The Potential of Liquid Biopsy in Detection of Endometrial Cancer Biomarkers: A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Tumour Mutational Burden and Microsatellite Instability
2.2. DNA Mutation Detection
2.3. Mutations in the DNMT3A Gene
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- McAlpine, J.N.; Temkin, S.M.; Mackay, H.J. Endometrial Cancer: Not Your Grandmother’s Cancer. Cancer 2016, 122, 2787–2798. [Google Scholar] [CrossRef]
- Braun, M.M.; Grumbo, R.J. Diagnosis and Management of Endometrial Cancer. Am. Fam. Physician 2016, 93, 468–474. [Google Scholar] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Arnold, M.; Karim-Kos, H.E.; Coebergh, J.W.; Byrnes, G.; Antilla, A.; Ferlay, J.; Renehan, A.G.; Forman, D.; Soerjomataram, I. Recent Trends in Incidence of Five Common Cancers in 26 European Countries since 1988: Analysis of the European Cancer Observatory. Eur. J. Cancer 2015, 51, 1164–1187. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Cheung, E.C.W.; Lao, T.T. Obesity Increases Endometrial Cancer Risk in Chinese Women with Postmenopausal Bleeding. Menopause 2021, 28, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Höhn, A.K.; Brambs, C.E.; Hiller, G.G.R.; May, D.; Schmoeckel, E.; Horn, L.C. 2020 WHO Classification of Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021; pp. 245–308. ISBN 978-9283245025.
- Bokhman, J.V. Two Pathogenetic Types of Endometrial Carcinoma. Gynecol. Oncol. 1983, 15, 10–17. [Google Scholar] [CrossRef]
- Ryan, A.J.; Susil, B.; Jobling, T.W.; Oehler, M.K. Endometrial Cancer. Cell Tissue Res. 2005, 322, 53–61. [Google Scholar] [CrossRef]
- Amant, F.; Moerman, P.; Neven, P.; Timmerman, D.; Van Limbergen, E.; Vergote, I. Endometrial Cancer. Lancet 2005, 366, 491–505. [Google Scholar] [CrossRef]
- Raglan, O.; Kalliala, I.; Markozannes, G.; Cividini, S.; Gunter, M.J.; Nautiyal, J.; Gabra, H.; Paraskevaidis, E.; Martin-Hirsch, P.; Tsilidis, K.K.; et al. Risk Factors for Endometrial Cancer: An Umbrella Review of the Literature. Int. J. Cancer 2019, 145, 1719–1730. [Google Scholar] [CrossRef]
- Banno, K.; Yanokura, M.; Iida, M.; Masuda, K.; Aoki, D. Carcinogenic Mechanisms of Endometrial Cancer: Involvement of Genetics and Epigenetics. J. Obstet. Gynaecol. Res. 2014, 40, 1957–1967. [Google Scholar] [CrossRef]
- Getz, G.; Gabriel, S.B.; Cibulskis, K.; Lander, E.; Sivachenko, A.; Sougnez, C.; Lawrence, M.; Kandoth, C.; Dooling, D.; Fulton, R.; et al. Integrated Genomic Characterization of Endometrial Carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Ogi, T.; Limsirichaikul, S.; Overmeer, R.M.; Volker, M.; Takenaka, K.; Cloney, R.; Nakazawa, Y.; Niimi, A.; Miki, Y.; Jaspers, N.G.; et al. Three DNA Polymerases, Recruited by Different Mechanisms, Carry Out NER Repair Synthesis in Human Cells. Mol. Cell 2010, 37, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, K.; Beilken, A.; Nustede, R.; Ripperger, T.; Lamottke, B.; Ure, B.; Steinmann, D.; Reineke-Plaass, T.; Lehmann, U.; Zschocke, J.; et al. A Novel Germline POLE Mutation Causes an Early Onset Cancer Prone Syndrome Mimicking Constitutional Mismatch Repair Deficiency. Fam. Cancer 2017, 16, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Wang, Y.; Broaddus, R.; Sun, L.; Xue, F.; Zhang, W. Exon 3 Mutations of CTNNB1 Drive Tumorigenesis: A Review. Oncotarget 2017, 9, 5492–5508. [Google Scholar] [CrossRef] [PubMed]
