Visual Evoked Potentials for the Detection of Diabetic Retinal Neuropathy
Abstract
:1. Introduction
2. Stimulus Conditions and Waveforms
2.1. Full-Field VEP
2.2. Multifocal VEP
3. Waveform Interpretation
4. Evaluation of Diabetic Retinopathy
5. Effects of DM and Abnormal Blood Glucose Levels on VEP Waveforms
5.1. Changes in Latency
5.2. Relationship between HbA1c, Disease Duration, and VEP Waveforms
5.3. Relationship between Short-Term Blood Glucose Level Fluctuations and VEP Waveforms
5.4. Relationship between Surgical Intervention and VEP Waveforms
5.5. Effect of Blood Glucose Levels in Newborns, Infants, and Children
5.6. Changes in Amplitude
5.7. Multifocal VEP
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wong, T.Y.; Sun, J.; Kawasaki, R.; Ruamviboonsuk, P.; Gupta, N.; Lansingh, V.C.; Maia, M.; Mathenge, W.; Moreker, S.; Muqit, M.M.K.; et al. Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. Ophthalmology 2018, 125, 1608–1622. [Google Scholar] [CrossRef]
- Tzekov, R.; Arden, G.B. The electroretinogram in diabetic retinopathy. Surv. Ophthalmol. 1999, 44, 53–60. [Google Scholar] [CrossRef]
- Bearse, M.A., Jr.; Adams, A.J.; Han, Y.; Schneck, M.E.; Ng, J.; Bronson-Castain, K.; Barez, S. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog. Retin. Eye Res. 2006, 25, 425–448. [Google Scholar] [CrossRef] [PubMed]
- Pescosolido, N.; Barbato, A.; Stefanucci, A.; Buomprisco, G. Role of Electrophysiology in the Early Diagnosis and Follow-Up of Diabetic Retinopathy. J. Diabetes Res. 2015, 2015, 319692. [Google Scholar] [CrossRef]
- McAnany, J.J.; Persidina, O.S.; Park, J.C. Clinical electroretinography in diabetic retinopathy: A review. Surv. Ophthalmol. 2022, 67, 712–722. [Google Scholar] [CrossRef]
- Tyrberg, M.; Ponjavic, V.; Lövestam-Adrian, M. Multifocal electroretinography (mfERG) in insulin dependent diabetics with and without clinically apparent retinopathy. Doc. Ophthalmol. Adv. Ophthalmol. 2005, 110, 137–143. [Google Scholar] [CrossRef]
- Kizawa, J.; Machida, S.; Kobayashi, T.; Gotoh, Y.; Kurosaka, D. Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy. Jpn. J. Ophthalmol. 2006, 50, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, R.Y.; Park, W.; Park, Y.G.; Kim, I.B.; Park, Y.H. Electroretinography and retinal microvascular changes in type 2 diabetes. Acta Ophthalmol. 2020, 98, e807–e813. [Google Scholar] [CrossRef] [PubMed]
- Kurtenbach, A.; Langrova, H.; Zrenner, E. Multifocal oscillatory potentials in type 1 diabetes without retinopathy. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3234–3241. [Google Scholar]
- Vadalà, M.; Anastasi, M.; Lodato, G.; Cillino, S. Electroretinographic oscillatory potentials in insulin-dependent diabetes patients: A long-term follow-up. Acta Ophthalmol. Scand. 2002, 80, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Onozu, H.; Yamamoto, S. Oscillatory potentials of multifocal electroretinogram retinopathy. Doc. Ophthalmol. Adv. Ophthalmol. 2003, 106, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Bearse, M.A., Jr.; Han, Y.; Schneck, M.E.; Barez, S.; Jacobsen, C.; Adams, A.J. Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3259–3265. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, M.; Huang, S.; Wu, D. The photopic negative response of flash ERG in nonproliferative diabetic retinopathy. Doc. Ophthalmol. Adv. Ophthalmol. 2008, 117, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Chau, F.Y.; Lim, J.I.; McAnany, J.J. Electrophysiological and pupillometric measures of inner retina function in nonproliferative diabetic retinopathy. Doc. Ophthalmol. Adv. Ophthalmol. 2019, 139, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Sieving, P.A. Primate photopic sine-wave flicker ERG: Vector modeling analysis of component origins using glutamate analogs. Investig. Ophthalmol. Vis. Sci. 2001, 42, 305–312. [Google Scholar]
