The Evolving Role of Genomic Testing in Early Breast Cancer: Implications for Diagnosis, Prognosis, and Therapy
Abstract
:1. Introduction
2. Testing Methodologies
2.1. Oncotype Dx®
2.2. MammaPrint®
2.3. PAM50 Prosigna®
2.4. EndoPredict®
2.5. Breast Cancer Index®
3. Clinical Validity and Clinical Utility
3.1. Oncotype Dx®
3.2. MammaPrint®
3.3. PAM50 Prosigna®
3.4. EndoPredict®
3.5. Breast Cancer Index®
4. Current Guidelines on Gene Profiling Assays
5. Discussion of the Current Challenges and Opportunities
5.1. Outsourcing vs. ‘in-House’ Approaches
5.2. Cost–Utility Analysis
5.3. Unmet Clinical Needs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rakha, E.A.; Tse, G.M.; Quinn, C.M. An update on the pathological classification of breast cancer. Histopathology 2023, 82, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Licata, L.; De Sanctis, R.; Vingiani, A.; Cosentini, D.; Iorfida, M.; Caremoli, E.R.; Sassi, I.; Fernandes, B.; Gianatti, A.; Guerini-Rocco, E.; et al. Real-world use of multigene signatures in early breast cancer: Differences to clinical trials. Breast Cancer Res. Treat. 2024, 205, 39–48. [Google Scholar] [CrossRef]
- Pescia, C.; Guerini-Rocco, E.; Viale, G.; Fusco, N. Advances in Early Breast Cancer Risk Profiling: From Histopathology to Molecular Technologies. Cancers 2023, 15, 5430. [Google Scholar] [CrossRef] [PubMed]
- Malmgren, J.; Hurlbert, M.; Atwood, M.; Kaplan, H.G. Examination of a paradox: Recurrent metastatic breast cancer incidence decline without improved distant disease survival: 1990–2011. Breast Cancer Res. Treat. 2019, 174, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Sestak, I. Risk stratification in early breast cancer in premenopausal and postmenopausal women: Integrating genomic assays with clinicopathological features. Curr. Opin. Oncol. 2019, 31, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Battaglia, O.; Pellegrino, G.; Mangione, E.; Petitto, S.; Fiol Manna, E.D.; Cazzaniga, L.; Nicosia, L.; Lazzeroni, M.; Corso, G.; et al. Advances in breast cancer risk modeling: Integrating clinics, imaging, pathology and artificial intelligence for personalized risk assessment. Future Oncol. 2023, 19, 2547–2564. [Google Scholar] [CrossRef] [PubMed]
- Pruneri, G.; Lorenzini, D.; Mastropasqua, M.G.; Perrone, G.; Rizzo, A.; Santini, D.; Volpi, C.C.; Cinieri, S.; Zambelli, A.; Sapino, A.; et al. The central role of pathology labs in breast cancer precision oncology: A call for action. NPJ Breast Cancer 2023, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, M.; Pescia, C.; Trapani, D.; Venetis, K.; Frascarelli, C.; Mane, E.; Cursano, G.; Sajjadi, E.; Scatena, C.; Cerbelli, B.; et al. Early Breast Cancer Risk Assessment: Integrating Histopathology with Artificial Intelligence. Cancers 2024, 16, 1981. [Google Scholar] [CrossRef]
- Ovcaricek, T.; Takac, I.; Matos, E. Multigene expression signatures in early hormone receptor positive HER 2 negative breast cancer. Radiol. Oncol. 2019, 53, 285–292. [Google Scholar] [CrossRef]
- Sestak, I.; Buus, R.; Cuzick, J.; Dubsky, P.; Kronenwett, R.; Denkert, C.; Ferree, S.; Sgroi, D.; Schnabel, C.; Baehner, F.L.; et al. Comparison of the Performance of 6 Prognostic Signatures for Estrogen Receptor–Positive Breast Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2018, 4, 545–553. [Google Scholar] [CrossRef]