- Soslow, R.A.; Tornos, C.; Park, K.J.; Malpica, A.; Matias-Guiu, X.; Oliva, E.; Parkash, V.; Carlson, J.; Glenn McCluggage, W.; Blake Gilks, C. Endometrial Carcinoma Diagnosis: Use of FIGO Grading and Genomic Subcategories in Clinical Practice: Recommendations of the International Society of Gynecological Pathologists. Int. J. Gynecol. Pathol. 2019, 1, S64–S74. [Google Scholar] [CrossRef]
- Vermij, L.; Smit, V.; Nout, R.; Bosse, T. Incorporation of Molecular Characteristics into Endometrial Cancer Management. Histopathology 2020, 76, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Creasman, W. Revised FIGO Staging for Carcinoma of the Endometrium. Int. J. Gynaecol. Obstet. 2009, 105, 109. [Google Scholar] [CrossRef]
- Lewin, S.N. Revised FIGO Staging System for Endometrial Cancer. Clin. Obstet. Gynecol. 2011, 54, 215–218. [Google Scholar] [CrossRef]
- Sorosky, J.I. Endometrial Cancer. Obstet. Gynecol. 2012, 120, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Gentry-Maharaj, A.; Karpinskyj, C. Current and Future Approaches to Screening for Endometrial Cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2020, 65, 79–97. [Google Scholar] [CrossRef]
- ACOG Committee Opinion No. 557: Management of Acute Abnormal Uterine Bleeding in Nonpregnant Reproductive-Aged Women. Obstet. Gynecol. 2013, 121, 891–896. [CrossRef]
- ACOG Committee Opinion No. 440: The Role of Transvaginal Ultrasonography in the Evaluation of Postmenopausal Bleeding. Obstet. Gynecol. 2009, 114, 409–411. [CrossRef]
- Khati, N.J. Expert Panel on Women’s Imaging. ACR Appropriateness Criteria: Abnormal Vaginal Bleeding; American College of Radiology: Reston, VA, USA, 2014; pp. 1–13. [Google Scholar]
- Dijkhuizen, F.P.; Mol, B.W.; Brölmann, H.A.; Heintz, A.P. The Accuracy of Endometrial Sampling in the Diagnosis of Patients with Endometrial Carcinoma and Hyperplasia: A Meta-Analysis. Cancer 2000, 89, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Terzic, M.M.; Aimagambetova, G.; Terzic, S.; Norton, M.; Bapayeva, G.; Garzon, S. Current Role of Pipelle Endometrial Sampling in Early Diagnosis of Endometrial Cancer. Transl. Cancer Res. 2020, 9, 7716–7724. [Google Scholar] [CrossRef] [PubMed]
- Elsandabesee, D.; Greenwood, P. The Performance of Pipelle Endometrial Sampling in a Dedicated Postmenopausal Bleeding Clinic. J. Obstet. Gynaecol. 2005, 25, 32–34. [Google Scholar] [CrossRef]
- Blanco, B.A.; Wolfgang, C.L. Liquid Biopsy for the Detection and Management of Surgically Resectable Tumors. Langenbecks Arch. Surg. 2019, 404, 517–525. [Google Scholar] [CrossRef]
