Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques
Abstract
:1. Introduction
2. Biological Portrayal of Mulberry
3. Chemical Composition of Mulberry and Its Nutraceutical Perspective
3.1. Alkaloids
3.2. Flavonoids
3.3. Protein
3.4. Polysaccharides
3.5. Flavanols
3.6. Phenolic Acids
4. Drawbacks of Bioactive Compounds beyond Health and Potential Solutions
5. Extraction of Mulberry Bioactive Components
5.1. Enzyme-Assisted Extraction (EAE)
5.2. Superficial Liquid Extraction (SFE)
5.3. Pressurized Liquid Extraction (PLE)
5.4. Solid Phase Extraction (SPE)
5.5. Solid-Liquid Extraction (SLE)
Bioactive Component | Extraction Method | Solvent | Temperature | Duration | Reference |
---|---|---|---|---|---|
Resveratrol | Soxhlet extraction | Ethanol | 60 °C | 6 h | [108] |
Anthocyanins | Ultrasonic extraction | Methanol | 40 °C | 30 min | [109] |
Flavonoids | Maceration | Water | Room temp. | 24 h | [110] |
Phenolic compounds | Supercritical CO2 extraction | CO2 | 50 °C | 2 h | [111] |
Polysaccharides | Hot water extraction | Water | 90 °C | 2 h | [63] |
Vitamins | Enzyme-assisted extraction | Cellulase | 50 °C | 4 h | [112] |
6. Dietary Significance of Mulberry
7. Role of Mulberry in Food Industry
8. Medicinal Properties of Mulberry
8.1. Anti-Inflammatory Effect of Mulberry
8.2. Immune Modulatory Effect of Mulberry
8.3. Antioxidant Activities of Mulberry
8.4. Antimicrobial Effect of Mulberry
8.5. Anti-Inflammatory Effect of Mulberry through Regulation of Gut Microbiota
8.6. Mulberry against Cancer
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saini, P.; Rohela, G.K.; Kumar, J.S.; Shabnam, A.A.; Kumar, A. Cultivation, Utilization, and Economic Benefits of Mulberry. In The Mulberry Genome; Gnanesh, B.N., Vijayan, K., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 13–56. ISBN 978-3-031-28478-6. [Google Scholar]
- Martins, M.S.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. Int. J. Mol. Sci. 2023, 24, 12024. [Google Scholar] [CrossRef]
- Maqsood, M.; Anam Saeed, R.; Sahar, A.; Khan, M.I. Mulberry Plant as a Source of Functional Food with Therapeutic and Nutritional Applications: A Review. J. Food Biochem. 2022, 46, e14263. [Google Scholar] [CrossRef] [PubMed]
- Jan, B.; Parveen, R.; Zahiruddin, S.; Khan, M.U.; Mohapatra, S.; Ahmad, S. Nutritional Constituents of Mulberry and Their Potential Applications in Food and Pharmaceuticals: A Review. Saudi J. Biol. Sci. 2021, 28, 3909–3921. [Google Scholar] [CrossRef] [PubMed]
- Yiğit, D.; Akar, F.; Baydaş, E.; Buyukyildiz, M. Elemental Composition of Various Mulberry Species. Asian J. Chem. 2010, 22, 3554–3560. [Google Scholar]
- Khadivi, A.; Hosseini, A.-S.; Naderi, A. Morphological Characterizations of Morus nigra L., M. alba L., and M. alba L. var. Nigra. Genet. Resour. Crop Evol. 2024, 71, 1635–1642. [Google Scholar] [CrossRef]
- Yang, C.-X.; Liu, S.-Y.; Zerega, N.J.C.; Stull, G.W.; Gardner, E.M.; Tian, Q.; Gu, W.; Lu, Q.; Folk, R.A.; Kates, H.R.; et al. Phylogeny and Biogeography of Morus (Moraceae). Agronomy 2023, 13, 2021. [Google Scholar] [CrossRef]
- Baciu, E.-D.; Baci, G.-M.; Moise, A.R.; Dezmirean, D.S.A.; Baciu, E.-D.; Baci, G.-M.; Moise, A.R.; Dezmirean, D.S. A Status Review on the Importance of Mulberry (Morus spp.) and Prospects towards Its Cultivation in a Controlled Environment. Horticulturae 2023, 9, 444. [Google Scholar] [CrossRef]
- Sánchez, M.; Sánchez Manuel, D. Mulberry: An Exceptional Forage Available Almost Worldwide. World Rev. Anim. Prod. 2000, 93, 1–21. [Google Scholar]
- Hassan, F.U.; Arshad, M.A.; Li, M.; Rehman, M.S.U.; Loor, J.J.; Huang, J. Potential of Mulberry Leaf Biomass and Its Flavonoids to Improve Production and Health in Ruminants: Mechanistic Insights and Prospects. Animals 2020, 10, 2076. [Google Scholar] [CrossRef]
- Ramappa, V.K.; Srivastava, D.; Singh, P.; Kumar, U.; Kumar, D.D.; Gosipatala, S.B.; Saha, S.; Kumar, D.D.; Raj, R. Mulberries: A Promising Fruit for Phytochemicals, Nutraceuticals, and Biological Activities. Int. J. Fruit Sci. 2020, 20, S1254–S1279. [Google Scholar] [CrossRef]
- Witkowska, A.; Gryn-Rynko, A.; Syrkiewicz, P.; Kitala-Tańska, K.; Majewski, M.S. Characterizations of White Mulberry, Sea-Buckthorn, Garlic, Lily of the Valley, Motherwort, and Hawthorn as Potential Candidates for Managing Cardiovascular Disease—In Vitro and Ex Vivo Animal Studies. Nutrients 2024, 16, 1313. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Z.; Tong, Y.; Zhang, J.; Wang, J.; Guo, H.; Cheng, Q.; Marhaba; Zhou, Y.; Ahmad, B.; Wei, X.; et al. Enhancing the Antioxidant and Anti-Inflammatory Potentials of Mulberry-Derived Postbiotics through Submerged Fermentation with B. Subtilis H4 and B. Amyloliquefaciens LFB112. Food Biosci. 2024, 104252. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Yang, S.; Xue, G.; Lu, L. Mulberry extract upregulates cholesterol efflux and inhibits p38 MAPK-NLRP3-mediated inflammation in foam cells. Food Sci. Nutr. 2023, 11, 3141–3153. [Google Scholar] [CrossRef] [PubMed]
- Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Miere, F.; Venter, A.C.; Vicas, S.I. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. Plants 2022, 11, 152. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Srisai, P.; Intachaisri, V.; Kaewkod, T.; Pekkoh, J.; Desvaux, M.; Tragoolpua, Y. Antioxidant and Anti-Inflammatory Activity on LPS-Stimulated RAW 264.7 Macrophage Cells of White Mulberry (Morus alba L.) Leaf Extracts. Molecules 2023, 28, 4395. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.P.; Jia, Y.N.; Peng, Y.L.; Yu, Y.; Sun, S.L.; Yue, M.T.; Pan, M.H.; Zeng, L.S.; Xu, L. Oxyresveratrol, a Stilbene Compound from Morus alba L. Twig Extract Active Against Trichophyton Rubrum. Phyther. Res. 2017, 31, 1842–1848. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kang, K.H. Anti-Inflammatory and Anti-Bacterial Potential of Mulberry Leaf Extract on Oral Microorganisms. Int. J. Environ. Res. Public Health 2022, 19, 4984. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Z.F.; Luo, X.; Li, X. Effects of Mulberry Fruit (Morus alba L.) Consumption on Health Outcomes: A Mini-Review. Antioxidants 2018, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Kim, J.E.; Park, J.J.; Choi, J.Y.; Song, B.R.; Choi, Y.W.; Seob Kim, D.O.N.; Kim, K.M.; Song, H.K.; Hwang, D.Y. Protective Role of Fermented Mulberry Leave Extract in LPS-induced Inflammation and Autophagy of RAW264.7 Macrophage Cells. Mol. Med. Rep. 2020, 22, 4685–4695. [Google Scholar] [CrossRef]