- Andre, F.; Ismaila, N.; Allison, K.H.; Barlow, W.E.; Collyar, D.E.; Damodaran, S.; Henry, N.L.; Jhaveri, K.; Kalinsky, K.; Kuderer, N.M.; et al. Biomarkers for Adjuvant Endocrine and Chemotherapy in Early-Stage Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 1816–1837. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Sinn, P.; Seidman, A.D. Summary of head-to-head comparisons of patient risk classifications by the 21-gene Recurrence Score® (RS) assay and other genomic assays for early breast cancer. Int. J. Cancer 2019, 145, 882–893. [Google Scholar] [CrossRef]
- Buus, R.; Szijgyarto, Z.; Schuster, E.F.; Xiao, H.; Haynes, B.P.; Sestak, I.; Cuzick, J.; Paré, L.; Seguí, E.; Chic, N.; et al. Development and validation for research assessment of Oncotype DX® Breast Recurrence Score, EndoPredict® and Prosigna®. NPJ Breast Cancer 2021, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Cognetti, F.; Biganzoli, L.; De Placido, S.; Del Mastro, L.; Masetti, R.; Naso, G.; Pruneri, G.; Santini, D.; Tondini, C.A.; Tinterri, C.; et al. Multigene tests for breast cancer: The physician’s perspective. Oncotarget 2021, 12, 936–947. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Dent, R.; Llombart-Cussac, A.; Pegram, M.; Pusztai, L.; Turner, N.; Viale, G. Incorporating clinicopathological and molecular risk prediction tools to improve outcomes in early HR+/HER2– breast cancer. NPJ Breast Cancer 2023, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Abdelhakam, D.A.; Hanna, H.; Nassar, A. Oncotype DX and Prosigna in breast cancer patients: A comparison study. Cancer Treat. Res. Commun. 2021, 26, 100306. [Google Scholar] [CrossRef] [PubMed]
- Licata, L.; Viale, G.; Giuliano, M.; Curigliano, G.; Chavez-MacGregor, M.; Foldi, J.; Oke, O.; Collins, J.; Del Mastro, L.; Puglisi, F.; et al. Oncotype DX results increase concordance in adjuvant chemotherapy recommendations for early-stage breast cancer. NPJ Breast Cancer 2023, 9, 51. [Google Scholar] [CrossRef]
- Sparano, J.A.; Crager, M.R.; Tang, G.; Gray, R.J.; Stemmer, S.M.; Shak, S. Development and Validation of a Tool Integrating the 21-Gene Recurrence Score and Clinical-Pathological Features to Individualize Prognosis and Prediction of Chemotherapy Benefit in Early Breast Cancer. J. Clin. Oncol. 2021, 39, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Sapino, A.; Roepman, P.; Linn, S.C.; Snel, M.H.J.; Delahaye, L.J.M.J.; van den Akker, J.; Glas, A.M.; Simon, I.M.; Barth, N.; de Snoo, F.A.; et al. MammaPrint Molecular Diagnostics on Formalin-Fixed, Paraffin-Embedded Tissue. J. Mol. Diagn. 2014, 16, 190–197. [Google Scholar] [CrossRef]
- Cardoso, F.; van’t Veer, L.J.; Bogaerts, J.; Slaets, L.; Viale, G.; Delaloge, S.; Pierga, J.Y.; Brain, E.; Causeret, S.; DeLorenzi, M.; et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N. Engl. J. Med. 2016, 375, 717–729. [Google Scholar] [CrossRef]