- Muinelo-Romay, L.; Casas-Arozamena, C.; Abal, M. Liquid Biopsy in Endometrial Cancer: New Opportunities for Personalized Oncology. Int. J. Mol. Sci. 2018, 19, 2311. [Google Scholar] [CrossRef]
- Malentacchi, F.; Sgromo, C.; Antonuzzo, L.; Pillozzi, S. Liquid Biopsy in Endometrial Cancer. J. Cancer Metastasis Treat. 2020, 6, 30. [Google Scholar] [CrossRef]
- Bolivar, A.M.; Luthra, R.; Mehrotra, M.; Chen, W.; Barkoh, B.A.; Hu, P.; Zhang, W.; Broaddus, R.R. Targeted Next-Generation Sequencing of Endometrial Cancer and Matched Circulating Tumor DNA: Identification of Plasma-Based, Tumor-Associated Mutations in Early Stage Patients. Mod. Pathol. 2019, 32, 405–414. [Google Scholar] [CrossRef]
- Grant, B.M.; Pugh, T.J.; Oza, A.M. Molecular Monitoring in Endometrial Cancer-Ready for Prime Time? Clin. Cancer Res. 2023, 29, 305–308. [Google Scholar] [CrossRef]
- Danziger, N.; Lin, D.; Tukachinsky, H.; Oxnard, G.; Elvin, J. Landscape of Genomic Alterations and Biomarkers in Endometrial Cancer (EC) Identified by Comprehensive Genomic Profiling (CGP) of Peripheral Blood Biopsies (181). Gynecol. Oncol. 2022, 166, S104. [Google Scholar] [CrossRef]
- Chan, H.T.; Chin, Y.M.; Nakamura, Y.; Low, S.K. Clonal Hematopoiesis in Liquid Biopsy: From Biological Noise to Valuable Clinical Implications. Cancers 2020, 12, 2277. [Google Scholar] [CrossRef] [PubMed]
- Fuster, J.J.; Walsh, K. Somatic Mutations and Clonal Hematopoiesis: Unexpected Potential New Drivers of Age-Related Cardiovascular Disease. Circ. Res. 2018, 122, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Chen, J.; He, L.; Stiles, B.L. PTEN: Tumor Suppressor and Metabolic Regulator. Front. Endocrinol. 2018, 9, 338. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Tang, C. The Role of ARID1A in Tumors: Tumor Initiation or Tumor Suppression? Front. Oncol. 2021, 11, 745187. [Google Scholar] [CrossRef]
- German, S.; Aslam, H.M.; Saleem, S.; Raees, A.; Anum, T.; Alvi, A.A.; Haseeb, A. Carcinogenesis of PIK3CA. Hered. Cancer Clin. Pract. 2013, 11, 5. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Li, Z.; Li, X.; Jin, M.; Jia, N.; Cui, X.; Hu, G.; Tang, T.; Yu, Q. Pan-Cancer Analysis on the Role of PIK3R1 and PIK3R2 in Human Tumors. Sci. Rep. 2022, 12, 5924. [Google Scholar] [CrossRef]
- Marshall, A.D.; Bailey, C.G.; Champ, K.; Vellozzi, M.; O’Young, P.; Metierre, C.; Feng, Y.; Thoeng, A.; Richards, A.M.; Schmitz, U.; et al. CTCF Genetic Alterations in Endometrial Carcinoma Are Pro-Tumorigenic. Oncogene 2017, 36, 4100–4110. [Google Scholar] [CrossRef]
- Andreassen, P.R.; Seo, J.; Wiek, C.; Hanenberg, H. Understanding BRCA2 Function as a Tumor Suppressor Based on Domain-Specific Activities in DNA Damage Responses. Genes 2021, 12, 1034. [Google Scholar] [CrossRef]
- Dong, G.; Ma, G.; Wu, R.; Liu, J.; Liu, M.; Gao, A.; Li, X.; A, J.; Liu, X.; Zhang, Z.; et al. ZFHX3 Promotes the Proliferation and Tumor Growth of ER-Positive Breast Cancer Cells Likely by Enhancing Stem-Like Features and MYC and TBX3 Transcription. Cancers 2020, 12, 3415. [Google Scholar] [CrossRef] [PubMed]