- Fukuo, M.; Kondo, M.; Hirose, A.; Fukushima, H.; Ikesugi, K.; Sugimoto, M.; Kato, K.; Uchigata, Y.; Kitano, S. Screening for diabetic retinopathy using new mydriasis-free, full-field flicker ERG recording device. Sci. Rep. 2016, 6, 36591. [Google Scholar] [CrossRef]
- Maa, A.Y.; Feuer, W.J.; Davis, C.Q.; Pillow, E.K.; Brown, T.D.; Caywood, R.M.; Chasan, J.E.; Fransen, S.R. A novel device for accurate and efficient testing for vision-threatening diabetic retinopathy. J. Diabetes Complicat. 2016, 30, 524–532. [Google Scholar] [CrossRef]
- Zeng, Y.; Cao, D.; Yang, D.; Zhuang, X.; Yu, H.; Hu, Y.; Zhang, Y.; Yang, C.; He, M.; Zhang, L. Screening for diabetic retinopathy in diabetic patients with a mydriasis-free, full-field flicker electroretinogram recording device. Doc. Ophthalmol. Adv. Ophthalmol. 2020, 140, 211–220. [Google Scholar] [CrossRef]
- Ye, H.; Yu, M.; Lu, L.; Jin, C.; Luo, G. Electroretinogram evaluation for the treatment of proliferative diabetic retinopathy by short-pulse pattern scanning laser panretinal photocoagulation. Lasers Med. Sci. 2018, 33, 1095–1102. [Google Scholar] [CrossRef]
- Greenstein, V.C.; Holopigian, K.; Hood, D.C.; Seiple, W.; Carr, R.E. The nature and extent of retinal dysfunction associated with diabetic macular edema. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3643–3654. [Google Scholar]
- Han, Y.; Bearse, M.A., Jr.; Schneck, M.E.; Barez, S.; Jacobsen, C.H.; Adams, A.J. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2004, 45, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Odom, J.V.; Bach, M.; Brigell, M.; Holder, G.E.; McCulloch, D.L.; Mizota, A.; Tormene, A.P. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc. Ophthalmol. Adv. Ophthalmol. 2016, 133, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Skuse, N.F.; Burke, D.; McKeon, B. Reproducibility of the visual evoked potential using a light-emitting diode stimulator. J. Neurol. Neurosurg. Psychiatry 1984, 47, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Sarnthein, J.; Andersson, M.; Zimmermann, M.B.; Zumsteg, D. High test-retest reliability of checkerboard reversal visual evoked potentials (VEP) over 8 months. Clin. Neurophysiol. 2009, 120, 1835–1840. [Google Scholar] [CrossRef] [PubMed]
- Mellow, T.B.; Liasis, A.; Lyons, R.; Thompson, D.A. The reproducibility of binocular pattern reversal visual evoked potentials: A single subject design. Doc. Ophthalmol. Adv. Ophthalmol. 2011, 122, 133–139. [Google Scholar] [CrossRef]
- Andersson, L.; Sjölund, J.; Nilsson, J. Flash visual evoked potentials are unreliable as markers of ICP due to high variability in normal subjects. Acta Neurochir. 2012, 154, 121–127. [Google Scholar] [CrossRef]
- Porciatti, V.; Sartucci, F. Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 1996, 119 Pt 3, 723–740. [Google Scholar] [CrossRef] [PubMed]
- Sartucci, F.; Murri, L.; Orsini, C.; Porciatti, V. Equiluminant red-green and blue-yellow VEPs in multiple sclerosis. J. Clin. Neurophysiol. 2001, 18, 583–591. [Google Scholar] [CrossRef]
- Tekavčič Pompe, M.; Perovšek, D.; Šuštar, M. Chromatic visual evoked potentials indicate early dysfunction of color processing in young patients with demyelinating disease. Doc. Ophthalmol. Adv. Ophthalmol. 2020, 141, 157–168. [Google Scholar] [CrossRef]
- Majander, A.; Robson, A.G.; João, C.; Holder, G.E.; Chinnery, P.F.; Moore, A.T.; Votruba, M.; Stockman, A.; Yu-Wai-Man, P. The pattern of retinal ganglion cell dysfunction in Leber hereditary optic neuropathy. Mitochondrion 2017, 36, 138–149. [Google Scholar] [CrossRef]
- Fuest, M.; Kieckhoefel, J.; Mazinani, B.; Kuerten, D.; Koutsonas, A.; Koch, E.; Walter, P.; Plange, N. Blue-yellow and standard pattern visual evoked potentials in phakic and pseudophakic glaucoma patients and controls. Graefe’s Arch. Clin. Exp. Ophthalmol. Albrecht Von. Graefes Arch. Fur Klin. Und Exp. Ophthalmol. 2015, 253, 2255–2261. [Google Scholar] [CrossRef] [PubMed]