- Kirac, F.T.; Sahingil, D.; Hayaloglu, A.A. Isolation and Characterization of a New Potential Source of Bioactive Peptides: White Mulberry (Morus alba) Fruits and Its Leaves. Food Chem. Adv. 2024, 4, 100597. [Google Scholar] [CrossRef]
- Rohela, G.K.; Shukla, P.; Muttanna; Kumar, R.; Chowdhury, S.R. Mulberry (Morus spp.): An Ideal Plant for Sustainable Development. Trees For. People 2020, 2, 100011. [Google Scholar] [CrossRef]
- Bao, T.; Xu, Y.; Gowd, V.; Zhao, J.; Xie, J.; Liang, W.; Chen, W. Systematic Study on Phytochemicals and Antioxidant Activity of Some New and Common Mulberry Cultivars in China. J. Funct. Foods 2016, 25, 537–547. [Google Scholar] [CrossRef]
- Vijayan, K.; Gnanesh, B.N.; Tikader, A. Botanical Features and Economic Significance of Mulberry. In The Mulberry Genome; Gnanesh, B.N., Vijayan, K., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–11. ISBN 978-3-031-28478-6. [Google Scholar]
- Mondal, R.; Rohela, G.K.; Saha, P.; Sangannavar, P.A.; Gnanesh, B.N. Mulberry Genome Analysis: Current Status, Challenges, and Future Perspective. In The Mulberry Genome; Gnanesh, B.N., Vijayan, K., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 115–130. ISBN 978-3-031-28478-6. [Google Scholar]
- Sun, Z.; Zhou, Y.; Zhu, W.; Yin, Y. Assessment of the Fruit Chemical Characteristics and Antioxidant Activity of Different Mulberry Cultivars (Morus spp.) in Semi-Arid, Sandy Regions of China. Foods 2023, 12, 3495. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Mulberry (M. rubra)—Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas; Springer International Publishing: Cham, Switzerland, 2021; pp. 305–315. [Google Scholar] [CrossRef]
- Koyuncu, F. Organic Acid Composition of Native Black Mulberry Fruit. Chem. Nat. Compd. 2004, 40, 367–369. [Google Scholar] [CrossRef]
- Liang, L.; Wu, X.; Zhu, M.; Zhao, W.; Li, F.; Zou, Y.; Yang, L. Chemical Composition, Nutritional Value, and Antioxidant Activities of Eight Mulberry Cultivars from China. Pharmacogn. Mag. 2012, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Rathore, M.S.; Srinivasulu, Y. Management of Soil Fertility for Sustaining Quality Mulberry Leaf Production in North India. Int. J. Sci. Res. Biol. Sci. 2018, 5, 58–62. [Google Scholar] [CrossRef]
- Hansen, V.; Meilvang, L.V.; Magid, J.; Thorup-Kristensen, K.; Jensen, L.S. Effect of Soil Fertility Level on Growth of Cover Crop Mixtures and Residual Fertilizing Value for Spring Barley. Eur. J. Agron. 2023, 145, 126796. [Google Scholar] [CrossRef]
- Bai, H.; Jiang, S.; Liu, J.; Tian, Y.; Zheng, X.; Wang, S.; Xie, Y.; Li, Y.; Jia, P. Planting Conditions Can Enhance the Bioactivity of Mulberry by Affecting Its Composition. Front. Plant Sci. 2023, 14, 1133062. [Google Scholar] [CrossRef] [PubMed]
- Haydar, M.S.; Saha, P.; Mandal, P.; Roy, S. Evaluating the Impact of Phytosynthesized Micronutrient Nanoparticles on the Growth and Propagation of Mulberry Cuttings: Dose Determination and Toxicity Concerns. Environ. Sci. Nano 2024, 11, 1179–1203. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical Composition of White (Morus alba), Red (Morus rubra) and Black (Morus nigra) Mulberry Fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Imran, M.; Khan, H.; Shah, M.; Khan, R.; Khan, F. Chemical Composition and Antioxidant Activity of Certain Morus Species. J. Zhejiang Univ. Sci. B 2010, 11, 973. [Google Scholar] [CrossRef] [PubMed]
- Gundogdu, M.; Muradoglu, F.; Sensoy, R.I.G.; Yilmaz, H. Determination of Fruit Chemical Properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC. Sci. Hortic. 2011, 132, 37–41. [Google Scholar] [CrossRef]
- Natić, M.M.; Dabić, D.; Papetti, A.; Fotirić Akšić, M.M.; Ognjanov, V.; Ljubojević, M.; Tešić, Ž.L. Analysis and Characterisation of Phytochemicals in Mulberry (Morus alba L.) Fruits Grown in Vojvodina, North Serbia. Food Chem. 2015, 171, 128–136. [Google Scholar] [CrossRef]
- Hashemi, S.; Khadivi, A. Morphological and Pomological Characteristics of White Mulberry (Morus alba L.) Accessions. Sci. Hortic. 2020, 259, 108827. [Google Scholar] [CrossRef]
- Wen, P.; Hu, T.G.; Linhardt, R.J.; Liao, S.T.; Wu, H.; Zou, Y.X. Mulberry: A Review of Bioactive Compounds and Advanced Processing Technology. Trends Food Sci. Technol. 2019, 83, 138–158. [Google Scholar] [CrossRef]
- Ma, G.; Chai, X.; Hou, G.; Zhao, F.; Meng, Q. Phytochemistry, Bioactivities and Future Prospects of Mulberry Leaves: A Review. Food Chem. 2022, 372, 131335. [Google Scholar] [CrossRef] [PubMed]
- Parida, I.S.; Takasu, S.; Nakagawa, K. A Comprehensive Review on the Production, Pharmacokinetics and Health Benefits of Mulberry Leaf Iminosugars: Main Focus on 1-Deoxynojirimycin, d-Fagomine, and 2-O-ɑ-d-Galactopyranosyl-DNJ. Crit. Rev. Food Sci. Nutr. 2023, 63, 3468–3496. [Google Scholar] [CrossRef]
- Chen, W.; Liang, T.; Zuo, W.; Wu, X.; Shen, Z.; Wang, F.; Li, C.; Zheng, Y.; Peng, G. Neuroprotective Effect of 1-Deoxynojirimycin on Cognitive Impairment, β-Amyloid Deposition, and Neuroinflammation in the SAMP8 Mice. Biomed. Pharmacother. 2018, 106, 92–97. [Google Scholar] [CrossRef]
- Wang, R.J.; Yang, C.H.; Hu, M.L. 1-Deoxynojirimycin Inhibits Metastasis of B16F10 Melanoma Cells by Attenuating the Activity and Expression of Matrix Metalloproteinases-2 and -9 and Altering Cell Surface Glycosylation. J. Agric. Food Chem. 2010, 58, 8988–8993. [Google Scholar] [CrossRef]