- Aubrey, B.J.; Strasser, A.; Kelly, G.L. Tumor-Suppressor Functions of the TP53 Pathway. Cold Spring Harb. Perspect. Med. 2016, 6, a026062. [Google Scholar] [CrossRef] [PubMed]
- Szybowska, P.; Kostas, M.; Wesche, J.; Wiedlocha, A.; Haugsten, E.M. Cancer Mutations in FGFR2 Prevent a Negative Feedback Loop Mediated by the ERK1/2 Pathway. Cells 2019, 8, 518. [Google Scholar] [CrossRef] [PubMed]
- Ledinek, Ž.; Sobočan, M.; Knez, J. The Role of CTNNB1 in Endometrial Cancer. Dis. Markers 2022, 2022, 1442441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bao, W.; Wang, K.; Lu, W.; Wang, H.; Tong, H.; Wan, X. SOX17 Is a Tumor Suppressor in Endometrial Cancer. Oncotarget 2016, 7, 76036–76046. [Google Scholar] [CrossRef] [PubMed]
- Konstantinova, D.V.; Kadiyska, T.K.; Kaneva, R.P.; Tosheva, E.G.; Guseva, V.T.; Dimitrov, B.H.; Dimitrov, R.G.; Doganov, N.I.; Ivanov, S.I.; Kremensky, I.M.; et al. CHEK2 I157T and Endometrial Cancer. DNA Cell Biol. 2009, 28, 9–12. [Google Scholar] [CrossRef]
- Hsu, T.-N.; Huang, C.-M.; Huang, C.-S.; Huang, M.-S.; Yeh, C.-T.; Chao, T.-Y.; Bamodu, O.A. Targeting FAT1 Inhibits Carcinogenesis, Induces Oxidative Stress and Enhances Cisplatin Sensitivity through Deregulation of LRP5/WNT2/GSS Signaling Axis in Oral Squamous Cell Carcinoma. Cancers 2019, 11, 1883. [Google Scholar] [CrossRef]
- Sideris, M.; Emin, E.I.; Abdullah, Z.; Hanrahan, J.; Stefatou, K.M.; Sevas, V.; Emin, E.; Hollingworth, T.; Odejinmi, F.; Papagrigoriadis, S.; et al. The Role of KRAS in Endometrial Cancer: A Mini-Review. Anticancer Res. 2019, 39, 533–539. [Google Scholar] [CrossRef]
- He, D.; Wang, X.; Zhang, Y.; Zhao, J.; Han, R.; Dong, Y. DNMT3A/3B Overexpression Might Be Correlated with Poor Patient Survival, Hypermethylation and Low Expression of ESR1/PGR in Endometrioid Carcinoma. Chin. Med. J. 2019, 132, 161–170. [Google Scholar] [CrossRef]
- Zhang, J.; Kuang, L.; Li, Y.; Wang, Q.; Xu, H.; Liu, J.; Zhou, X.; Li, Y.; Zhang, B. Metformin Regulates TET2 Expression to Inhibit Endometrial Carcinoma Proliferation: A New Mechanism. Front. Oncol. 2022, 12, 856707. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, T.; Ju, J.H.; Zhang, S.; Tao, J.; Fu, Y.; Lococo, J.; Dockter, J.; Pawlowski, T.; Bilke, S. TruSight Oncology 500: Enabling Comprehensive Genomic Profiling and Biomarker Reporting with Targeted Sequencing. bioRxiv 2020. [Google Scholar] [CrossRef]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Veeraraghavan, H.; Friedman, C.F.; DeLair, D.F.; Ninčević, J.; Himoto, Y.; Bruni, S.G.; Cappello, G.; Petkovska, I.; Nougaret, S.; Nikolovski, I.; et al. Machine Learning-Based Prediction of Microsatellite Instability and High Tumor Mutation Burden from Contrast-Enhanced Computed Tomography in Endometrial Cancers. Sci. Rep. 2020, 10, 17769. [Google Scholar] [CrossRef]
- Hai, L.; Li, L.; Liu, Z.; Tong, Z.; Sun, Y. Whole-Genome Circulating Tumor DNA Methylation Landscape Reveals Sensitive Biomarkers of Breast Cancer. MedComm 2022, 3, e134. [Google Scholar] [CrossRef] [PubMed]