- Sartucci, F.; Porciatti, V. Visual-evoked potentials to onset of chromatic red-green and blue-yellow gratings in Parkinson’s disease never treated with L-dopa. J. Clin. Neurophysiol. 2006, 23, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Risuenho, B.B.; Miquilini, L.; Lacerda, E.M.; Silveira, L.C.; Souza, G.S. Cortical responses elicited by luminance and compound stimuli modulated by pseudo-random sequences: Comparison between normal trichromats and congenital red-green color blinds. Front. Psychol. 2015, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Daniel, P.M.; Whitteridge, D. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 1961, 159, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Yiannikas, C.; Walsh, J.C. The variation of the pattern shift visual evoked response with the size of the stimulus field. Electroencephalogr. Clin. Neurophysiol. 1983, 55, 427–435. [Google Scholar] [CrossRef]
- Harter, M.R. Evoked cortical responses to checkerboard patterns: Effect of check-size as a function of retinal eccentricity. Vis. Res. 1970, 10, 1365–1376. [Google Scholar] [CrossRef]
- Baseler, H.A.; Sutter, E.E.; Klein, S.A.; Carney, T. The topography of visual evoked response properties across the visual field. Electroencephalogr. Clin. Neurophysiol. 1994, 90, 65–81. [Google Scholar] [CrossRef]
- Klistorner, A.; Graham, S.L. Objective perimetry in glaucoma. Ophthalmology 2000, 107, 2283–2299. [Google Scholar] [CrossRef]
- Klistorner, A.; Graham, S.L.; Martins, A.; Grigg, J.R.; Arvind, H.; Kumar, R.S.; James, A.C.; Billson, F.A. Multifocal blue-on-yellow visual evoked potentials in early glaucoma. Ophthalmology 2007, 114, 1613–1621. [Google Scholar] [CrossRef]
- Klistorner, A.; Graham, S.; Fraser, C.; Garrick, R.; Nguyen, T.; Paine, M.; O’Day, J.; Grigg, J.; Arvind, H.; Billson, F.A. Electrophysiological evidence for heterogeneity of lesions in optic neuritis. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4549–4556. [Google Scholar] [CrossRef]
- Wangsupadilok, B.; Greenstein, V.C.; Kanadani, F.N.; Grippo, T.M.; Liebmann, J.M.; Ritch, R.; Hood, D.C. A method to detect progression of glaucoma using the multifocal visual evoked potential technique. Doc. Ophthalmol. Adv. Ophthalmol. 2009, 118, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Hood, D.C.; Greenstein, V.C.; Odel, J.G.; Zhang, X.; Ritch, R.; Liebmann, J.M.; Hong, J.E.; Chen, C.S.; Thienprasiddhi, P. Visual field defects and multifocal visual evoked potentials: Evidence of a linear relationship. Arch. Ophthalmol. 2002, 120, 1672–1681. [Google Scholar] [CrossRef] [PubMed]
- Rodarte, C.; Hood, D.C.; Yang, E.B.; Grippo, T.; Greenstein, V.C.; Liebmann, J.M.; Ritch, R. The effects of glaucoma on the latency of the multifocal visual evoked potential. Br. J. Ophthalmol. 2006, 90, 1132–1136. [Google Scholar] [CrossRef]
- Grippo, T.M.; Hood, D.C.; Kanadani, F.N.; Ezon, I.; Greenstein, V.C.; Liebmann, J.M.; Ritch, R. A comparison between multifocal and conventional VEP latency changes secondary to glaucomatous damage. Investig. Ophthalmol. Vis. Sci. 2006, 47, 5331–5336. [Google Scholar] [CrossRef] [PubMed]
- Hood, D.C.; Chen, J.Y.; Yang, E.B.; Rodarte, C.; Wenick, A.S.; Grippo, T.M.; Odel, J.G.; Ritch, R. The role of the multifocal visual evoked potential (mfVEP) latency in understanding optic nerve and retinal diseases. Trans. Am. Ophthalmol. Soc. 2006, 104, 71–77. [Google Scholar]
- Goldberg, I.; Graham, S.L.; Klistorner, A.I. Multifocal objective perimetry in the detection of glaucomatous field loss. Am. J. Ophthalmol. 2002, 133, 29–39. [Google Scholar] [CrossRef]
- Chen, C.S.; Hood, D.C.; Zhang, X.; Karam, E.Z.; Liebmann, J.M.; Ritch, R.; Thienprasiddhi, P.; Greenstein, V.C. Repeat reliability of the multifocal visual evoked potential in normal and glaucomatous eyes. J. Glaucoma 2003, 12, 399–408. [Google Scholar] [CrossRef]
