindley, D.N. Dexamethasone Attenuates X-Ray-Induced Activation of the Autotaxin-Lysophosphatidate-Inflammatory Cycle in Breast Tissue and Subsequent Breast Fibrosis. Cancers 2020, 12, 999. [Google Scholar] [CrossRef] [Green Version]
- McDougall, J.J.; Albacete, S.; Schuelert, N.; Mitchell, P.G.; Lin, C.; Oskins, J.L.; Bui, H.H.; Chambers, M.G. Lysophosphatidic acid provides a missing link between osteoarthritis and joint neuropathic pain. Osteoarthr. Cartil. 2017, 25, 926–934. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Yaksh, T.L. A brief comparison of the pathophysiology and inflammatory versus neuropathic pain. Curr. Opin. Anaesthesiol. 2011, 24, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Tsuchida, R.; Tanabe, Y.; Nishizawa, D.; Ikeda, K.; Abe, H.; Inoue, R.; Kurano, M.; Yatomi, Y.; Tamura, K.; Takano, T.; et al. Genetic polymorphisms of lysophosphatidic acid receptor 1 are associated with the onset of taxane-induced peripheral neuropathy. Br. J. Anaesth. 2021, 127, e43–e46. [Google Scholar] [CrossRef]
- Hayakawa, K.; Kurano, M.; Ohya, J.; Oichi, T.; Kano, K.; Nishikawa, M.; Uranbileg, B.; Kuwajima, K.; Sumitani, M.; Tanaka, S.; et al. Lysophosphatidic acids and their substrate lysophospholipids in cerebrospinal fluid as objective biomarkers for evaluating the severity of lumbar spinal stenosis. Sci. Rep. 2019, 9, 9144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwajima, K.; Sumitani, M.; Kurano, K.; Kano, K.; Nishikawa, M.; Uranbileg, B.; Tsuchida, R.; Ogata, T.; Aoki, J.; Yatomi, Y.; et al. Lysophosphatidic acid is associated with neuropathic pain intensity in humans: An exploratory study. PLoS ONE 2018, 13, e0207310. [Google Scholar] [CrossRef]
- Edamura, T.; Sumitani, M.; Hayakawa, K.; Inoue, R.; Abe, H.; Tsuchida, R.; Chikuda, H.; Ogata, T.; Kurano, M.; Aoki, J.; et al. Different Profiles of the Triad of Lysophosphatidylcholine, Lysophosphatidic Acid, and Autotaxin in Patients with Neuropathic Pain Diseases: A Preliminary Observational Study. Pain Ther. 2022, 11, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Uranbileg, B.; Ito, N.; Kurano, M.; Kano, K.; Uchida, K.; Sumitani, M.; Aoki, J.; Yatomi, Y. Inhibition of autotaxin activity ameliorates neuropathic pain derived from lumbar spinal canal stenosis. Sci. Rep. 2021, 11, 3984. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, Y.; Shoda, H.; Nakano, M.; Ota, M.; Okamura, T.; Yamamoto, K.; Kurano, M.; Yatomi, Y.; Fujio, K.; Sawada, T. Autotaxin is a potential link between genetic risk factors and immunological disturbances of plasmacytoid dendritic cells in systematic lupus erythematosus. Lupus 2022, 31, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Yung, Y.C.; Stoddard, N.C.; Chun, J. LPA receptor signaling: Pharmacology, physiology, and pathophysiology. J. Lipid Res. 2014, 55, 1192–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosogaya, S.; Yatomi, Y.; Nakamura, K.; Ohkawa, R.; Okubo, S.; Yokota, H.; Ohta, M.; Yamazaki, H.; Koike, T.; Ozaki, Y. Measurement of plasma lysophosphatidic acid concentration in healthy subjects: Strong correlation with lysophospholipase D activity. Ann. Clin. Biochem. 2008, 45, 364–368. [Google Scholar] [CrossRef]
- van Meeteren, L.A.; Moolenaar, W.H. Regulation and biological activities of the autotaxin-LPA axis. Prog. Lipid Res. 2007, 46, 145–160. [Google Scholar] [CrossRef]
- Stracke, M.L.; Krutzsch, H.C.; Unsworth, E.J.; Arestad, A.; Cioce, V.; Schiffmann, E.; Liotta, L.A. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J. Biol. Chem. 1992, 267, 2524–2529. [Google Scholar] [CrossRef]