- Van Den Heerik, A.S.V.M.; Horeweg, N.; Nout, R.A.; Lutgens, L.C.H.W.; Van Der Steen-Banasik, E.M.; Westerveld, G.H.; Van Den Berg, H.A.; Slot, A.; Koppe, F.L.A.; Kommoss, S.; et al. PORTEC-4a: International Randomized Trial of Molecular Profile-Based Adjuvant Treatment for Women with High-Intermediate Risk Endometrial Cancer. Int. J. Gynecol. Cancer 2020, 30, 2002–2007. [Google Scholar] [CrossRef] [PubMed]
- León-Castillo, A.; Gilvazquez, E.; Nout, R.; Smit, V.T.H.B.M.; McAlpine, J.N.; McConechy, M.; Kommoss, S.; Brucker, S.Y.; Carlson, J.W.; Epstein, E.; et al. Clinicopathological and Molecular Characterisation of ‘Multiple-Classifier’ Endometrial Carcinomas. J. Pathol. 2020, 250, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Tutlewska, K.; Lubinski, J.; Kurzawski, G. Germline Deletions in the EPCAM Gene as a Cause of Lynch Syndrome—Literature Review. Hered. Cancer Clin. Pract. 2013, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Ryan, N.A.J.; Glaire, M.A.; Blake, D.; Cabrera-Dandy, M.; Evans, D.G.; Crosbie, E.J. The Proportion of Endometrial Cancers Associated with Lynch Syndrome: A Systematic Review of the Literature and Meta-Analysis. Genet. Med. 2019, 21, 2167–2180. [Google Scholar] [CrossRef]
- Sehgal, R.; Sheahan, K.; O’Connell, P.R.; Hanly, A.M.; Martin, S.T.; Winter, D.C. Lynch Syndrome: An Updated Review. Genes 2014, 5, 497–507. [Google Scholar] [CrossRef]
- Hendriks, Y.M.C.; Wagner, A.; Morreau, H.; Menko, F.; Stormorken, A.; Quehenberger, F.; Sandkuijl, L.; Møller, P.; Genuardi, M.; Van Houwelingen, H.; et al. Cancer Risk in Hereditary Nonpolyposis Colorectal Cancer Due to MSH6 Mutations: Impact on Counseling and Surveillance. Gastroenterology 2004, 127, 17–25. [Google Scholar] [CrossRef]
- Smrz, S.A.; Calo, C.; Fisher, J.L.; Salani, R. An Ecological Evaluation of the Increasing Incidence of Endometrial Cancer and the Obesity Epidemic. Am. J. Obstet. Gynecol. 2021, 224, 506.e1–506.e8. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.L.; Medina, H.N.; Schlumbrecht, M.P.; Reis, I.; Kobetz, E.N.; Pinheiro, P.S. The Role of Histology on Endometrial Cancer Survival Disparities in Diverse Florida. PLoS ONE 2020, 15, e0236402. [Google Scholar] [CrossRef]
- Djordjevic, B.; Hennessy, B.T.; Li, J.; Barkoh, B.A.; Luthra, R.; Mills, G.B.; Broaddus, R.R. Clinical Assessment of PTEN Loss in Endometrial Carcinoma: Immunohistochemistry Outperforms Gene Sequencing. Mod. Pathol. 2012, 25, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Toumpeki, C.; Liberis, A.; Tsirkas, I.; Tsirka, T.; Kalagasidou, S.; Inagamova, L.; Anthoulaki, X.; Tsatsaris, G.; Kontomanolis, E.N. The Role of ARID1A in Endometrial Cancer and the Molecular Pathways Associated with Pathogenesis and Cancer Progression. In Vivo 2019, 33, 659–667. [Google Scholar] [CrossRef]