- Frederiksen, J.L.; Petrera, J. Serial visual evoked potentials in 90 untreated patients with acute optic neuritis. Surv. Ophthalmol. 1999, 44 (Suppl. S1), S54–S62. [Google Scholar] [CrossRef]
- Hood, D.C.; Greenstein, V.C. Multifocal VEP and ganglion cell damage: Applications and limitations for the study of glaucoma. Prog. Retin. Eye Res. 2003, 22, 201–251. [Google Scholar] [CrossRef]
- Creutzfeldt, O.; Maekawa, K.; Hösli, L. Forms of spontaneous and evoked postsynaptic potentials of cortical nerve cells. Prog. Brain Res. 1969, 31, 265–273. [Google Scholar] [CrossRef]
- Jones, S.J.; Brusa, A. Neurophysiological evidence for long-term repair of MS lesions: Implications for axon protection. J. Neurol. Sci. 2003, 206, 193–198. [Google Scholar] [CrossRef] [PubMed]
- van der Walt, A.; Kolbe, S.; Mitchell, P.; Wang, Y.; Butzkueven, H.; Egan, G.; Yiannikas, C.; Graham, S.; Kilpatrick, T.; Klistorner, A. Parallel changes in structural and functional measures of optic nerve myelination after optic neuritis. PLoS ONE 2015, 10, e0121084. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Klistorner, A.; Thie, J.; Graham, S.L. Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6911–6918. [Google Scholar] [CrossRef] [PubMed]
- Alshowaeir, D.; Yiannikas, C.; Garrick, R.; Parratt, J.; Barnett, M.H.; Graham, S.L.; Klistorner, A. Latency of multifocal visual evoked potentials in nonoptic neuritis eyes of multiple sclerosis patients associated with optic radiation lesions. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3758–3764. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G.; Anastassiou, C.A.; Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012, 13, 407–420. [Google Scholar] [CrossRef]
- Resnikoff, S.; Pascolini, D.; Etya’ale, D.; Kocur, I.; Pararajasegaram, R.; Pokharel, G.P.; Mariotti, S.P. Global data on visual impairment in the year 2002. Bull. World Health Organ. 2004, 82, 844–851. [Google Scholar]
- Frank, R.N. Diabetic retinopathy: Current concepts of evaluation and treatment. Clin. Endocrinol. Metab. 1986, 15, 933–969. [Google Scholar] [CrossRef]
- Sousa, D.C.; Leal, I.; Moreira, S.; do Vale, S.; Silva-Herdade, A.R.; Dionísio, P.; Castanho, M.; Abegão Pinto, L.; Marques-Neves, C. Optical coherence tomography angiography study of the retinal vascular plexuses in type 1 diabetes without retinopathy. Eye 2020, 34, 307–311. [Google Scholar] [CrossRef]
- Sacconi, R.; Casaluci, M.; Borrelli, E.; Mulinacci, G.; Lamanna, F.; Gelormini, F.; Carnevali, A.; Querques, L.; Zerbini, G.; Bandello, F.; et al. Multimodal Imaging Assessment of Vascular and Neurodegenerative Retinal Alterations in Type 1 Diabetic Patients without Fundoscopic Signs of Diabetic Retinopathy. J. Clin. Med. 2019, 8, 1409. [Google Scholar] [CrossRef]
- Nittala, M.G.; Gella, L.; Raman, R.; Sharma, T. Measuring retinal sensitivity with the microperimeter in patients with diabetes. Retina 2012, 32, 1302–1309. [Google Scholar] [CrossRef]
- Neriyanuri, S.; Pardhan, S.; Gella, L.; Pal, S.S.; Ganesan, S.; Sharma, T.; Raman, R. Retinal sensitivity changes associated with diabetic neuropathy in the absence of diabetic retinopathy. Br. J. Ophthalmol. 2017, 101, 1174–1178. [Google Scholar] [CrossRef] [PubMed]
- Bitirgen, G.; Ozkagnici, A.; Malik, R.A.; Kerimoglu, H. Corneal nerve fibre damage precedes diabetic retinopathy in patients with type 2 diabetes mellitus. Diabet. Med. 2014, 31, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, I.N.; Green, P.; Chan, A.W.; Alam, U.; Fadavi, H.; Marshall, A.; Asghar, O.; Efron, N.; Tavakoli, M.; Malik, R.A. Corneal confocal microscopy detects neuropathy in patients with type 1 diabetes without retinopathy or microalbuminuria. PLoS ONE 2015, 10, e0123517. [Google Scholar] [CrossRef] [PubMed]
