Preparation and Properties of (Sc2O3-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Diameter Analysis
2.2. EDS Spectrum
2.3. XRD
2.4. ATR Spectra Analysis
2.5. Thermal Analysis of Nanofibers
2.6. XPS Analysis of Nanofibers
2.7. Antibacterial Activity of Nanofibers
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Nano-Textured Sc2O3-MgO
3.3. Fabrication of Nanofiber Membranes
3.3.1. Spinning Solutions
3.3.2. Electrospinning Process
3.4. Characterizations
3.5. Antibacterial Property Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simões, D.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P.; Mendonça, A.G.; Correia, I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018, 127, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.; Gallus, I.; Tegginamath, A.; Maryska, J.; Yalcinkaya, F. Electrospun Antibacterial Nanomaterials for Wound Dressings Applications. Membranes 2021, 11, 908. [Google Scholar] [CrossRef] [PubMed]
- Abrigo, M.; McArthur, S.L.; Kingshott, P. Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, and Future Prospects. Macromol. Biosci. 2014, 14, 772–792. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, N.; Zhao, Y.; Jiang, L. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A 2013, 25, 7290–7305. [Google Scholar] [CrossRef]
- Peng, S.; Jin, G.; Li, L.L.; Li, K.; Srinivasan, M.; Ramakrishna, S.; Chen, J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 2016, 45, 1225–1241. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y.N. Electrospinning of nanofibers: Reinventing the wheel. Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Rahmati, M.; Mills, D.K.; Urbanska, A.M.; Saeb, M.R.; Venugopal, J.R.; Ramakrishna, S.; Mozafari, M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021, 117, 100721. [Google Scholar] [CrossRef]
- Yousefzadeh, M.; Ghasemkhah, F. Design of porous, core-shell, and hollow nanofibers. In Handbook of Nanofibers; Springer: Cham, Switzerland, 2019; pp. 157–214. [Google Scholar] [CrossRef]
- Nadaf, A.; Gupta, A.; Hasan, N.; Ahmad, S.; Kesharwani, P.; Ahmad, F.J. Recent update on electrospinning and electrospun nanofibers: Current trends and their applications. RSC Adv. 2022, 37, 23808–23828. [Google Scholar] [CrossRef]
- Xie, X.; Li, D.; Chen, Y.; Shen, Y.; Yu, F.; Wang, W.; Yuan, Z.; Morsi, Y.; Wu, J.; Mo, X. Conjugate electrospun 3D gelatin nanofiber sponge for rapid hemostasis. Adv. Healthcare Mater. 2021, 20, 2100918. [Google Scholar] [CrossRef]
- Franco, R.A.; Nguyen, T.H.; Lee, B.T. Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. J. Mater. Sci. Mater. Med. 2011, 10, 2207–2218. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Li, X.; Qian, Y.; Lv, L.; Wang, Y. Fabrication and research of Mg(OH)2/PCL/PVP nanofiber membranes loaded by antibacterial and biosafe Mg(OH)2 nanoparticles. Polym. Test. 2022, 112, 107635. [Google Scholar] [CrossRef]
- Baptista, A.; Ferreira, I.; Borges, J. Electrospun fibers in composite materials for medical applications. J. Compos. Biodegrad. Polym. 2013, 1, 56–65. [Google Scholar] [CrossRef]
- Machado-Paula, M.M.; Corat, M.A.F.; Lancellotti, M.; Mi, G.; Marciano, F.R.; Vega, M.L.; Hidalgo, A.A.; Webster, T.J.; Lobo, A.O. A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization. Mater. Sci. Eng. C 2020, 111, 110706. [Google Scholar] [CrossRef] [PubMed]