- Ramappa, V.K.; Srivastava, D.; Singh, P.; Kumar, U.; Singh, V. Mulberry 1-Deoxynojirimycin (DNJ): An Exemplary Compound for Therapeutics. J. Hortic. Sci. Biotechnol. 2020, 95, 679–686. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, X.; Yue, Y.; Yue, T.; Yuan, Y. Improved Flavonoid Content in Mulberry Leaves by Solid-State Fermentation: Metabolic Profile, Activity, and Mechanism. Innov. Food Sci. Emerg. Technol. 2023, 84, 103308. [Google Scholar] [CrossRef]
- Park, E.; Lee, S.-M.M.; eun Lee, J.; Kim, J.-H.H. Anti-Inflammatory Activity of Mulberry Leaf Extract through Inhibition of NF-ΚB. J. Funct. Foods 2013, 5, 178–186. [Google Scholar] [CrossRef]
- Meng, Q.; Qi, X.; Fu, Y.; Chen, Q.; Cheng, P.; Yu, X.; Sun, X.; Wu, J.; Li, W.; Zhang, Q.; et al. Flavonoids Extracted from Mulberry (Morus alba L.) Leaf Improve Skeletal Muscle Mitochondrial Function by Activating AMPK in Type 2 Diabetes. J. Ethnopharmacol. 2020, 248, 112326. [Google Scholar] [CrossRef]
- Donno, D.; Cerutti, A.K.; Prgomet, I.; Mellano, M.G.; Beccaro, G.L. Foodomics for Mulberry Fruit (Morus spp.): Analytical Fingerprint as Antioxidants’ and Health Properties’ Determination Tool. Food Res. Int. 2015, 69, 179–188. [Google Scholar] [CrossRef]
- Du, Q.; Zheng, J.; Xu, Y. Composition of Anthocyanins in Mulberry and Their Antioxidant Activity. J. Food Compos. Anal. 2008, 21, 390–395. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Q.; Zhu, S.; Liu, B.; Liu, F.; Xu, Y. Mulberry Leaf (Morus alba L.): A Review of Its Potential Influences in Mechanisms of Action on Metabolic Diseases. Pharmacol. Res. 2022, 175, 106029. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kwon, J.W. Anti-Inflammatory Effect of Mulberry Anthocyanins on Experimental Dry Eye. Acta Ophthalmol. 2024, 102. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, M.; Yi, Y.; Huang, Y.; Yin, Q.; Zuo, Y. Exploration of Microbial Community Diversity and Bioactive Substances during Fermentation of Mulberry Jiaosu, an Edible Naturally Fermented Mulberry Product. Fermentation 2023, 9, 910. [Google Scholar] [CrossRef]
- Jiang, W.; Li, C.; Cheng, J.; Wei, S.; Wang, Y. Analysis of Quality Changes in Mulberry Fruit at Three Developmental Stages Using Targeted Metabolomics Based on LC–MS. Trop. Plant Biol. 2023, 16, 287–306. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.R.; Kang, K.S.; Kim, K.H. Bioactive Phytochemicals from Mulberry: Potential Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated Raw 264.7 Macrophages. Int. J. Mol. Sci. 2021, 22, 8120. [Google Scholar] [CrossRef]
- Lee, J.S.; Synytsya, A.; Kim, H.B.; Choi, D.J.; Lee, S.; Lee, J.; Kim, W.J.; Jang, S.; Park, Y.I. Purification, Characterization and Immunomodulating Activity of a Pectic Polysaccharide Isolated from Korean Mulberry Fruit Oddi (Morus alba L.). Int. Immunopharmacol. 2013, 17, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Purohit, K.; Reddy, N.; Sunna, A. Exploring the Potential of Bioactive Peptides: From Natural Sources to Therapeutics. Int. J. Mol. Sci. 2024, 25, 1391. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-P.; Huang, Q.; Chen, C.; You, L.-J.; Liu, R.H.; Luo, Z.-G.; Zhao, M.-M.; Fu, X. The Chemical Structure and Biological Activities of a Novel Polysaccharide Obtained from Fructus Mori and Its Zinc Derivative. J. Funct. Foods 2019, 54, 64–73. [Google Scholar] [CrossRef]
- Chen, C.; You, L.-J.; Huang, Q.; Fu, X.; Zhang, B.; Liu, R.-H.; Li, C. Modulation of Gut Microbiota by Mulberry Fruit Polysaccharide Treatment of Obese Diabetic Db/Db Mice. Food Funct. 2018, 9, 3732–3742. [Google Scholar] [CrossRef] [PubMed]
- Gundogdu, M.; Tunçtürk, M.; Berk, S.; Şekeroğlu, N.; Gezici, S. Antioxidant Capacity and Bioactive Contents of Mulberry Species from Eastern Anatolia Region of Turkey. Indian J. Pharm. Educ. Res. 2018, 52, S96–S101. [Google Scholar] [CrossRef]
- Wang, H.; Huang, G. Extraction, Purification, Structural Modification, Activities and Application of Polysaccharides from Different Parts of Mulberry. Food Funct. 2024, 15, 3939–3958. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Lin, J.Y. Anti-Inflammatory and Anti-Apoptotic Effects of Strawberry and Mulberry Fruit Polysaccharides on Lipopolysaccharide-Stimulated Macrophages through Modulating pro-/Anti-Inflammatory Cytokines Secretion and Bcl-2/Bak Protein Ratio. Food Chem. Toxicol. 2012, 50, 3032–3039. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Z.; Chu, L.; Jiang, X.; Xu, J.; Wu, L.; Zhang, T.; Wang, J.; Ren, G.; Mou, X.; et al. Purification, Characterization and Immunomodulatory Activities of Polysaccharides from Mulberry Leaf Fermented with Phellinus Igniarius. J. Biobased Mater. Bioenergy 2021, 15, 171–179. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, X.; Deng, Q.; Yang, M.; Li, S.; Zhang, Q.; Sun, Y.; Chen, H. Extraction, Structural Characterization and Biological Activities of Polysaccharides from Mulberry Leaves: A Review. Int. J. Biol. Macromol. 2024, 257, 128669. [Google Scholar] [CrossRef]
- Guo, S.; Bai, L.; Ho, C.T.; Bai, N. Characteristic Components, Biological Activities and Future Prospective of Fructus Mori: A Review. Curr. Pharmacol. Rep. 2018, 4, 210–219. [Google Scholar] [CrossRef]
- Pel, P.; Chae, H.S.; Nhoek, P.; Kim, Y.M.; Chin, Y.W. Chemical Constituents with Proprotein Convertase Subtilisin/Kexin Type 9 MRNA Expression Inhibitory Activity from Dried Immature Morus alba Fruits. J. Agric. Food Chem. 2017, 65, 5316–5321. [Google Scholar] [CrossRef]
- Bhattacharjya, D.; Sadat, A.; Dam, P.; Buccini, D.F.; Mondal, R.; Biswas, T.; Biswas, K.; Sarkar, H.; Bhuimali, A.; Kati, A.; et al. Current Concepts and Prospects of Mulberry Fruits for Nutraceutical and Medicinal Benefits. Curr. Opin. Food Sci. 2021, 40, 121–135. [Google Scholar] [CrossRef]
- Wani, M.Y.; Ganie, N.A.; Wani, D.M.; Wani, A.W.; Dar, S.Q.; Khan, A.H.; A Khan, N.; Manzar, M.S.; Dehghani, M.H. The Phenolic Components Extracted from Mulberry Fruits as Bioactive Compounds against Cancer: A Review. Phytother. Res. 2023, 37, 1136–1152. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Mokhtar, R.A.M.; Sani, M.S.A.; Noor, N.Q.I.M. The Effect of Maturity and Extraction Solvents on Bioactive Compounds and Antioxidant Activity of Mulberry (Morus alba) Fruits and Leaves. Molecules 2022, 27, 2406. [Google Scholar] [CrossRef] [PubMed]