- Krijgsman, O.; Roepman, P.; Zwart, W.; Carroll, J.S.; Tian, S.; de Snoo, F.A.; Bender, R.A.; Bernards, R.; Glas, A.M. A diagnostic gene profile for molecular subtyping of breast cancer associated with treatment response. Breast Cancer Res. Treat. 2012, 133, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Soliman, H.; Shah, V.; Srkalovic, G.; Mahtani, R.; Levine, E.; Mavromatis, B.; Srinivasiah, J.; Kassar, M.; Gabordi, R.; Qamar, R.; et al. MammaPrint guides treatment decisions in breast Cancer: Results of the IMPACt trial. BMC Cancer 2020, 20, 81. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C. Mammaprint Reveals Who Can Skip Chemotherapy for Breast Cancer. J. Natl. Cancer Inst. 2016, 108, djw197. [Google Scholar] [CrossRef] [PubMed]
- Hequet, D.; Callens, C.; Gentien, D.; Albaud, B.; Mouret-Reynier, M.A.; Dubot, C.; Cottu, P.; Huchon, C.; Zilberman, S.; Berseneff, H.; et al. Prospective, multicenter French study evaluating the clinical impact of the Breast Cancer Intrinsic Subtype-Prosigna® Test in the management of early-stage breast cancers. PLoS ONE 2017, 12, e0185753. [Google Scholar] [CrossRef] [PubMed]
- Wallden, B.; Storhoff, J.; Nielsen, T.; Dowidar, N.; Schaper, C.; Ferree, S.; Liu, S.; Leung, S.; Geiss, G.; Snider, J.; et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med. Genom. 2015, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Baskota, S.U.; Dabbs, D.J.; Clark, B.Z.; Bhargava, R. Prosigna® breast cancer assay: Histopathologic correlation, development, and assessment of size, nodal status, Ki-67 (SiNK™) index for breast cancer prognosis. Mod. Pathol. 2021, 34, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Kjällquist, U.; Acs, B.; Margolin, S.; Karlsson, E.; Kessler, L.E.; Garcia Hernandez, S.; Ekholm, M.; Lundgren, C.; Olsson, E.; Lindman, H.; et al. Real World Evaluation of the Prosigna/PAM50 Test in a Node-Negative Postmenopausal Swedish Population: A Multicenter Study. Cancers 2022, 14, 2615. [Google Scholar] [CrossRef] [PubMed]
- Ettl, J.; Anders, S.-I.; Hapfelmeier, A.; Paepke, S.; Noske, A.; Weichert, W.; Klein, E.; Kiechle, M. First prospective outcome data for the second-generation multigene test Endopredict in ER-positive/HER2-negative breast cancer. Arch. Gynecol. Obstet. 2020, 302, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Kronenwett, R.; Bohmann, K.; Prinzler, J.; Sinn, B.V.; Haufe, F.; Roth, C.; Averdick, M.; Ropers, T.; Windbergs, C.; Brase, J.C.; et al. Decentral gene expression analysis: Analytical validation of the Endopredict genomic multianalyte breast cancer prognosis test. BMC Cancer 2012, 12, 456. [Google Scholar] [CrossRef]
- Bourien, H.; Quillien, V.; Godey, F.; Perrin, C.; Le Du, F.; Guillermet, S.; Blanchot, J.; Lavoué, V.; Campillo-Gimenez, B.; Brunot, A.; et al. Impact of EPclin on adjuvant therapeutic decision making and comparison of EPclin to the PREDICT tool. Int. J. Biol. Markers 2021, 36, 57–63. [Google Scholar] [CrossRef]
- Soliman, H.; Wagner, S.; Flake, D.D., 2nd; Robson, M.; Schwartzberg, L.; Sharma, P.; Magliocco, A.; Kronenwett, R.; Lancaster, J.M.; Lanchbury, J.S.; et al. Evaluation of the 12-Gene Molecular Score and the 21-Gene Recurrence Score as Predictors of Response to Neo-adjuvant Chemotherapy in Estrogen Receptor-Positive, HER2-Negative Breast Cancer. Ann. Surg. Oncol. 2020, 27, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Siu-Li, N.; Pagano, I.; Fukui, J.A. An analysis of breast cancer index scores predicting benefit of extended endocrine therapy by race. J. Clin. Oncol. 2023, 41, 549. [Google Scholar] [CrossRef]