- Ruckh, T.T.; Kumar, R.; Kipper, M.J.; Popat, K.C. Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nanofiber scaffolds. Acta Biomater. 2010, 6, 2949–2959. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Qian, Y.; Lv, L.; Li, X.; Liu, Y. Characteristics of MgO/PCL/PVP antibacterial nanofiber membranes produced by electrospinning technology. Surf. Interfaces 2022, 28, 101661. [Google Scholar] [CrossRef]
- Almukainzi, M.; El-Masry, T.A.; Negm, W.A.; Elekhnawy, E.; Saleh, A.; Sayed, A.E.; Ahmed, H.M.; Abdelkader, D.H. Co-delivery of gentiopicroside and thymoquinone using electrospun m-PEG/PVP nanofibers: In-vitro and In vivo studies for antibacterial wound dressing in diabetic rats. Int. J. Pharm. 2022, 625, 122106. [Google Scholar] [CrossRef]
- Ge, Y.; Tang, J.; Ullah, A.; Ullah, S.; Sarwar, M.N.; Kim, I.S. Sabina chinensis leaf extracted and in situ incorporated polycaprolactone/polyvinylpyrrolidone electrospun microfibers for antibacterial application. RSC Adv. 2021, 30, 18231–18240. [Google Scholar] [CrossRef]
- Kim, G.M.; Le, K.H.T.; Giannitelli, S.M.; Lee, Y.J.; Rainer, A.; Trombetta, M. Electrospinning of PCL/PVP blends for tissue engineering scaffolds. J. Mater. Sci. Mater. Med. 2013, 24, 1425–1442. [Google Scholar] [CrossRef]
- Feng, H.; Wang, G.; Jin, W.; Zhang, X.; Huang, Y.; Gao, A.; Wu, H.; Wu, G.; Chu, P.K. Systematic study of inherent antibacterial properties of magnesium-based biomaterials. ACS Appl. Mater. Interfaces 2016, 15, 9662–9673. [Google Scholar] [CrossRef]
- Bilal, M.; Umar, M.; Esraa, M.B.; Ali, J.; Ahmad, R.; Akhtar, K.; Khan, S.B. Structural, optical and photocatalytic properties of silver-doped magnesia: Computational and experimental study. J. Mol. Liq. 2021, 339, 117176. [Google Scholar] [CrossRef]
- Cai, L.; Chen, J.; Liu, Z.; Wang, H.; Yang, H.; Ding, W. Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against ralstonia solanacearum. Front Microbiol. 2018, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Di, D.; He, Z.; Sun, Z.; Liu, J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomed. Nanotech. Biol. Med. 2012, 8, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Suryavanshi, A.; Khanna, K.; Sindhu, K.R.; Bellare, J.; Srivastava, R. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone–soft tissue engineering applications: In-vitro and in-vivo evaluation. Biomed. Mater. 2017, 5, 055011. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Wang, W.; Tan, F.; Cai, Y.; Lu, J.; Qiao, X. Influence of different ions doping on the antibacterial properties of MgO nanopowders. Appl. Surf. Sci. 2013, 284, 726–731. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Zhang, Y.; Zeng, T.; Jia, C.; Chang, L. Loading Cu-doped magnesium oxide onto surface of magnetic nanoparticles to prepare magnetic disinfectant with enhanced antibacterial activity. Colloids Surf. B Biointerfaces 2018, 161, 433–441. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, D.; Zhu, X.; Wang, W.; Tan, F.; Chen, J.; Qiao, X.; Qiu, X. Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation. Ceram. Int. 2017, 43, 1066–1072. [Google Scholar] [CrossRef]
- Tanweer, T.; Rana, N.F.; Saleem, I.; Shafique, I.; Alshahrani, S.M.; Almukhlifi, H.A.; Alotaibi, A.S.; Alshareef, S.A.; Menaa, F. Dental Composites with Magnesium Doped Zinc Oxide Nanoparticles Prevent Secondary Caries in the Alloxan-Induced Diabetic Model. Int. J. Mol. Sci. 2022, 24, 15926. [Google Scholar] [CrossRef]