- Mjos, S.; Werner, H.M.J.; Birkeland, E.; Holst, F.; Berg, A.; Halle, M.K.; Tangen, I.L.; Kusonmano, K.; Mauland, K.K.; Oyan, E.A.; et al. PIK3CA Exon9 Mutations Associate with Reduced Survival, and are Highly Concordant between Matching Primary Tumors and Metastases in Endometrial Cancer. Sci. Rep. 2017, 7, 10240. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.; Camacho-Vanegas, O.; Anand, S.; Sebra, R.; Catalina Camacho, S.; Garnar-Wortzel, L.; Nair, N.; Moshier, E.; Wooten, M.; Uzilov, A.; et al. Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival in Gynecologic Cancers. PLoS ONE 2015, 10, e0145754. [Google Scholar] [CrossRef]
- Gaulin, C.; Kelemen, K.; Arana Yi, C. Molecular Pathways in Clonal Hematopoiesis: From the Acquisition of Somatic Mutations to Transformation into Hematologic Neoplasm. Life 2022, 12, 1135. [Google Scholar] [CrossRef] [PubMed]
- Omidali, M.; Jabbara, N.; Tehrani, A. Relationship between Promoter Hypermethylation of DNMT3A and DNMT3B Genes and Endometrial Cancer. J. Epigenet. 2019, 01, 19–23. [Google Scholar] [CrossRef]
- Yang, L.; Rau, R.; Goodell, M.A. DNMT3A in Haematological Malignancies. Nat. Rev. Cancer 2015, 15, 152–165. [Google Scholar] [CrossRef]
- Palam, L.R.; Mali, R.S.; Ramdas, B.; Srivatsan, S.N.; Visconte, V.; Tiu, R.V.; Vanhaesebroeck, B.; Roers, A.; Gerbaulet, A.; Xu, M.; et al. Loss of Epigenetic Regulator TET2 and Oncogenic KIT Regulate Myeloid Cell Transformation via PI3K Pathway. JCI Insight 2018, 3, e94679. [Google Scholar] [CrossRef]
- Tajima, S.; Suetake, I.; Takeshita, K.; Nakagawa, A.; Kimura, H. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. Adv. Exp. Med. Biol. 2016, 945, 63–86. [Google Scholar] [CrossRef] [PubMed]
Patient No. | Age at Surgery | Tumour Histology | FIGO Grade and Stage | Total TMB in FFPE-DNA Libraries | Total TMB of ctDNA Libraries | % of MSI Sites in FFPE-DNA Libraries | % of MSI Sites in ctDNA Libraries |
---|---|---|---|---|---|---|---|
01 | 64 | endometrioid | G3 I A | 0.80 | 2.50 | 0 | 0 |
02 | 63 | endometrioid | G2 I A | 3.90 | 9.80 | 3.39 | 0 |
03 | 70 | endometrioid | G3 III A | 0.80 | 5.10 | 1.68 | 0.05 |
04 | 75 | endometrioid | G2 I A | 1.60 | 4.20 | 0 | 0.09 |
05 | 58 | endometrioid | G2 I A | 1.60 | 3.10 | 5.22 | 0 |
06 | 60 | endometrioid | G2 I A | 1.60 | 4.20 | 0.85 | 0.5 |
07 | 68 | endometrioid | G2 I A | 1.60 | 0 | 1.64 | 0 |
08 | 76 | endometrioid | G2 I B | 16.40 | 3.30 | 13.54 | 0.05 |
09 | 84 | endometrioid | G2 I B | 32.10 | 26.30 | 25.20 | 0.46 |
10 | 61 | endometrioid | G2 II | 9.40 | 6.00 | 2.46 | 0.14 |
11 | 60 | endometrioid | G1 I A | 0 | 5.20 | 1.69 | 0 |
12 | 60 | endometrioid | G1 I A | 6.30 | 0 | 3.45 | 0 |
13 | 34 | endometrioid | G1 I A | 1.60 | 2.50 | 1.64 | 0 |
14 | 63 | endometrioid | G2 I B | 28.20 | 3.30 | 0.84 | 0.09 |
15 | 57 | endometrioid | G2 I A | 0 | 1.70 | 0 | 0.05 |
16 | 63 | endometrioid | G3 I B | 7.10 | 0.80 | 2.32 | 0 |
17 | 84 | endometrioid | G2 I B | 8.60 | 11.60 | 0.83 | 0 |
18 | 64 | endometrioid | G3 I B | 0 | 37.20 | 1.68 | 0.23 |
19 | 73 | endometrioid | G1 I A | 41.50 | 2.40 | 42.28 | 0.14 |
20 | 68 | endometrioid | G3 III A | 0 | 50.20 | 0.80 | 0.81 |
21 | 64 | endometrioid | G2 I B | 89.60 | 9.10 | 0.04 | 0.04 |