- Szalai, E.; Deák, E.; Módis, L., Jr.; Németh, G.; Berta, A.; Nagy, A.; Felszeghy, E.; Káposzta, R.; Malik, R.A.; Csutak, A. Early Corneal Cellular and Nerve Fiber Pathology in Young Patients With Type 1 Diabetes Mellitus Identified Using Corneal Confocal Microscopy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 853–858. [Google Scholar] [CrossRef]
- Kirthi, V.; Reed, K.I.; Alattar, K.; Zuckerman, B.P.; Bunce, C.; Nderitu, P.; Alam, U.; Clarke, B.; Hau, S.; Al-Shibani, F.; et al. Multimodal testing reveals subclinical neurovascular dysfunction in prediabetes, challenging the diagnostic threshold of diabetes. Diabet. Med. 2023, 40, e14952. [Google Scholar] [CrossRef]
- Yaltkaya, K.; Balkan, S.; Baysal, A.I. Visual evoked potentials in diabetes mellitus. Acta Neurol. Scand. 1988, 77, 239–241. [Google Scholar] [CrossRef]
- Comi, G.; Martinelli, V.; Galardi, G.; Medaglini, S.; Poggi, A.; Beccaria, L.; Meschi, F.; D’Arcais, A.F. Visual evoked potentials in diabetic teen-agers: Influence of metabolic control and relationship with peripheral neuropathy. Metab. Pediatr. Syst. Ophthalmol. (1985) 1986, 9, 85–87. [Google Scholar]
- Moreo, G.; Mariani, E.; Pizzamiglio, G.; Colucci, G.B. Visual evoked potentials in NIDDM: A longitudinal study. Diabetologia 1995, 38, 573–576. [Google Scholar] [CrossRef]
- Trick, G.L.; Burde, R.M.; Gordon, M.O.; Kilo, C.; Santiago, J.V. Retinocortical conduction time in diabetics with abnormal pattern reversal electroretinograms and visual evoked potentials. Doc. Ophthalmol. Adv. Ophthalmol. 1988, 70, 19–28. [Google Scholar] [CrossRef]
- Uccioli, L.; Parisi, V.; Monticone, G.; Parisi, L.; Durola, L.; Pernini, C.; Neuschuler, R.; Bucci, M.G.; Menzinger, G. Electrophysiological assessment of visual function in newly-diagnosed IDDM patients. Diabetologia 1995, 38, 804–808. [Google Scholar] [CrossRef]
- Parisi, V.; Uccioli, L.; Monticone, G.; Parisi, L.; Manni, G.; Ippoliti, D.; Menzinger, G.; Bucci, M.G. Electrophysiological assessment of visual function in IDDM patients. Electroencephalogr. Clin. Neurophysiol. 1997, 104, 171–179. [Google Scholar] [CrossRef]
- Shrivastava, S.K.; Verma, V.; Tonpay, P.; Shiralkar, M.; Shrivastava, N. Visual evoked potentials in type-1 diabetes without retinopathy: Co-relations with duration of diabetes. J. Evol. Med. Dent. Sci. 2014, 3, 1065–1070. [Google Scholar]
- Parisi, V.; Uccioli, L.; Parisi, L.; Colacino, G.; Manni, G.; Menzinger, G.; Bucci, M.G. Neural conduction in visual pathways in newly-diagnosed IDDM patients. Electroencephalogr. Clin. Neurophysiol. 1998, 108, 490–496. [Google Scholar] [CrossRef]
- Karlica, D.; Galetović, D.; Ivanisević, M.; Skrabić, V.; Znaor, L.; Jurisić, D. Visual evoked potential can be used to detect a prediabetic form of diabetic retinopathy in patients with diabetes mellitus type I. Coll. Antropol. 2010, 34, 525–529. [Google Scholar] [PubMed]
- Raman, P.; Sodani, A.; George, B. A study of visual evoked potential changes in diabetes mellitus. Int. J. Diabetes Dev. Ctries. 1997, 17, 69–73. [Google Scholar]
- Dolu, H.; Ulas, U.H.; Bolu, E.; Ozkardes, A.; Odabasi, Z.; Ozata, M.; Vural, O. Evaluation of central neuropathy in type II diabetes mellitus by multimodal evoked potentials. Acta Neurol. Belg. 2003, 103, 206–211. [Google Scholar] [PubMed]
- Anastasi, M.; Lauricella, M.; Giordano, C.; Galluzzo, A. Visual evoked potentials in insulin-dependent diabetics. Acta Diabetol. Lat. 1985, 22, 343–349. [Google Scholar] [CrossRef]
- Kamino, D.; Almazrooei, A.; Pang, E.W.; Widjaja, E.; Moore, A.M.; Chau, V.; Tam, E.W.Y. Abnormalities in evoked potentials associated with abnormal glycemia and brain injury in neonatal hypoxic-ischemic encephalopathy. Clin. Neurophysiol. 2021, 132, 307–313. [Google Scholar] [CrossRef]
- Corduneanu, A.; Chişca, V.; Ciobanu, N.; Groppa, S. Evaluation of visual pathways using visual evoked potential in patients with diabetic retinopathy. Rom. J. Ophthalmol. 2019, 63, 367–371. [Google Scholar] [CrossRef]