- Prat, A.; Ellis, M.J.; Perou, C.M. Practical implications of gene-expression-based assays for breast oncologists. Nat. Rev. Clin. Oncol. 2011, 9, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Sgroi, D.C.; Treuner, K.; Zhang, Y.; Piper, T.; Salunga, R.; Ahmed, I.; Doos, L.; Thornber, S.; Taylor, K.J.; Brachtel, E.; et al. Correlative studies of the Breast Cancer Index (HOXB13/IL17BR) and ER, PR, AR, AR/ER ratio and Ki67 for prediction of extended endocrine therapy benefit: A Trans-aTTom study. Breast Cancer Res. 2022, 24, 90. [Google Scholar] [CrossRef]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Goetz, M.P.; Olson, J.A.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Albain, K.S.; Saphner, T.J.; Badve, S.S.; Wagner, L.I.; Kaklamani, V.G.; Keane, M.M.; Gomez, H.L.; et al. Clinical Outcomes in Early Breast Cancer with a High 21-Gene Recurrence Score of 26 to 100 Assigned to Adjuvant Chemotherapy Plus Endocrine Therapy: A Secondary Analysis of the TAILORx Randomized Clinical Trial. JAMA Oncol. 2020, 6, 367–374. [Google Scholar] [CrossRef]
- Nitz, U.; Gluz, O.; Christgen, M.; Kates, R.E.; Clemens, M.; Malter, W.; Nuding, B.; Aktas, B.; Kuemmel, S.; Reimer, T.; et al. Reducing chemotherapy use in clinically high-risk, genomically low-risk pN0 and pN1 early breast cancer patients: Five-year data from the prospective, randomised phase 3 West German Study Group (WSG) PlanB trial. Breast Cancer Res. Treat. 2017, 165, 573–583. [Google Scholar] [CrossRef]
- Kalinsky, K.; Barlow, W.E.; Gralow, J.R.; Meric-Bernstam, F.; Albain, K.S.; Hayes, D.F.; Lin, N.U.; Perez, E.A.; Goldstein, L.J.; Chia, S.K.L.; et al. 21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer. N. Engl. J. Med. 2021, 385, 2336–2347. [Google Scholar] [CrossRef]
- Hwang, Y.S.; Kim, H.J.; Kim, J.; Chung, I.Y.; Ko, B.S.; Kim, H.J.; Lee, J.W.; Son, B.H.; Ahn, S.H.; Lee, S.B. Validation study of a nomogram for predicting probability of low risk of MammaPrint results in women with clinically high-risk breast cancer. Discov. Oncol. 2022, 13, 141. [Google Scholar] [CrossRef]
- Mansani, F.P.; Freitas-Junior, R. Validation of the 70-gene signature test (MammaPrint) to identify patients with breast cancer aged ≥ 70 years with ultralow risk of distant recurrence: A population-based cohort study. J. Geriatr. Oncol. 2023, 14, 101526. [Google Scholar] [CrossRef]
- Drukker, C.A.; Bueno-de-Mesquita, J.M.; Retèl, V.P.; van Harten, W.H.; van Tinteren, H.; Wesseling, J.; Roumen, R.M.; Knauer, M.; van’t Veer, L.J.; Sonke, G.S.; et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int. J. Cancer 2013, 133, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Piccart, M.; van’t Veer, L.J.; Poncet, C.; Lopes Cardozo, J.M.N.; Delaloge, S.; Pierga, J.Y.; Vuylsteke, P.; Brain, E.; Vrijaldenhoven, S.; Neijenhuis, P.A.; et al. 70-gene signature as an aid for treatment decisions in early breast cancer: Updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age. Lancet Oncol. 2021, 22, 476–488. [Google Scholar] [CrossRef]