- Kurano, M.; Miyagaki, T.; Miyagawa, T.; Igarashi, K.; Shimamoto, S.; Ikeda, H.; Aoki, J.; Sato, S.; Yatomi, Y. Association between serum autotaxin or phosphatidylserine-specific phospholipase A1 levels and melanoma. J. Dermatol. 2018, 45, 571–579. [Google Scholar] [CrossRef]
- Mills, G.B.; Moolenaar, W.H. The emerging role of lysophophatidic acid in cancer. Nat. Rev. Cancer 2003, 3, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Ohkawa, R.; Okubo, S.; Yokota, H.; Ikeda, H.; Yatomi, Y.; Igarashi, K.; Ide, K.; Kishimoto, T.; Masuda, A.; et al. Autotaxin enzyme immunoassay in human cerebrospinal fluid samples. Clin. Chim. Acta 2009, 405, 160–162. [Google Scholar] [CrossRef]
- Morita, Y.; Kurano, M.; Sakai, E.; Nishikawa, M.; Sawabe, M.; Aoki, J.; Yatomi, Y. Evaluation of Lysophospholipid Measurement in Cerebrospinal Fluid Samples using Liquid Chromatography-Tandem Mass Spectrometry. Lipids 2019, 54, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, M.; Chew, W.S.; Hind, T.; Lim, S.M.; Hay, N.W.J.; Lee, J.H.M.; Rivera, R.; Chun, J.; Ong, W.; Herr, D.R. Lysophosphatidic acid and its receptor LPA1 mediate carrageenan induced inflammatory pain in mice. Eur. J. Pharmacol. 2018, 841, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Cholia, R.P.; Nayyar, H.; Kumar, R.; Mantha, A.K. Understanding the Multifaceted Role of Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) and its Altered Behaviour in Human Diseases. Curr. Mol. Med. 2015, 15, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Knowlden, S.; Georas, S.N. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J. Immunol. 2014, 192, 851–857. [Google Scholar] [CrossRef] [Green Version]
- Callaerts-Vegh, Z.; Leo, S.; Vermaercke, B.; Meert, T.; D’Hooge, R. LPA5 receptor plays a role in pain sensitivity, emotional exploration and reversal learning. Genes Brain Behav. 2012, 11, 1009–1119. [Google Scholar] [PubMed]
- Kremer, A.E.; van Dijk, R.; Leckie, P.; Schaap, F.G.; Kuiper, E.M.M.; Mettang, T.; Reiners, K.S.; Raap, U.; van Buuren, H.R.; van Erpecum, K.J.; et al. Serum autotaxin is increased in pruritus of cholestasis, but not of other origin, and responds to therapeutic interventions. Hepatology 2012, 56, 1391–1400. [Google Scholar] [CrossRef]
- Kremer, A.E.; Martens, J.J.W.W.; Kulik, W.; Rueff, F.; Kuiper, E.M.M.; van Buuren, H.R.; van Erpecum, K.J.; Kondrackiene, J.; Prieto, J.; Rust, C.; et al. Lysophosphatidic acid is a potential mediator of cholestatic pruritus. Gastroenterology 2010, 139, 1008–1018. [Google Scholar] [CrossRef] [Green Version]
- Ueda, H. Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog. Lipid Res. 2021, 81, 101079. [Google Scholar] [CrossRef]
- Bagley, E.E.; Ingram, S.L. Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 2020, 173, 108131. [Google Scholar] [CrossRef] [PubMed]
- Does, A.V.; Levy, C.; Yosipovitch, G. Cholestatic Itch: Our Current Understanding of Pathophysiology and Treatments. Am. J. Clin. Dermatol. 2022, 23, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Inan, S.; Cowan, A. Reduced kappa-opioid activity in a rat model of cholestasis. Eur. J. Pharmacol. 2005, 518, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Nishizawa, D.; Kasai, S.; Koukita, Y.; Fukuda, K.; Ichinohe, T.; Ikeda, K. Genome-wide association study identifies polymorphisms associated with the analgesic effect of fentanyl in the preoperative cold pressor-induced pain test. J. Pharmacol. Sci. 2018, 136, 107–113. [Google Scholar] [CrossRef]
- Inoue, R.; Nishizawa, D.; Hasegawa, J.; Nakayama, K.; Fukuda, K.; Ichinohe, T.; Mieda, T.; Tsujita, M.; Nakagawa, H.; Kitamura, A.; et al. Effects of rs958804 and rs7858836 single-nucleotide polymorphisms of the ASTN2 gene on pain-related phenotypes in patients who underwent laparoscopic colectomy and mandibular sagittal split ramus osteotomy. Neuropyschopharmacol. Rep. 2021, 41, 82–90. [Google Scholar] [CrossRef]