(A) | Stages | Mutations FFPE-DNA | Mutations ctDNA | (B) | Grade | Mutations FFPE-DNA | Mutations ctDNA |
I A (11) | 4.09 | 2.73 | G1 (4) | 5.75 | 1.75 | ||
I B (7) | 6.86 | 5.43 | G2 (12) | 5.58 | 4.25 | ||
II (1) | 5.00 | 2.00 | low (16) | 5.63 | 3.63 | ||
III A (2) | 1.00 | 9.00 | G3 (5) | 2.00 | 6.00 |
Gene Name | Frequency in FFPE-DNA | Frequency in ctDNA | Gene Product Function | Reference |
---|---|---|---|---|
PTEN | 48% | 19% | protein/lipid phosphatase, tumour suppressor | [37] |
ARID1A | 29% | 10% | chromatin remodelling, tumour suppressor | [38] |
PIK3CA | 29% | 14% | kinase subunit, the most frequently mutated oncogene in human cancers | [39] |
PIK3R1 | 24% | 14% | kinase subunit, tumour suppressor | [40] |
CTCF | 24% | 10% | genome stability, tumour suppressor | [41] |
BRCA2 | 24% | 10% | genome stability, tumour suppressor | [42] |
ZFHX3 | 19% | 19% | transcription factor, tumour suppressor | [43] |
TP53 | 14% | 14% | cellular response to stresses, maintenance of genomic integrity, tumour suppressor | [44] |
FGFR2 | 14% | 5% | signalling, tumour suppressor | [45] |
CTNNB1 | 14% | 5% | cell growth and adhesion, signalling | [46] |
SOX17 | 14% | 0% | β-catenin inhibitor, tumour suppressor | [47] |
CHEK2 | 14% | 24% | protein kinase, tumour suppressor | [48] |
FAT | 10% | 0% | cell adhesion and extracellular matrix architecture regulation, tumour suppressor | [49] |
KRAS | 5% | 5% | signalling, oncogene | [50] |
DNMT3A | 0% | 52% | DNA methylation, ARCH biomarker | [51] |
TET2 | 0% | 14% | methylation regulation, tumour suppressor, ARCH biomarker | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodada, D.; Hyblova, M.; Krumpolec, P.; Janostiakova, N.; Barath, P.; Grendar, M.; Blandova, G.; Petrovic, O.; Janega, P.; Repiska, V.; et al. The Potential of Liquid Biopsy in Detection of Endometrial Cancer Biomarkers: A Pilot Study. Int. J. Mol. Sci. 2023, 24, 7811. https://doi.org/10.3390/ijms24097811
Kodada D, Hyblova M, Krumpolec P, Janostiakova N, Barath P, Grendar M, Blandova G, Petrovic O, Janega P, Repiska V, et al. The Potential of Liquid Biopsy in Detection of Endometrial Cancer Biomarkers: A Pilot Study. International Journal of Molecular Sciences. 2023; 24(9):7811. https://doi.org/10.3390/ijms24097811
Chicago/Turabian StyleKodada, Dominik, Michaela Hyblova, Patrik Krumpolec, Nikola Janostiakova, Peter Barath, Marian Grendar, Gabriela Blandova, Oliver Petrovic, Pavol Janega, Vanda Repiska, and et al. 2023. "The Potential of Liquid Biopsy in Detection of Endometrial Cancer Biomarkers: A Pilot Study" International Journal of Molecular Sciences 24, no. 9: 7811. https://doi.org/10.3390/ijms24097811
APA StyleKodada, D., Hyblova, M., Krumpolec, P., Janostiakova, N., Barath, P., Grendar, M., Blandova, G., Petrovic, O., Janega, P., Repiska, V., & Minarik, G. (2023). The Potential of Liquid Biopsy in Detection of Endometrial Cancer Biomarkers: A Pilot Study. International Journal of Molecular Sciences, 24(9), 7811. https://doi.org/10.3390/ijms24097811