- Isabelle, M.; Bee, L.L.; Choon, N.O.; Liu, X.; Huang, D. Peroxyl Radical Scavenging Capacity, Polyphenolics, and Lipophilic Antioxidant Profiles of Mulberry Fruits Cultivated in Southern China. J. Agric. Food Chem. 2008, 56, 9410–9416. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and Their Applications: An Approach in Food Chemistry and Innovation Potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Xiang, J.; Wang, C.; Johnson, J.B.; Beta, T. Diverse Polyphenol Components Contribute to Antioxidant Activity and Hypoglycemic Potential of Mulberry Varieties. LWT 2023, 173, 114308. [Google Scholar] [CrossRef]
- Qadir, R.; Anwar, F.; Gilani, M.; Zahoor, S.; Rehman, M.; Mustaqeem, M. RSM/ANN Based Optimized Recovery of Phenolics from Mulberry Leaves by Enzyme-Assisted Extraction. Czech J. Food Sci. 2019, 37, 99–105. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Amorós, A.; Hernández, F.; Martínez, J.J. Physicochemical Properties of White (Morus alba) and Black (Morus nigra) Mulberry Leaves, a New Food Supplement. J. Food Nutr. Res. 2017, 5, 253–261. [Google Scholar] [CrossRef]
- Koyuncu, F.; Çetinbaş, M.; Ibrahim, E. Nutritional Constituents of Wild-Grown Black Mulberry (Morus nigra L.). J. Appl. Bot. Food Qual. 2014, 87, 93–96. [Google Scholar] [CrossRef]
- Kattil, A.; Hamid; Dash, K.K.; Shams, R.; Sharma, S. Nutritional Composition, Phytochemical Extraction, and Pharmacological Potential of Mulberry: A Comprehensive Review. Futur. Foods 2024, 9, 100295. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Zhang, Y.; Deng, Z. Nutritional and Functional Components of Mulberry Leaves from Different Varieties: Evaluation of Their Potential as Food Materials. Int. J. Food Prop. 2018, 21, 1495–1507. [Google Scholar] [CrossRef]
- Margareta, O.; Diana, C.R.; Maria, C.G.; Mariana, R.; Tatiana, P.; Iulia, V. Effect of Dietary Mulberry (Morus alba) Leaves on Performance Parameters and Quality of Breast Meat of Broilers. Indian J. Anim. Sci. 2015, 85, 291–295. [Google Scholar] [CrossRef]
- McClements, D.J. Encapsulation, Protection, and Delivery of Bioactive Proteins and Peptides Using Nanoparticle and Microparticle Systems: A Review. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Bhandari, B. Encapsulation of Polyphenols—A Review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- McClements, D.J.; Gumus, C.E. Natural Emulsifiers—Biosurfactants, Phospholipids, Biopolymers, and Colloidal Particles: Molecular and Physicochemical Basis of Functional Performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef]
- Yang, C.; Sun, N.; Qin, X.; Liu, Y.; Sui, M.; Zhang, Y.; Hu, Y.; Mao, Y.; Shen, X. Analysis of Flavonoid Metabolism of Compounds in Succulent Fruits and Leaves of Three Different Colors of Rosaceae. Sci. Rep. 2024, 14, 4933. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y.; Lovillo, M.P.; Carrera Fernández, C.A.; Ruiz Rodríguez, A. Subcritical Water Extraction of Natural Products. Molecules 2021, 26, 4004. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Z.; Liu, Q.H.; Liu, Z.; Tang, J.W.; Chua, E.G.; Li, F.; Xiong, X.S.; Wang, M.M.; Wen, P.B.; Shi, X.Y.; et al. Ethanol Extract of Mulberry Leaves Partially Restores the Composition of Intestinal Microbiota and Strengthens Liver Glycogen Fragility in Type 2 Diabetic Rats. BMC Complement. Med. Ther. 2021, 21, 172. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, X.; Zhu, X.; Wang, G.; Zhuang, K.; Wang, Y.; Ding, W. Optimization of Extrusion and Ultrasound-Assisted Extraction of Phenolic Compounds from Jizi439 Black Wheat Bran. Processes 2020, 8, 1153. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in Ultrasound Assisted Extraction of Bioactive Compounds from Cash Crops—A Review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, H.; Liu, W.; Li, C. Survey of Antioxidant Capacity and Phenolic Composition of Blueberry, Blackberry, and Strawberry in Nanjing. J. Zhejiang Univ. Sci. B 2012, 13, 94–102. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Ethanolic Extraction of Flavonoids, Phenolics and Antioxidants from Vernonia Amygdalina Leaf Using Two-Level Factorial Design. J. King Saud Univ.-Sci. 2020, 32, 7–16. [Google Scholar] [CrossRef]
- Łubek-Nguyen, A.; Ziemichód, W.; Olech, M. Application of Enzyme-Assisted Extraction for the Recovery of Natural Bioactive Compounds for Nutraceutical and Pharmaceutical Applications. Appl. Sci. 2022, 12, 3232. [Google Scholar] [CrossRef]
- Das, S.; Nadar, S.S.; Rathod, V.K. Integrated Strategies for Enzyme Assisted Extraction of Bioactive Molecules: A Review. Int. J. Biol. Macromol. 2021, 191, 899–917. [Google Scholar] [CrossRef]
- Anusha, V.; Sivakumar, P. A Review on Supercritical Fluid Extraction. Curr. J. Appl. Sci. Technol. 2023, 42, 1–12. [Google Scholar] [CrossRef]
- Singh, S.; Verma, D.K.; Thakur, M.; Tripathy, S.; Patel, A.R.; Shah, N.; Utama, G.L.; Srivastav, P.P.; Benavente-Valdés, J.R.; Chávez-González, M.L.; et al. Supercritical Fluid Extraction (SCFE) as Green Extraction Technology for High-Value Metabolites of Algae, Its Potential Trends in Food and Human Health. Food Res. Int. 2021, 150, 110746. [Google Scholar] [CrossRef]
- Radojković, M.; Zeković, Z.; Mašković, P.; Vidović, S.; Mandić, A.; Mišan, A.; Đurović, S. Biological Activities and Chemical Composition of Morus Leaves Extracts Obtained by Maceration and Supercritical Fluid Extraction. J. Supercrit. Fluids 2016, 117, 50–58. [Google Scholar] [CrossRef]
- Liu, X.C.; Chen, X.Q.; Li, R.T.; Zhang, Z.J. Chemical Constituents from the Root Bark of Morus alba and Their Chemotaxonomic Significance. Biochem. Syst. Ecol. 2023, 107, 104585. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Espada-Bellido, E.; Ferreiro-González, M.; Barbero, G.F.; Carrera, C.; Palma, M.; Barroso, C.G. Alternative Extraction Method of Bioactive Compounds from Mulberry (Morus nigra L.) Pulp Using Pressurized-Liquid Extraction. Food Anal. Methods 2018, 11, 2384–2395. [Google Scholar] [CrossRef]