- Fukuda, K.; Hayashida, M.; Ide, S.; Saita, N.; Kokita, Y.; Kasai, S.; Nishizawa, D.; Ogai, Y.; Hasegawa, J.; Nagashima, M.; et al. Association between OPRM1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain 2009, 147, 194–201. [Google Scholar] [CrossRef]
- Nishizawa, D.; Fukuda, K.; Kasai, K.; Hasegawa, J.; Aoki, Y.; Nishi, A.; Saita, N.; Koukita, Y.; Nagashima, M.; Katoh, R.; et al. Genome-wide association study identifies a potent locus associated with human opioid sensitivity. Mol. Psychiatry 2014, 19, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Balding, D.J. A tutorial on statistical methods for population association studies. Nat. Rev. Genet. 2006, 7, 781–791. [Google Scholar] [CrossRef]
- Greenland, S.; Robins, J.M. Empirical-Bayes adjustments for multiple comparisons are sometimes useful. Epidemiology 1991, 2, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Rothman, K.J. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Sumitani, M.; Nishizawa, D.; Nagashima, M.; Ikeda, K.; Abe, H.; Kato, R.; Ueda, H.; Yamada, Y.; Japanese TR-Cancer Pain research group. Association Between Polymorphisms in the Purinergic P2Y12 Receptor Gene and Severity of Both Cancer Pain and Postoperative Pain. Pain Med. 2018, 19, 348–354. [Google Scholar] [CrossRef] [PubMed]
Major (n = 38) | Heterozygosity (n = 41) | Minor (n = 10) | p-Value | |||
---|---|---|---|---|---|---|
Recessive Model | Genotypic Model | |||||
rs7832704 | Cancer pain intensity | 5 [4–6] | 6 [5–8] | 8 [8–10] | 0.0049 * | <0.0001 * |
Total daily opioid doses (mcg/kg) | 0.364 [0.042–0.855] | 0.573 [0.286–1.500] | 0.308 [0.259–0.616] | 0.057 | 0.059 | |
rs2249015 | Cancer pain intensity | 5 [4–6] | 6 [5–8] | 6 [4.3–7.5] | 0.0041 * | N/A |
Total daily opioid doses (mcg/kg) | 0.349 [0.021–0.874] | 0.573 [0.300–1.500] | 0.279 [0.259–0.616] | 0.052 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchida, R.; Nishizawa, D.; Fukuda, K.-i.; Ichinohe, T.; Kano, K.; Kurano, M.; Ikeda, K.; Sumitani, M. Genetic Polymorphisms of ENPP2 Are Possibly Associated with Pain Severity and Opioid Dose Requirements in Patients with Inflammatory Pain Conditions: Clinical Observation Study. Int. J. Mol. Sci. 2023, 24, 6986. https://doi.org/10.3390/ijms24086986
Tsuchida R, Nishizawa D, Fukuda K-i, Ichinohe T, Kano K, Kurano M, Ikeda K, Sumitani M. Genetic Polymorphisms of ENPP2 Are Possibly Associated with Pain Severity and Opioid Dose Requirements in Patients with Inflammatory Pain Conditions: Clinical Observation Study. International Journal of Molecular Sciences. 2023; 24(8):6986. https://doi.org/10.3390/ijms24086986
Chicago/Turabian StyleTsuchida, Rikuhei, Daisuke Nishizawa, Ken-ichi Fukuda, Tatsuya Ichinohe, Kuniyuki Kano, Makoto Kurano, Kazutaka Ikeda, and Masahiko Sumitani. 2023. "Genetic Polymorphisms of ENPP2 Are Possibly Associated with Pain Severity and Opioid Dose Requirements in Patients with Inflammatory Pain Conditions: Clinical Observation Study" International Journal of Molecular Sciences 24, no. 8: 6986. https://doi.org/10.3390/ijms24086986
APA StyleTsuchida, R., Nishizawa, D., Fukuda, K. -i., Ichinohe, T., Kano, K., Kurano, M., Ikeda, K., & Sumitani, M. (2023). Genetic Polymorphisms of ENPP2 Are Possibly Associated with Pain Severity and Opioid Dose Requirements in Patients with Inflammatory Pain Conditions: Clinical Observation Study. International Journal of Molecular Sciences, 24(8), 6986. https://doi.org/10.3390/ijms24086986