- Hequet, D.; Harrissart, G.; Krief, D.; Maumy, L.; Lerebours, F.; Menet, E.; Callens, C.; Rouzier, R. Prosigna test in breast cancer: Real-life experience. Breast Cancer Res. Treat. 2021, 188, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Gnant, M.; Filipits, M.; Greil, R.; Stoeger, H.; Rudas, M.; Bago-Horvath, Z.; Mlineritsch, B.; Kwasny, W.; Knauer, M.; Singer, C.; et al. Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: Using the PAM50 Risk of Recurrence score in 1478 postmenopausal patients of the ABCSG-8 trial treated with adjuvant endocrine therapy alone. Ann. Oncol. 2014, 25, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Dowsett, M.; Sestak, I.; Lopez-Knowles, E.; Sidhu, K.; Dunbier, A.K.; Cowens, J.W.; Ferree, S.; Storhoff, J.; Schaper, C.; Cuzick, J. Comparison of PAM50 risk of recurrence score with onco type DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J. Clin. Oncol. 2013, 31, 2783–2790. [Google Scholar] [CrossRef] [PubMed]
- Gnant, M.; Sestak, I.; Filipits, M.; Dowsett, M.; Balic, M.; Lopez-Knowles, E.; Greil, R.; Dubsky, P.; Stoeger, H.; Rudas, M.; et al. Identifying clinically relevant prognostic subgroups of postmenopausal women with node-positive hormone receptor-positive early-stage breast cancer treated with endocrine therapy: A combined analysis of ABCSG-8 and ATAC using the PAM50 risk of recurrence score and intrinsic subtype. Ann. Oncol. 2015, 26, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.C.; Makris, A.; MacPherson, I.R.; Hughes-Davies, L.; Marshall, A.; Dotchin, G.; Cameron, D.A.; Kiely, B.E.; Tsang, J.; Naume, B.; et al. Optima: Optimal personalised treatment of early breast cancer using multi-parameter analysis, an international randomized trial of tumor gene expression test-directed chemotherapy treatment in a largely node-positive population. J. Clin. Oncol. 2021, 39, TPS599. [Google Scholar] [CrossRef]
- Martin, M.; Brase, J.C.; Calvo, L.; Krappmann, K.; Ruiz-Borrego, M.; Fisch, K.; Ruiz, A.; Weber, K.E.; Munarriz, B.; Petry, C.; et al. Clinical validation of the EndoPredict test in node-positive, chemotherapy-treated ER+/HER2- breast cancer patients: Results from the GEICAM 9906 trial. Breast Cancer Res. 2014, 16, R38. [Google Scholar] [CrossRef] [PubMed]
- Fitzal, F.; Filipits, M.; Rudas, M.; Greil, R.; Dietze, O.; Samonigg, H.; Lax, S.; Herz, W.; Dubsky, P.; Bartsch, R.; et al. The genomic expression test EndoPredict is a prognostic tool for identifying risk of local recurrence in postmenopausal endocrine receptor-positive, her2neu-negative breast cancer patients randomised within the prospective ABCSG 8 trial. Br. J. Cancer 2015, 112, 1405–1410. [Google Scholar] [CrossRef]
- Sestak, I.; Martín, M.; Dubsky, P.; Kronenwett, R.; Rojo, F.; Cuzick, J.; Filipits, M.; Ruiz, A.; Gradishar, W.; Soliman, H.; et al. Prediction of chemotherapy benefit by EndoPredict in patients with breast cancer who received adjuvant endocrine therapy plus chemotherapy or endocrine therapy alone. Breast Cancer Res. Treat. 2019, 176, 377–386. [Google Scholar] [CrossRef]
- Constantinidou, A.; Marcou, Y.; Toss, M.S.; Simmons, T.; Bernhisel, R.; Hughes, E.; Probst, B.; Meek, S.; Kakouri, E.; Georgiou, G.; et al. Clinical Validation of EndoPredict in Pre-Menopausal Women with ER-Positive, HER2-Negative Primary Breast Cancer. Clin. Cancer Res. 2022, 28, 4435–4443. [Google Scholar] [CrossRef]