- Babbar, N.; Oberoi, H.S.; Sandhu, S.K.; Bhargav, V.K. Influence of Different Solvents in Extraction of Phenolic Compounds from Vegetable Residues and Their Evaluation as Natural Sources of Antioxidants. J. Food Sci. Technol. 2014, 51, 2568. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-Phase Extraction of Organic Compounds: A Critical Review (Part I). TrAC-Trends Anal. Chem. 2016, 80, 641–654. [Google Scholar] [CrossRef]
- Faraji, M.; Yamini, Y.; Gholami, M. Recent Advances and Trends in Applications of Solid-Phase Extraction Techniques in Food and Environmental Analysis; Springer: Berlin/Heidelberg, Germany, 2019; Volume 82, ISBN 0123456789. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Mazzara, E.; Abouelenein, D.; Angeloni, S.; Nunez, S.; Sagratini, G.; Cespi, M.; Vittori, S.; Caprioli, G.; Maggi, F. Optimization of Solvent-Free Microwave-Assisted Hydrodiffusion and Gravity Extraction of Morus nigra L. Fruits Maximizing Polyphenols, Sugar Content, and Biological Activities Using Central Composite Design. Pharmaceuticals 2022, 15, 99. [Google Scholar] [CrossRef]
- Pothinuch, P.; Tongchitpakdee, S. Melatonin Contents in Mulberry (Morus spp.) Leaves: Effects of Sample Preparation, Cultivar, Leaf Age and Tea Processing. Food Chem. 2011, 128, 415–419. [Google Scholar] [CrossRef]
- Subramanian, P.; Anandharamakrishnan, C. Extraction of Bioactive Compounds. Ind. Appl. Funct. Foods Ingred. Nutraceuticals Extr. Process. Formul. Bioact. Compd. 2023, 45–87. [Google Scholar] [CrossRef]
- Li, F.; Zhang, B.; Chen, G.; Fu, X. Analysis of Solvent Effects on Polyphenols Profile, Antiproliferative and Antioxidant Activities of Mulberry (Morus alba L.) Extracts. Int. J. Food Sci. Technol. 2017, 52, 1690–1698. [Google Scholar] [CrossRef]
- Wu, X.; Rao, L.-Q.; Peng, G.-P.; Hua, Y. Extraction Technology of Resveratrol from Mulberry Leaf. Nat. Prod. Res. Dev. 2011, 23, 556–560. [Google Scholar]
- Zou, T.-B.; Wang, M.; Gan, R.-Y.; Ling, W.-H. Optimization of Ultrasound-Assisted Extraction of Anthocyanins from Mulberry, Using Response Surface Methodology. Int. J. Mol. Sci. 2011, 12, 3006–3017. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Ghasemzadeh, N. Optimization of Flavonoids Extraction Process from Mulberry (Morus alba L.) Leaves. J. Med. Plants Res. 2011, 5, 4171–4179. [Google Scholar]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. Supercritical Carbon Dioxide (ScCO2) Extraction of Phenolic Compounds from Lavender (Lavandula Angustifolia) Flowers: A Box-Behnken Experimental Optimization. Molecules 2019, 24, 2345. [Google Scholar] [CrossRef] [PubMed]
- Tizón Alba, A.; Aliaño-González, M.J.; Palma, M.; Fernández Barbero, G.; Carrera, C. Enhancing Efficiency of Enzymatic-Assisted Extraction Method for Evaluating Bioactive Compound Analysis in Mulberry: An Optimization Approach. Agronomy 2023, 13, 2548. [Google Scholar] [CrossRef]
- Krishna, H.; Singh, D.; Singh, R.S.; Kumar, L.; Sharma, B.D.; Saroj, P.L. Morphological and Antioxidant Characteristics of Mulberry (Morus spp.) Genotypes. J. Saudi Soc. Agric. Sci. 2020, 19, 136–145. [Google Scholar] [CrossRef]
- Brumm, A.; Fukushi, K. Introducing the Food Value Framework (FVF) to Empower Transdisciplinary Research and Unite Stakeholders in Their Efforts of Building a Sustainable Global Food System. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R.P. Nutritional Quality of Leaves of Some Genotypes of Mulberry (Morus alba). Int. J. Food Sci. Nutr. 2006, 57, 305–313. [Google Scholar] [CrossRef]
- Herman, R.A.; Ayepa, E.; Fometu, S.S.; Shittu, S.; Davids, J.S.; Wang, J. Mulberry Fruit Post-Harvest Management: Techniques, Composition and Influence on Quality Traits—A Review. Food Control 2022, 140, 109126. [Google Scholar] [CrossRef]
- Oktay, Y. Physicochemical and Sensory Properties of Mulberry Products: Gümüşhane Pestil and Köme. Turk. J. Agric. For. 2013, 37, 762–771. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Q.; Chen, Z.; He, T.; Yu, M.; Zhang, Y.; Nan, H.; Huang, Q.; Zhao, T. Anti-Skin Aging Effects of Mulberry Fruit Extracts: In Vitro and in Vivo Evaluations of the Anti-Glycation and Antioxidant Activities. J. Funct. Foods 2024, 112, 105984. [Google Scholar] [CrossRef]
- Acharya, R.; Bagchi, T.; Gangopadhyay, D.; Acharya, R.; Bagchi, T.; Gangopadhyay, D. Mulberry as a Valuable Resource for Food and Pharmaceutical Industries: A Review. Med. Plants 2022. [Google Scholar] [CrossRef]
- Krishna, V.A.; Sujathamma, P.; Savithri, G.; Vijaya, T. Mul Berry: The Fruit of Heaven’S Choice. HortFlora Res. Spectr. 2015, 4, 82–85. [Google Scholar]
- Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food Bioprocess Technol. 2013, 6, 628–647. [Google Scholar] [CrossRef]
- Palanivel, V.; Manavalan, R.; Valliappan, K. Microencapsulation: A Vital Technique in Novel Drug Delivery System. J. Pharm. Sci. Res. 2009, 1, 26–35. [Google Scholar]
- Suthamwong, P.; Minami, M.; Okada, T.; Shiwaku, N.; Uesugi, M.; Yokode, M.; Kamei, K. Administration of Mulberry Leaves Maintains Pancreatic β-Cell Mass in Obese/ Type 2 Diabetes Mellitus Mouse Model. BMC Complement. Med. Ther. 2020, 20, 136. [Google Scholar] [CrossRef]
- Andallu, B.; Kumar, A.V.; Varadacharyulu, N.C. Oxidative Stress in Streptozocin-Diabetic Rats: Amelioration by Mulberry (Morus indica L.) Leaves. Chin. J. Integr. Med. 2012, 1–6. [Google Scholar] [CrossRef]
- Andallu, B.; Varadacharyulu, N.C. Antioxidant Role of Mulberry (Morus indica L. cv. anantha) Leaves in Streptozotocin-Diabetic Rats. Clin. Chim. Acta 2003, 338, 3–10. [Google Scholar] [CrossRef]