- Daniel, R.; Ayyavoo, S.; Dass, B. Study of visual evoked potentials in patients with type 2 diabetes mellitus and diabetic retinopathy. Natl. J. Physiol. Pharm. Pharmacol. 2017, 7, 159. [Google Scholar] [CrossRef]
- Gowri, G. Pattern Visual Evoked Potentials as a tool to assess the prognosis in Type 2 Diabetes Mellitus subjects attending a tertiary care hospital. Univ. J. Pre Paraclin. Sci. 2017, 3. [Google Scholar]
- Heravian, J.; Ehyaei, A.; Shoeibi, N.; Azimi, A.; Ostadi-Moghaddam, H.; Yekta, A.A.; Khoshsima, M.J.; Esmaily, H. Pattern Visual Evoked Potentials in Patients with Type II Diabetes Mellitus. J. Ophthalmic Vis. Res. 2012, 7, 225–230. [Google Scholar] [PubMed]
- Cirillo, D.; Gonfiantini, E.; De Grandis, D.; Bongiovanni, L.; Robert, J.J.; Pinelli, L. Visual evoked potentials in diabetic children and adolescents. Diabetes Care 1984, 7, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Verrotti, A.; Lobefalo, L.; Trotta, D.; Della Loggia, G.; Chiarelli, F.; Luigi, C.; Morgese, G.; Gallenga, P. Visual evoked potentials in young persons with newly diagnosed diabetes: A long-term follow-up. Dev. Med. Child. Neurol. 2000, 42, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Algan, M.; Ziegler, O.; Gehin, P.; Got, I.; Raspiller, A.; Weber, M.; Genton, P.; Saudax, E.; Drouin, P. Visual evoked potentials in diabetic patients. Diabetes Care 1989, 12, 227–229. [Google Scholar] [CrossRef]
- Pozzessere, G.; Rizzo, P.A.; Valle, E.; Mollica, M.A.; Meccia, A.; Morano, S.; Di Mario, U.; Andreani, D.; Morocutti, C. Early detection of neurological involvement in IDDM and NIDDM. Multimodal evoked potentials versus metabolic control. Diabetes Care 1988, 11, 473–480. [Google Scholar] [CrossRef]
- Konnakkodan, S.M.; Stephen, V.T.; Palpoo, R. Loss of visual function in diabetes mellitus. J. Clin. Ophthalmol. Res. 2021, 9, 99. [Google Scholar] [CrossRef]
- Khatoon, F.; Bahmed, F.; Khatoon, N.; Khatoon, F. Visual evoked potential as an early marker of diabetic retinopathy. Indian. J. Clin. Anat. Physiol. 2016, 3, 200–204. [Google Scholar] [CrossRef]
- Adrian, M.L.; Gränse, L.; Andersson, G.; Andreasson, S. Patients with diabetic retinopathy and neuropathy showed lower amplitudes on the multifocal VEP than diabetic patients with the same level of retinopathy but no neuropathy. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5010. [Google Scholar]
- Wolff, B.E.; Bearse, M.A., Jr.; Schneck, M.E.; Barez, S.; Adams, A.J. Multifocal VEP (mfVEP) reveals abnormal neuronal delays in diabetes. Doc. Ophthalmol. Adv. Ophthalmol. 2010, 121, 189–196. [Google Scholar] [CrossRef]
- Lövestam-Adrian, M.; Gränse, L.; Andersson, G.; Andreasson, S. Multifocal Visual Evoked Potentials (mfVEP) in Diabetic Patients with and without Polyneuropathy. Open. Ophthalmol. J. 2012, 6, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Han, H.S.; Kim, H. Visual-evoked potentials in children and adolescents with newly diagnosed diabetes. Turk. Pediatri Ars. 2017, 52, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Mariani, E.; Moreo, G.; Colucci, G.B. Study of visual evoked potentials in diabetics without retinopathy: Correlations with clinical findings and polyneuropathy. Acta Neurol. Scand. 1990, 81, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Puvanendran, K.; Devathasan, G.; Wong, P.K. Visual evoked responses in diabetes. J. Neurol. Neurosurg. Psychiatry 1983, 46, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gupta, G.; Deshpande, V. Visual evoked potential changes in patients with diabetes mellitus without retinopathy. Int. J. Res. Med. Sci. 2015, 3, 3591–3598. [Google Scholar] [CrossRef]
- Guha, G.; Das, A. A Study of Visual Evoked Potential for Functional Assessment of Visual Pathway in Ophthalmologically Normal Diabetes Mellitus Patients. Int. J. Sci. Res. Dent. Med. Sci. 2021, 3, 133–140. [Google Scholar]