- Nigam, A.; Saini, S.; Rai, A.K.; Pawar, S.J. Structural, optical, cytotoxicity, and antimicrobial properties of MgO, ZnO and MgO/ZnO nanocomposite for biomedical applications. Ceram. Int. 2021, 47, 19515–19525. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Chen, J.; Sánchez, Z.I.G.; Tungare, K.; Bhori, M.; Durán-Lara, E.F.; Anbu, P. Moringa oleifera gum capped MgO nanoparticles: Synthesis, characterization, cyto-and ecotoxicity assessment. Int. J. Biol. Macromol. 2023, 233, 123514. [Google Scholar] [CrossRef]
- Tabrez, S.; Khan, A.U.; Hoque, M.; Suhail, M.; Khan, M.I.; Zughaibi, T.A. Investigating the anticancer efficacy of biogenic synthesized MgONPs: An in vitro analysis. Front. Chem. 2022, 10, 970193. [Google Scholar] [CrossRef]
- Li, T.; He, Y.; Zhou, J.; Tang, S.; Yang, Y.; Wang, X. Effects of scandium addition on biocompatibility of biodegradable Mg–1.5 Zn–0.6 Zr alloy. Mater. Lett. 2018, 215, 200–202. [Google Scholar] [CrossRef]
- Costa, S.M.; Pacheco, L.; Antunes, W.; Vieira, R.; Bem, N.; Teixeira, P.; Fangueiro, R.; Ferreira, D.P. Antibacterial and biodegradable electrospun filtering membranes for facemasks: An attempt to reduce disposable masks use. Appl. Sci. 2021, 12, 67. [Google Scholar] [CrossRef]
- Ma, L.; Shi, X.; Zhang, X.; Li, L. Electrospinning of polycaprolacton/chitosan core-shell nanofibers by a stable emulsion system. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123956. [Google Scholar] [CrossRef]
- Li, R.; Cheng, Z.; Yu, X.; Wang, S.; Han, Z.; Kang, L. Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning. Mater. Lett. 2019, 254, 206–209. [Google Scholar] [CrossRef]
- Ferreira, C.A.; Guerreiro, S.F.; Valente, J.F.; Patrício, T.M.; Alves, N.; Mateus, A.; Dias, J.R. Advanced Face Mask Filters Based on PCL Electrospun Meshes Dopped with antibacterial MgO and CuO Nanoparticles. Polymers 2022, 16, 3329. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Neogi, S. Antibacterial properties of doped nanoparticles. Rev. Chem. Eng. 2018, 7, 861–876. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Sengupta, I.; Dey, A.; Chakraborty, S.; Neogi, S. Antibacterial effect of ciprofloxacin loaded reduced graphene oxide nanosheets against Pseudomonas aeruginosa strain. Colloid Interface Sci. Commun. 2021, 40, 100344. [Google Scholar] [CrossRef]
- Behzadi, E.; Sarsharzadeh, R.; Nouri, M.; Attar, F.; Akhtari, K.; Shahpasand, K.; Falahati, M. Albumin binding and anticancer effect of magnesium oxide nanoparticles. Int. J. Nanomed. 2019, 14, 257–270. [Google Scholar] [CrossRef]
- Jiang, X.; Tang, X.; Zhang, B.; He, L.; Shi, Y. Antibacterial activity and synergistic antibacterial mechanism of a combination of zinc and rare-earth scandium against Escherichia coli. Mater. Technol. 2020, 35, 797–806. [Google Scholar] [CrossRef]
- Valappil, S.P.; Neel, E.A.A.; Pickup, D.M.; Burden, E.; Sahdev, R.; Miles, E.J.; Cooper, L.; Ansari, T.I.; Hanna, J.V.; Higham, S.M. Antibacterial, remineralising and matrix metalloproteinase inhibiting scandium-doped phosphate glasses for treatment of dental caries. Dent. Mater. 2022, 1, 94–107. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, B.; Liu, B.; Tang, X.; Tang, L. Experimental and theoretical study of visible light driven scandium (III) doped ZnO for antibacterial activity. Ceram. Int. 2019, 16, 19948–19955. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Li, X.; Huang, Y.; Du, B.; Fang, Y.; Lv, L. Research on synthesis and property of nano-textured Sc2O3-MgO efficient antibacterial agents. J. Biol. Inorg. Chem. JBIC A Publ. Soc. Biol. Inorg. Chem. 2023, 28, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sha, L.; Zhao, J.; Li, Q.; Zhu, Y.M.; Wang, N.H. Antibacterial property of fabrics coated by magnesium-based brucites. Appl. Surf. Sci. 2017, 400, 413–419. [Google Scholar] [CrossRef]