- Sheng, Y.; Zheng, S.; Ma, T.; Zhang, C.; Ou, X.; He, X.; Xu, W.; Huang, K. Mulberry Leaf Alleviates Streptozotocin-Induced Diabetic Rats by Attenuating NEFA Signaling and Modulating Intestinal Microflora. Sci. Rep. 2017, 7, 12041. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Arai, H.; Tamura, Y.; Murayama, T.; Khaengkhan, P.; Nishio, T.; Ono, K.; Ariyasu, H.; Akamizu, T.; Ueda, Y.; et al. Mulberry Leaf Ameliorates the Expression Profile of Adipocytokines by Inhibiting Oxidative Stress in White Adipose Tissue in Db/Db Mice. Atherosclerosis 2009, 204, 388–394. [Google Scholar] [CrossRef]
- Ji, S.; Zhu, C.; Gao, S.; Shao, X.; Chen, X.; Zhang, H.; Tang, D. Morus alba Leaves Ethanol Extract Protects Pancreatic Islet Cells against Dysfunction and Death by Inducing Autophagy in Type 2 Diabetes. Phytomedicine 2021, 83, 153478. [Google Scholar] [CrossRef]
- Król, E.; Jeszka-Skowron, M.; Krejpcio, Z.; Flaczyk, E.; Wójciak, R.W. The Effects of Supplementary Mulberry Leaf (Morus alba) Extracts on the Trace Element Status (Fe, Zn and Cu) in Relation to Diabetes Management and Antioxidant Indices in Diabetic Rats. Biol. Trace Elem. Res. 2011, 174, 158–165. [Google Scholar] [CrossRef]
- Jung, S.H.; Han, J.H.; Park, H.S.; Lee, D.H.; Kim, S.J.; Cho, H.S.; Kang, J.S.; Myung, C.S. Effects of Unaltered and Bioconverted Mulberry Leaf Extracts on Cellular Glucose Uptake and Antidiabetic Action in Animals. BMC Complement. Altern. Med. 2019, 19, 55. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Wang, M.; Liu, C.; Zhao, H.; Zhao, B. Mulberry Leaf Reduces Inflammation and Insulin Resistance in Type 2 Diabetic Mice by TLRs and Insulin Signalling Pathway. BMC Complement. Altern. Med. 2019, 19, 326. [Google Scholar] [CrossRef] [PubMed]
- Ann, J.Y.; Eo, H.; Lim, Y. Mulberry Leaves (Morus alba L.) Ameliorate Obesity-Induced Hepatic Lipogenesis, Fibrosis, and Oxidative Stress in High-Fat Diet-Fed Mice. Genes Nutr. 2015, 10, 46. [Google Scholar] [CrossRef]
- Naowaboot, J.; Chung, C.H.; Pannangpetch, P.; Choi, R.; Kim, B.H.; Lee, M.Y.; Kukongviriyapan, U. Mulberry Leaf Extract Increases Adiponectin in Murine 3T3-L1 Adipocytes. Nutr. Res. 2012, 32, 39–44. [Google Scholar] [CrossRef]
- He, X.; Fang, J.; Ruan, Y.; Wang, X.; Sun, Y.; Wu, N.; Zhao, Z.; Chang, Y.; Ning, N.; Guo, H.; et al. Structures, Bioactivities and Future Prospective of Polysaccharides from Morus alba (White Mulberry): A Review. Food Chem. 2018, 245, 899–910. [Google Scholar] [CrossRef]
- Du, Y.; Li, D.; Lu, D.; Zhang, R.; Zheng, X.; Xu, B.; Zhao, Y.; Ji, S.; Guo, M.; Wang, L.; et al. Morus alba L. Water Extract Changes Gut Microbiota and Fecal Metabolome in Mice Induced by High-Fat and High-Sucrose Diet plus Low-Dose Streptozotocin. Phyther. Res. 2022, 36, 1241–1257. [Google Scholar] [CrossRef]
- Gurukar, M.S.A.; Chilkunda, N.D. Morus alba Leaf Bioactives Modulate Peroxisome Proliferator Activated Receptor γ in the Kidney of Diabetic Rat and Impart Beneficial Effect. J. Agric. Food Chem. 2018, 66, 7923–7934. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-S.; Ji, T.; Su, S.-L.; Zhu, Y.; Chen, X.-L.; Shang, E.-X.; Guo, S.; Qian, D.-W.; Duan, J.-A. Mulberry Leaves Ameliorate Diabetes via Regulating Metabolic Profiling and AGEs/RAGE and P38 MAPK/NF-ΚB Pathway. J. Ethnopharmacol. 2022, 283, 114713. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Zhang, Y.; Cui, W.; Lu, G.; Wang, Y.; Gao, H.; Huang, L.; Mu, Z. A Polysaccharide Extract of Mulberry Leaf Ameliorates Hepatic Glucose Metabolism and Insulin Signaling in Rats with Type 2 Diabetes Induced by High Fat-Diet and Streptozotocin. Int. J. Biol. Macromol. 2015, 72, 951–959. [Google Scholar] [CrossRef]
- Zhang, L.; Su, S.; Zhu, Y.; Guo, J.; Guo, S.; Qian, D.; Ouyang, Z.; Duan, J.A. Mulberry Leaf Active Components Alleviate Type 2 Diabetes and Its Liver and Kidney Injury in Db/Db Mice through Insulin Receptor and TGF-β/Smads Signaling Pathway. Biomed. Pharmacother. 2019, 112, 108675. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Oncotarget 7204 www.impactjournals.com/Oncotarget Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Huang, H.W.; Hsu, C.P.; Yang, B.B.; Wang, C.Y. Advances in the Extraction of Natural Ingredients by High Pressure Extraction Technology. Trends Food Sci. Technol. 2013, 33, 54–62. [Google Scholar] [CrossRef]
- Hsu, J.H.; Yang, C.S.; Chen, J.J. Antioxidant, Anti-α-Glucosidase, Antityrosinase, and Anti-Inflammatory Activities of Bioactive Components from Morus alba. Antioxidants 2022, 11, 2222. [Google Scholar] [CrossRef]
- Wang, W.; Zu, Y.; Fu, Y.; Efferth, T. In Vitro Antioxidant and Antimicrobial Activity of Extracts from Morus alba L. Leaves, Stems and Fruits. Am. J. Chin. Med. 2012, 40, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Aziz-Aliabadi, F.; Noruzi, H.; Hassanabadi, A. Effect of Different Levels of Green Tea (Camellia sinensis) and Mulberry (Morus alba) Leaves Powder on Performance, Carcass Characteristics, Immune Response and Intestinal Morphology of Broiler Chickens. Vet. Med. Sci. 2023, 9, 1281–1291. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lye, P.Y.; Wong, S.K. Phytochemistry, Pharmacology, and Clinical Trials of Morus alba. Chin. J. Nat. Med. 2016, 14, 17–30. [Google Scholar] [CrossRef]
- Hu, T.G.; Wen, P.; Shen, W.Z.; Liu, F.; Li, Q.; Li, E.N.; Liao, S.T.; Wu, H.; Zou, Y.X. Effect of 1-Deoxynojirimycin Isolated from Mulberry Leaves on Glucose Metabolism and Gut Microbiota in a Streptozotocin-Induced Diabetic Mouse Model. J. Nat. Prod. 2019, 82, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Liu, M.; Zhang, Y.; Zhang, H. Improvement Activity of 1-Deoxynojirimycin in the Growth of Dairy Goat Primary Mammary Epithelial Cell through Upregulating LEF-1 Expression. Biomed Res. Int. 2018, 7809512. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cai, B.; Wang, J.; Sheng, Z.; Yang, H.; Wang, D.; Chen, J.; Ning, Q. Mulberry Leaf-Derived Polysaccharide Modulates the Immune Response and Gut Microbiota Composition in Immunosuppressed Mice. J. Funct. Foods 2021, 83, 104545. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit—A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Ai, J.; Bao, B.; Battino, M.; Giampieri, F.; Chen, C.; You, L.; Cespedes-Acuña, C.L.; Ognyanov, M.; Tian, L.; Bai, W. Recent Advances on Bioactive Polysaccharides from Mulberry. Food Funct. 