- Ziegler, O.; Guerci, B.; Algan, M.; Lonchamp, P.; Weber, M.; Drouin, P. Improved visual evoked potential latencies in poorly controlled diabetic patients after short-term strict metabolic control. Diabetes Care 1994, 17, 1141–1147. [Google Scholar] [CrossRef]
- Boschi, M.C.; Frosini, R.; Mencucci, R.; Sodi, A. The influence of early diabetes on the pattern electroretinogram. Doc. Ophthalmol. Adv. Ophthalmol. 1989, 71, 369–374. [Google Scholar] [CrossRef]
- Fierro, B.; Brighina, F.; Cardella, F.; Oliveri, M.; La Bua, V.; Caravaglios, G.; Buffa, D.; Aloisio, A.; Daniele, O. Multievoked potentials in type I diabetic patients: One year follow-up study. Electromyogr. Clin. Neurophysiol. 1999, 39, 337–344. [Google Scholar]
- Hari Kumar, K.V.; Ahmad, F.M.; Sood, S.; Mansingh, S. Visual Evoked Potential to Assess Retinopathy in Gestational Diabetes Mellitus. Can. J. Diabetes 2016, 40, 131–134. [Google Scholar] [CrossRef]
- Gregori, B.; Galié, E.; Pro, S.; Clementi, A.; Accornero, N. Luminance and chromatic visual evoked potentials in type I and type II diabetes: Relationships with peripheral neuropathy. Neurol. Sci. 2006, 27, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Fierro, B.; Meli, F.; Brighina, F.; Cardella, F.; Aloisio, A.; Oliveri, M.; Buffa, D. Somatosensory and visual evoked potentials study in young insulin-dependent diabetic patients. Electroencephalogr. Clin. Neurophysiol. 1996, 36, 481–486. [Google Scholar]
- Matanovic, D.; Popovic, S.; Parapid, B.; Petronic, I.; Cirovic, D.; Nikolic, D. Influence of the metabolic control on latency values of visual evoked potentials (VEP) in patients with diabetes mellitus type 1. Arch. Ital. Biol. 2012, 150, 251–258. [Google Scholar] [PubMed]
- Ozkaya, Y.G.; Ağar, A.; Hacioğlu, G.; Yargiçoğlu, P. Exercise improves visual deficits tested by visual evoked potentials in streptozotocin-induced diabetic rats. Tohoku J. Exp. Med. 2007, 213, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Schneck, M.E.; Fortune, B.; Switkes, E.; Crognale, M.; Adams, A.J. Acute effects of blood glucose on chromatic visually evoked potentials in persons with diabetes and in normal persons. Investig. Ophthalmol. Vis. Sci. 1997, 38, 800–810. [Google Scholar]
- Martinelli, V.; Piatti, P.M.; Filippi, M.; Pacchioni, M.; Pastore, M.R.; Canal, N.; Comi, G. Effects of hyperglycaemia on visual evoked potentials in insulin-dependent diabetic patients. Acta Diabetol. 1992, 29, 34–37. [Google Scholar] [CrossRef]
- Harrad, R.A.; Cockram, C.S.; Plumb, A.P.; Stone, S.; Fenwick, P.; Sönksen, P.H. The effect of hypoglycaemia on visual function: A clinical and electrophysiological study. Clin. Sci. 1985, 69, 673–679. [Google Scholar] [CrossRef]
- Kern, W.; Schlosser, C.; Kerner, W.; Pietrowsky, R.; Born, J.; Fehm, H.L. Evidence for effects of insulin on sensory processing in humans. Diabetes 1994, 43, 351–356. [Google Scholar] [CrossRef]
- Kubová, Z.; Chlubnová, J.; Szanyi, J.; Kuba, M.; Kremlácek, J. Influence of physiological changes of glycaemia on VEPs and visual ERPs. Physiol. Res. 2005, 54, 245–250. [Google Scholar] [CrossRef]
- Wysocka-Mincewicz, M.; Trippenbach-Dulska, H.; Emeryk-Szajewska, B.; Zakrzewska-Pniewska, B.; Kochanek, K.; Pańkowska, E. Impact of hypoglycemic episodes on nerves conduction and auditory and visual evoked potentials in children with type 1 diabetes. Pediatr. Endocrinol. Diabetes Metab. 2007, 13, 17–22. [Google Scholar]
- Pozzessere, G.; Valle, E.; D’Alessio, C.; Soldati, G.; Pierelli, F.; Leonetti, F.; Foniciello, M.; Tamburrano, G. Effects of spontaneous chronic hypoglycemia on central and peripheral nervous system in insulinoma patients before and after surgery: A neurophysiological follow-up. J. Clin. Endocrinol. Metab. 1997, 82, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, R.; Al-Belushi, H.; Al-Ajmi, S.; Al-Nabhani, S.M.; Ganguly, S.S.; Bialasiewicz, A.A. Visually evoked potentials after panretinal photocoagulation in omani patients with uncontrolled diabetes mellitus. Middle East. Afr. J. Ophthalmol. 2008, 15, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Kroll, P.; Wiegand, W.; Schmidt, J. Vitreopapillary traction in proliferative diabetic vitreoretinopathy [ssee comments]. Br. J. Ophthalmol. 1999, 83, 261–264. [Google Scholar] [CrossRef]