- Blok, E.J.; Kroep, J.R.; Meershoek-Klein Kranenbarg, E.; Duijm-de Carpentier, M.; Putter, H.; van den Bosch, J.; Maartense, E.; van Leeuwen-Stok, A.E.; Liefers, G.J.; Nortier, J.W.R.; et al. Optimal Duration of Extended Adjuvant Endocrine Therapy for Early Breast Cancer; Results of the IDEAL Trial (BOOG 2006-05). J. Natl. Cancer Inst. 2018, 110, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Noordhoek, I.; Treuner, K.; Putter, H.; Zhang, Y.; Wong, J.; Meershoek-Klein Kranenbarg, E.; Duijm-de Carpentier, M.; van de Velde, C.J.H.; Schnabel, C.A.; Liefers, G.J. Breast Cancer Index Predicts Extended Endocrine Benefit to Individualize Selection of Patients with HR(+) Early-stage Breast Cancer for 10 Years of Endocrine Therapy. Clin. Cancer Res. 2021, 27, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed]
- Damodaran, S.; Berger, M.F.; Roychowdhury, S. Clinical tumor sequencing: Opportunities and challenges for precision cancer medicine. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, e175–e182. [Google Scholar] [CrossRef]
- Pepe, F.; Guerini-Rocco, E.; Fassan, M.; Fusco, N.; Vacirca, D.; Ranghiero, A.; Venetis, K.; Rappa, A.; Taormina, S.V.; Russo, G.; et al. In-house homologous recombination deficiency testing in ovarian cancer: A multi-institutional Italian pilot study. J. Clin. Pathol. 2023. [Google Scholar] [CrossRef]
- Hayashi, H.; Tanishima, S.; Fujii, K.; Mori, R.; Okada, C.; Yanagita, E.; Shibata, Y.; Matsuoka, R.; Amano, T.; Yamada, T.; et al. Clinical impact of a cancer genomic profiling test using an in-house comprehensive targeted sequencing system. Cancer Sci. 2020, 111, 3926–3937. [Google Scholar] [CrossRef]
- Pisapia, P.; L’Imperio, V.; Galuppini, F.; Sajjadi, E.; Russo, A.; Cerbelli, B.; Fraggetta, F.; d’Amati, G.; Troncone, G.; Fassan, M.; et al. The evolving landscape of anatomic pathology. Crit. Rev. Oncol. Hematol. 2022, 178, 103776. [Google Scholar] [CrossRef]
- Williams, C. Genetic Testing Expert Weighs in on Whether Hospitals Should Insource or Outsource Precision Medicine Tests. Available online: https://precision-medicine-institute.com/genetic-testing-expert-weighs-in-on-whether-hospitals-should-insource-or-outsource-precision-medicine-tests (accessed on 20 March 2024).
- Harnan, S.; Tappenden, P.; Cooper, K.; Stevens, J.; Bessey, A.; Rafia, R.; Ward, S.; Wong, R.; Stein, R.C.; Brown, J. Tumour profiling tests to guide adjuvant chemotherapy decisions in early breast cancer: A systematic review and economic analysis. Health Technol. Assess 2019, 23, 1–328. [Google Scholar] [CrossRef]
- Rojas, L.; Rojas-Reyes, M.X.; Rosselli, D.; Ariza, J.G.; Ruiz-Patiño, A.; Cardona, A.F. Cost-utility analysis of genomic profiling in early breast cancer in Colombia. Cost Eff. Resour. Alloc. 2023, 21, 42. [Google Scholar] [CrossRef]
- Pauls, M.; Chia, S. Clinical Utility of Genomic Assay in Node-Positive Early-Stage Breast Cancer. Curr. Oncol. 2022, 29, 5139–5149. [Google Scholar] [CrossRef] [PubMed]