2021, 12, 5219–5235. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Wu, Z.; Huang, L.; Qiu, H.; Wang, L.; Li, L.; Yao, L.; Kang, K.; Qu, J.; Wu, Y.; et al. Mulberry Fruit Prevents LPS-Induced NF-ΚB/PERK/MAPK Signals in Macrophages and Suppresses Acute Colitis and Colorectal Tumorigenesis in Mice. Sci. Rep. 2015, 5, 17348. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.C.; Wang, C.J.; Chang, Y.C.; Hung, T.W.; Lai, C.J.; Kuo, C.W.; Huang, H.P. Mulberry Fruits Extracts Induce Apoptosis and Autophagy of Liver Cancer Cell and Prevent Hepatocarcinogenesis in Vivo. J. Food Drug Anal. 2020, 28, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Arias, A.; Feijoo, G.; Moreira, M.T. Exploring the Potential of Antioxidants from Fruits and Vegetables and Strategies for Their Recovery. Innov. Food Sci. Emerg. Technol. 2022, 77, 102974. [Google Scholar] [CrossRef]
- Kurniawansyah, I.S.; Sopyan, I.; Khoerunnisa, A. The Natural Antioxidant Activity of Black Mulberry and Its Others Function. Syst. Rev. Pharm. 2020, 11, 650–655. [Google Scholar] [CrossRef]
- Aramwit, P.; Bang, N.; Srichana, T. The Properties and Stability of Anthocyanins in Mulberry Fruits. Food Res. Int. 2010, 43, 1093–1097. [Google Scholar] [CrossRef]
- Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol Content and Antioxidant Properties of Underutilized Fruits. J. Food Sci. Technol. 2015, 52, 383. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Sohn, M.J.; Kim, W.G. Chalcomoracin and Moracin C, New Inhibitors of Staphylococcus Aureus Enoyl-Acyl Carrier Protein Reductase from Morus alba. Biol. Pharm. Bull. 2012, 35, 791–795. [Google Scholar] [CrossRef]
- Chen, C.; Razali, U.H.M.; Saikim, F.H.; Mahyudin, A.; Noor, N.Q.I.M. Morus alba L. Plant: Bioactive Compounds and Potential as a Functional Food Ingredient. Foods 2021, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- Polumackanycz, M.; Wesolowski, M.; Viapiana, A. Morus alba L. and Morus nigra L. Leaves as a Promising Food Source of Phenolic Compounds with Antioxidant Activity. Plant Foods Hum. Nutr. 2021, 76, 458. [Google Scholar] [CrossRef]
- Khalid, N.; Fawad, S.A.; Ahmed, I. Antimicrobial Activity, Phytochemical Profile and Trace Minerals of Black Mulberry (Morus nigra L.) Fresh Juice. Pak. J. Bot. 2011, 43, 91–96. [Google Scholar]
- Lim, S.H.; Choi, C.I. Pharmacological Properties of Morus nigra L. (Black Mulberry) as a Promising Nutraceutical Resource. Nutrients 2019, 11, 437. [Google Scholar] [CrossRef]
- Minhas, M.A.; Begum, A.; Hamid, S.; Babar, M.; Ilyas, R.; Ali, S.; Latif, F.; Andleeb, S. Evaluation of Antibiotic and Antioxidant Activity of Morus nigra (Black Mulberry) Extracts against Soil Borne, Food Borne and Clinical Human Pathogens. Pak. J. Zool. 2016, 48, 1381–1388. [Google Scholar]
- Liu, S.; Zhao, W.; Lan, P.; Mou, X. The Microbiome in Inflammatory Bowel Diseases: From Pathogenesis to Therapy. Protein Cell 2021, 12, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Lobionda, S.; Sittipo, P.; Kwon, H.Y.; Lee, Y.K. The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors. Microorganisms 2019, 7, 271. [Google Scholar] [CrossRef]
- Petraroli, M.; Castellone, E.; Patianna, V.; Esposito, S. Gut Microbiota and Obesity in Adults and Children: The State of the Art. Front. Pediatr. 2021, 9, 657020. [Google Scholar] [CrossRef]
- Lu, N.; Zhang, L.; Tian, Y.; Yang, J.; Zheng, S.; Wang, L.; Guo, W. Biosynthetic Pathways and Related Genes Regulation of Bioactive Ingredients in Mulberry Leaves. Plant Signal. Behav. 2023, 18, 2287881. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Gao, Y.; Xue, J.; Yang, Y.; Yin, J.; Wu, T.; Zhang, M. Phytochemicals, Pharmacological Effects and Molecular Mechanisms of Mulberry. Foods 2022, 11, 1170. [Google Scholar] [CrossRef] [PubMed]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; et al. Naturally Occurring Anti-Cancer Compounds: Shining from Chinese Herbal Medicine. Chin. Med. 2019, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Deepa, M.; Priya, S. Purification and Characterization of a Novel Anti-Proliferative Lectin from Morus alba L. Leaves. Protein Pept. Lett. 2012, 19, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, R.-R.; Chen, M.; Zhang, H.-Q.; Sun, S.; Zhang, L.-Y. A New Flavanone Glycoside with Anti-Proliferation Activity from the Root Bark of Morus alba. Chin. J. Nat. Med. 2009, 7, 105–107. [Google Scholar] [CrossRef]
- Ye, G.; Sun, X.; Li, J.; Mai, Y.; Gao, R.; Zhang, J. Secondary metabolites of mulberry leaves exert anti-lung cancer activity through regulating the PD-L1/PD-1 signaling pathway. J. Pharm. Anal. 2023, 10, 1016. [Google Scholar] [CrossRef]
Physiochemical Characteristics | M. alba | M. nigra | M. rubra | Reference |
---|---|---|---|---|
Total dry matter (g) | 29.5 | 27 | 24.4 | [34] |
Moisture (%) | 71.5 | 72.6 | 74.6 | [35] |
Ash (g/100 g) | 0.57 | 0.50 | 2.45 | [35] |
pH | 5.6 | 3.52 | 4.04 | [34] |
Protein (g/100 g) | 1.55 | 0.96 | 1.2 | [36] |
Glucose (g/100 g) | 6.864 | 7.748 | 6.068 | [36] |
Fat (%) | 1.10 | 0.95 | 0.85 | [34] |
Fiber (g/100 g) | 1.47 | 11.75 | - | [35] |
Phenol (mg/100 g) | 181 | 1422 | 1035 | [34] |
Flavonoids (mg/100 g) | 29 | 276 | 219 | [34] |
Anthocyanin µg/g | 911.8 | 719 | 109 | [37] |
Ascorbic acid (mg/100 g) | 22.4 | 21.8 | 19.4 | [34] |
Calcium (mg/100 g) | 152 | 132 | 132 | [34] |
K (mg/100 g) | 1688 | 922 | 834 | [34] |
Fe (mg/100 g) | 4.2 | 4.2 | 4.5 | [34] |
Nitrogen (%) | 0.75 | 0.92 | 0.82 | [34] |
Malic acid (g/100 g) | 3.095 | 1.323 | 4.467 | [36] |
Succinic acid (g/100 g) | 0.168 | 0.342 | 0.132 | [36] |
Citric acid (g/100 g) | 0.393 | 1.084 | 0.762 | [36] |
Organic acid (g/100 g) | 3.983 | 2.951 | 5.812 | [36] |
Fructose (g/100 g) | 6.269 | 5.634 | 5.407 | [36] |
Total soluble solids (%) | 7.27 | 11.60 | 19.20 | [38] |
Total acidity (%) | 0.25 | 1.40 | 1.37 | [34] |