Index | Element | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
---|---|---|---|---|---|---|---|---|
Sample labels | SMCV-0 | SMCV-0.5 | SMCV-1.0 | SMCV-1.5 | SMCV-2.0 | SMCV-2.5 | SMCV-3.0 | |
C | 4.33 | 14.37 | 12.25 | 9.00 | 4.55 | 2.40 | ||
Apparent | N | 3.54 | 1.11 | 2.41 | 2.25 | 1.77 | 1.13 | 0.78 |
Concentration | O | 0.71 | 2.18 | 5.49 | 4.99 | 4.36 | 2.84 | 1.80 |
Mg | 1.47 | 0.23 | 0.82 | 1.14 | 1.14 | 0.78 | 0.58 | |
Sc | 0.02 | 0.15 | 0.26 | 0.23 | 0.14 | 0.12 | ||
C | 0.04329 | 0.14375 | 0.12248 | 0.09005 | 0.04552 | 0.02402 | ||
N | 0.03536 | 0.00197 | 0.00430 | 0.00401 | 0.00315 | 0.00201 | 0.00138 | |
K Ratio | O | 0.00127 | 0.00732 | 0.01849 | 0.01679 | 0.01467 | 0.00955 | 0.00604 |
Mg | 0.00494 | 0.00150 | 0.00543 | 0.00754 | 0.00753 | 0.00516 | 0.00384 | |
Sc | 0.00025 | 0.00152 | 0.00255 | 0.00234 | 0.00142 | 0.00120 | ||
C | 53.63 | 58.94 | 57.74 | 55.76 | 52.05 | 48.47 | ||
N | 52.99 | 12.76 | 10.41 | 10.40 | 9.87 | 10.21 | 10.81 | |
Wt% | O | 12.69 | 31.39 | 27.79 | 27.39 | 28.88 | 31.30 | 32.53 |
Mg | 34.32 | 1.98 | 2.36 | 3.56 | 4.45 | 5.34 | 6.65 | |
Sc | 0.24 | 0.50 | 0.91 | 1.04 | 1.10 | 1.54 | ||
C | 1.18 | 0.57 | 0.45 | 0.35 | 0.53 | 0.72 | 0.83 | |
Wt% Sigma | N | 1.63 | 0.73 | 0.54 | 0.42 | 0.66 | 0.93 | 1.10 |
O | 0.96 | 0.45 | 0.33 | 0.26 | 0.41 | 0.59 | 0.71 | |
Mg | 0.11 | 0.07 | 0.06 | 0.10 | 0.17 | 0.24 | ||
Sc | 0.11 | 0.07 | 0.06 | 0.10 | 0.16 | 0.22 | ||
C | 60.14 | 65.47 | 64.72 | 63.09 | 59.66 | 56.45 | ||
N | 59.12 | 12.27 | 9.92 | 10.00 | 9.57 | 10.04 | 10.79 | |
Atomic% | O | 12.14 | 26.43 | 23.17 | 23.04 | 24.53 | 26.94 | 28.44 |
Mg | 28.74 | 1.10 | 1.30 | 1.97 | 2.48 | 3.02 | 3.83 | |
Sc | 0.07 | 0.15 | 0.27 | 0.31 | 0.34 | 0.48 |
Samples | Control | SMCV-0 | SMCV-0.5 | SMCV-1.0 | SMCV-1.5 | SMCV-2.0 | SMCV-2.5 | SMCV-3.0 |
---|---|---|---|---|---|---|---|---|
Colony number | 182.0 ± 14.1 | 173.0 ± 14.5 | 141.6 ± 8.1 | 136.0 ± 9.2 | 45.3 ± 10.5 | 0 ± 0 | 1.0 ± 1.2 | 27.5 ± 8.1 |
Sc2O3-MgO Content (wt%) | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
---|---|---|---|---|---|---|---|
Sample labels | SMCV-0 | SMCV-0.5 | SMCV-1.0 | SMCV-1.5 | SMCV-2.0 | SMCV-2.5 | SMCV-3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, X.; Liu, Y.; Huang, Y.; Wang, F.; Qian, Y.; Wang, Y. Preparation and Properties of (Sc2O3-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections. Int. J. Mol. Sci. 2023, 24, 7649. https://doi.org/10.3390/ijms24087649
Liu Y, Li X, Liu Y, Huang Y, Wang F, Qian Y, Wang Y. Preparation and Properties of (Sc2O3-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections. International Journal of Molecular Sciences. 2023; 24(8):7649. https://doi.org/10.3390/ijms24087649
Chicago/Turabian StyleLiu, Yanjing, Xiyue Li, Yuezhou Liu, Yaping Huang, Fuming Wang, Yongfang Qian, and Ying Wang. 2023. "Preparation and Properties of (Sc2O3-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections" International Journal of Molecular Sciences 24, no. 8: 7649. https://doi.org/10.3390/ijms24087649
APA StyleLiu, Y., Li, X., Liu, Y., Huang, Y., Wang, F., Qian, Y., & Wang, Y. (2023). Preparation and Properties of (Sc2O3-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections. International Journal of Molecular Sciences, 24(8), 7649. https://doi.org/10.3390/ijms24087649