- Griguolo, G.; Bottosso, M.; Vernaci, G.; Miglietta, F.; Dieci, M.V.; Guarneri, V. Gene-expression signatures to inform neoadjuvant treatment decision in HR+/HER2− breast cancer: Available evidence and clinical implications. Cancer Treat. Rev. 2022, 102, 102323. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B.; Pedersen, C.B.; Misiakou, M.A.; Talman, M.L.M.; Gibson, L.; Tange, U.B.; Kledal, H.; Vejborg, I.; Kroman, N.; Nielsen, F.C.; et al. Multigene profiles to guide the use of neoadjuvant chemotherapy for breast cancer: A Copenhagen Breast Cancer Genomics Study. NPJ Breast Cancer 2023, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Lee, C.D.; Guye, M.L.; Van Sciver, R.E.; Lee, M.P.; Lafever, A.C.; Pang, A.; Tang-Tan, A.M.; Winston, J.S.; Samli, B.; et al. Unmet Clinical Need: Developing Prognostic Biomarkers and Precision Medicine to Forecast Early Tumor Relapse, Detect Chemo-Resistance and Improve Overall Survival in High-Risk Breast Cancer. Ann. Breast Cancer Ther. 2020, 4, 48–57. [Google Scholar] [CrossRef] [PubMed]
Lymph Node Status | Premenopausal or Age ≤ 50 Years (Evidence Quality/Strength of Recommendation) | Postmenopausal or Age > 50 Years (Evidence Quality/Strength of Recommendation) |
---|---|---|
Node-negative | Oncotype Dx (++/++) | Oncotype Dx (++/++) MammaPrint (+/++) EndoPredict® (+/+) Prosigna (+/+) BCI (+/+) |
1–3 positive nodes | (−) | Oncotype Dx (++/++) MammaPrint (+/++) EndoPredict® (+/+) BCI (+/+) |
≥4 positive nodes | Insufficient evidence to recommend a biomarker |
Level of Evidence | Grade of Recommendation | |
---|---|---|
First-generation (Oncotype Dx and MammaPrint)
| I | A |
Second generation (Prosigna, EndoPredict®)
| I | B |
First-generation (Breast Cancer Index)
| I | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venetis, K.; Pescia, C.; Cursano, G.; Frascarelli, C.; Mane, E.; De Camilli, E.; Munzone, E.; Dellapasqua, S.; Criscitiello, C.; Curigliano, G.; et al. The Evolving Role of Genomic Testing in Early Breast Cancer: Implications for Diagnosis, Prognosis, and Therapy. Int. J. Mol. Sci. 2024, 25, 5717. https://doi.org/10.3390/ijms25115717
Venetis K, Pescia C, Cursano G, Frascarelli C, Mane E, De Camilli E, Munzone E, Dellapasqua S, Criscitiello C, Curigliano G, et al. The Evolving Role of Genomic Testing in Early Breast Cancer: Implications for Diagnosis, Prognosis, and Therapy. International Journal of Molecular Sciences. 2024; 25(11):5717. https://doi.org/10.3390/ijms25115717
Chicago/Turabian StyleVenetis, Konstantinos, Carlo Pescia, Giulia Cursano, Chiara Frascarelli, Eltjona Mane, Elisa De Camilli, Elisabetta Munzone, Silvia Dellapasqua, Carmen Criscitiello, Giuseppe Curigliano, and et al. 2024. "The Evolving Role of Genomic Testing in Early Breast Cancer: Implications for Diagnosis, Prognosis, and Therapy" International Journal of Molecular Sciences 25, no. 11: 5717. https://doi.org/10.3390/ijms25115717
APA StyleVenetis, K., Pescia, C., Cursano, G., Frascarelli, C., Mane, E., De Camilli, E., Munzone, E., Dellapasqua, S., Criscitiello, C., Curigliano, G., Guerini Rocco, E., & Fusco, N. (2024). The Evolving Role of Genomic Testing in Early Breast Cancer: Implications for Diagnosis, Prognosis, and Therapy. International Journal of Molecular Sciences, 25(11), 5717. https://doi.org/10.3390/ijms25115717