Physiochemical Characteristics | M. alba | M. nigra | Reference |
---|---|---|---|
Moisture % | 51.1–59.7 | 51.3–66.9 | [73] |
Crude protein (%) | 20.94–29.15 | 27.63–37.36 | [74] |
Carbohydrates (%) | 3.7 | 3.1 | [75] |
Crude fiber (g/100 g) | 5.1–8.4 | 3.6–16.61 | [76] |
Total ash (%) | --- | 14.78 | [77] |
Potassium (mg/100 g) | 2.1–2.4 | 1.2–3.9 | [73] |
Sodium (mg/100 g) | 10 | 10 | [73] |
Magnesium (mg/100 g) | 0.5–0.9 | 0.4–1.4 | |
Sulphur (mg/100 g) | 0.2–0.3 | 0.2 | |
Nitrogen (g/100 g) | 2.1–2.3 | 2.2–3.1 | |
Calcium (mg/100 g) | 1.7–3.2 | 1.7 | |
Lead (mg/kg) | 0.4–0.8 | 0.3–0.6 | |
Carbon (g/100 g) | 39–41.4 | 37.4–41.3 | |
Titanium (mg/kg) | 5.5–10.8 | 5.4–8.1 | |
Iron (mg/kg) | 119.3–241.8 | 124.7–197.8 | |
Zinc (mg/kg) | 23.9–39.5 | 29.5–34.2 | |
Lithium (mg/kg) | 3.1–10.1 | 1.9–17.2 | |
Copper (mg/kg) | 4.4–5.8 | 4.2–5.9 | |
Nickel (mg/kg) | 2.1–2.9 | 1.7–5.4 | |
Boron (mg/kg) | 253.5–825.3 | 277.4–548.3 | |
Molybdenum (mg/kg) | 0.8–1.3 | 1.1–2.3 |
Mulberry Extracts/Components | Model Used | Extraction Technique | Pharmacological Effect | Mechanism of Action | References |
---|---|---|---|---|---|
Mulberry leaf extract | Male db/db mice | Hot air mill | Protect Ielts-b cells | Endoplasmic reticulum stress (ERS) ↓, β-cell apoptosis ↓, β-cell proliferation ↓ | [123] |
Mulberry leaf extract | Male Wistar rats | Antioxidative | Glucose-6-phosphate dehydrogenase (G6PDH), Glutathione peroxidase (GPx), Glutathione–S–transferase (GST), Superoxide dismutase (SOD) ↑, Chloramphenicol acetyltransferase (CAT) ↓ | [124] | |
Mulberry leaf extract | Male Wistar rats | Electric mix | Antioxidative | GPx, Glutathione reductase (GR), GST, SOD ↑, CAT ↓ | [125] |
Mulberry leaf extract | Male SD rates | Gut microbiota regulation | Coprobacillus, Runinococcaceae, Bifidobacterium, Bacteroides, Prevotella, Collinsella ↑ | [126] | |
Mulberry leaf extract | Male db/db mice | Air flush dried | Antioxidant, anti-inflammatory | Tumor necrosis factor-α (TNF-α), Monocyte chemotactic protein-1 (MCP-1), Cluster of differentiation 68 (CD68), Thiobarbituric acid reactive substances (TBARS), Nicotinamide Adenine dinucleotide phosphate (NADPH) oxidase subunits, PU.1 ↓ | [127] |
Mulberry leaf extract | INS-1 cells | Ethanol | Induce autophagy | Microtubule-associated protein 1A/1B-light chain 3 (LC3II/1) ↑, Phospho-adenosine monophosphate kinase (p-AMPK), p62, Mammalian target of rapamycin (mTOR) ↓ | [68] |
Mulberry leaf extract | Male C57BL/6 J mice | Water | Gut microbiota regulation | Short-chain fatty acids (SCFA) ↑, Bacteroidetes, Proteobacteria ↑, Firmicutes ↓ | [128] |
Mulberry leaf extract | Male Wistar rates | Acetone and ethanol–water | Antioxidant | Liver and kidney Fe ↓, TBARS ↓ Liver Cu ↑ | [129] |
Mulberry leaf extract | C57BL/6 mice | Pressure extraction | Pancreatic β-cells protection | Protein kinase B (p-Akt) ↑ | [130] |
Mulberry leaf extract | Male ICR rats | Water | Antioxidant and anti-inflammatory | TNF-α; Toll-like receptors (TLR)-2; Myeloid differentiation factor (MyD)-88, TNF receptor-associated factor 6 (TRAF6), Nuclear factor-kappa-B (NF-κB) p65; Insulin receptor substrate (IRS)-1 ↓, Insulin receptor substrate(InsR) ↑ | [131] |
Mulberry leaf extract | C57BL/6 mice | Ethanol | Antioxidant and decreased liver fibrosis | Lipoprotein lipase (LPL), Sterol regulatory Element-binding transcription factor 1 (SREBP1c), aP2, Liver-X-receptor alpha (LXRa), Fatty acid synthase (FAS), CCAAT/Enhancer-binding protein (C/EBPα) ↓, Uncoupling protein 2 (UCP2) ↑, Alpha-smooth muscle actin (a-SMA), collagen ↓, 4-hydroxynonenal protein adducts(4-HNE), Nuclear factor erythroid 2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1), GPx ↓ | [132] |
Mulberry leaf extract | Male SD rats | Ethanol | Antioxidant, anti-inflammatory | Malondialdehyde (MDA), lipid hydroperoxide, DPPH Radical ↓ | [133] |
Mulberry leaf extract | SD rats | Ethanol | Regulate gut microbiota | Bacteroidetes, Bacteroides, Barnesiella, Ruminococcus ↑, Actinobacteria, Bifidobacterium, Romboutsia, Lactobacillus ↓ | [134] |
Mulberry leaf extract | C57BL/6 J mice | Ethanol | Regulate gut microbiota | Bacteroidetes, Firmicutes, Bacteroidetes, Actinobacteria, Epsilonbacteraeota, Cyanobacteria, Alloprevotella, Muribaculaceae, Parabacteroides ↑, Romboutsia, Gastranaerophilales or Oscillatoriales_cyanobacterium ↓ | [135] |
Coumaric acid | Male Wistar rats | Hydrolysis | Reduce inflammation and fibrosis | Smooth endoplasmic reticulum (Ser)-112, Peroxisome proliferator-activated receptor-gamma (PPARγ), NF-kb ↓ | [136] |
DNJ and QG | HepG2 cells | Anti-inflammatory | P38, MAPK, PPARγ, SREBP1, TNF-α, interleukin (IL)-1, IL-6, NF-kb ↓ | [137] | |
Polysaccharides | Male Wistar rats | Water | Antioxidants improve insulin sensitivity and suppress renal fibrosis | P13K, p-IRS1, 2, p-Akt-1, p-Akt-2, p85α ↑ | [138] |
Flavonoids and Alkaloids | Male db/db mice | Repair kidney and live damage | Phosphatidylinositol–3 kinase (P13k) ↑, NFk-b, Transforming growth factor beta (TGFb)-1 SMAD family member (smad)2,3,4 ↓ | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, Z.; Tong, Y.; Wang, J.; Zhang, J.; Wei, X.; Si, D.; Zhang, R. Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. Int. J. Mol. Sci. 2024, 25, 5333. https://doi.org/10.3390/ijms25105333
Abbas Z, Tong Y, Wang J, Zhang J, Wei X, Si D, Zhang R. Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. International Journal of Molecular Sciences. 2024; 25(10):5333. https://doi.org/10.3390/ijms25105333
Chicago/Turabian StyleAbbas, Zaheer, Yucui Tong, Junyong Wang, Jing Zhang, Xubiao Wei, Dayong Si, and Rijun Zhang. 2024. "Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques" International Journal of Molecular Sciences 25, no. 10: 5333. https://doi.org/10.3390/ijms25105333
APA StyleAbbas, Z., Tong, Y., Wang, J., Zhang, J., Wei, X., Si, D., & Zhang, R. (2024). Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. International Journal of Molecular Sciences, 25(10), 5333. https://doi.org/10.3390/ijms25105333