- Scherfig, E.; Edmund, J.; Tinning, S.; Trojaborg, W. Flash visual evoked potential as a prognostic factor for vitreous operations in diabetic eyes. Ophthalmology 1984, 91, 1475–1479. [Google Scholar] [CrossRef]
- Weinstein, P.; Brooser, G. Flicker perimetry in glaucoma. Am. J. Ophthalmol. 1962, 53, 373–375. [Google Scholar] [CrossRef]
- Foerster, M.H.; Kellner, U.; Beyer, A.; Grzegowski, E.; Theischen, M. Variation of temporal stimulus characteristics to evaluate visual function prior to pars plana vitrectomy. Ger. J. Ophthalmol. 1993, 2, 87–91. [Google Scholar] [PubMed]
- Vadrevu, V.L.; Cavender, S.; Odom, J.V. Use of 10-Hz flash visual evoked potentials in prediction of final visual acuity in diabetic eyes with vitreous hemorrhage. Doc. Ophthalmol. Adv. Ophthalmol. 1992, 79, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Brinciotti, M.; Napoli, A.; Mittica, A.; Bitterman, O.; Matricardi, M. Cortical evoked potentials in children of diabetic mothers. Exp. Diabetes Res. 2011, 2011, 640535. [Google Scholar] [CrossRef]
- Shuffrey, L.C.; Rodriguez, C.; Rodriguez, D.J.; Mahallati, H.; Jayaswal, M.; Barbosa, J.R.; Syme, S.; Gimenez, L.A.; Pini, N.; Lucchini, M.; et al. Delayed maturation of P2 flash visual evoked potential (VEP) latency in newborns of gestational diabetic mothers. Early Hum. Dev. 2021, 163, 105503. [Google Scholar] [CrossRef]
- Achuthan, A.; Ramesh, J. Pattern visual evoked potential in non diabetic offspring’s of type II diabetes. J. Med. Res. 2015, 1, 83–86. [Google Scholar] [CrossRef]
- Uzun, N.; Uluduz, D.; Mikla, S.; Aydin, A. Evaluation of asymptomatic central neuropathy in type I diabetes mellitus. Electromyogr. Clin. Neurophysiol. 2006, 46, 131–137. [Google Scholar] [PubMed]
- Brinciotti, M.; Matricardi, M.; Colatrella, A.; Torcia, F.; Fallucca, F.; Napoli, A. Visual evoked potentials in infants of diabetic mothers: Relations to clinical and metabolic status during pregnancy and delivery. Clin. Neurophysiol. 2009, 120, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Lopes de Faria, J.M.; Katsumi, O.; Cagliero, E.; Nathan, D.; Hirose, T. Neurovisual abnormalities preceding the retinopathy in patients with long-term type 1 diabetes mellitus. Graefe’s Arch. Clin. Exp. Ophthalmol. Albrecht Von. Graefes Arch. Fur Klin. Und Exp. Ophthalmol. 2001, 239, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Kuba, M.; Kremláček, J.; Vít, F.; Kubová, Z.; Langrová, J.; Szanyi, J.; Chutná, M. VEP examination with new portable device. Doc. Ophthalmol. Adv. Ophthalmol. 2023, 146, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Versek, C.; Banijamali, S.M.A.; Bex, P.; Lashkari, K.; Kamarthi, S.; Sridhar, S. Portable Diagnostic System for Age-Related Macular Degeneration Screening Using Visual Evoked Potentials. Eye Brain 2021, 13, 111–127. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, G. Visual Evoked Potentials for the Detection of Diabetic Retinal Neuropathy. Int. J. Mol. Sci. 2023, 24, 7361. https://doi.org/10.3390/ijms24087361
Miura G. Visual Evoked Potentials for the Detection of Diabetic Retinal Neuropathy. International Journal of Molecular Sciences. 2023; 24(8):7361. https://doi.org/10.3390/ijms24087361
Chicago/Turabian StyleMiura, Gen. 2023. "Visual Evoked Potentials for the Detection of Diabetic Retinal Neuropathy" International Journal of Molecular Sciences 24, no. 8: 7361. https://doi.org/10.3390/ijms24087361
APA StyleMiura, G. (2023). Visual Evoked Potentials for the Detection of Diabetic Retinal Neuropathy. International Journal of Molecular Sciences, 24(8), 7361. https://doi.org/10.3390/ijms24087361