The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis
Abstract
:1. Introduction
2. Results
2.1. Skin and Lung Fibrosis Decreased in TLR7-KO Mice and Increased Significantly in TLR9-KO Mice
2.2. A TLR7 Deletion Had a Greater Effect on Altering the Proportion of pDCs in the Spleen Than a TLR9 Deletion
2.3. The TLR7-KO Enhanced the Tissue-Protective Role of Cytokine IL-10. Meanwhile, the TLR9-KO Reduced the Tissue-Damaging Role of Cytokine IL-6
2.4. In the Spleen, the TLR7-KO Enhanced the Suppressive Inflammatory Effects of Foxp3 + CD25 + CD4 + Treg Cells, and the TLR9-KO Attenuated the Pro-Inflammatory Effects of IL-17A + CD4 + Treg Cells
2.5. The TLR7-KO Increased the Contribution of IL-4 + CD4 + Th2 Cells to Suppress Inflammation in the Spleen, While the TLR9-KO Increased the Contribution of TNFα + CD4 + Th1 Cells to Promote Inflammatory Processes in the Spleen
2.6. The TLR9-KO Enhanced the Chronic Inflammatory Response of CD86-Positive Macrophages to the Skin, Whereas the TLR7-KO Inhibited the Chronic Inflammatory Response of CD206-Positive Macrophages to the Skin
3. Discussion
4. Methods
4.1. Mice
4.2. Bleomycin Treatment
4.3. Histological Examination and IHC Analysis
4.4. RT-PCR Evaluation
4.5. Flow Cytometry Analysis
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asano, Y. Systemic sclerosis. J. Dermatol. 2018, 45, 128–138. [Google Scholar] [CrossRef]
- Wight, T.; Frevert, C.; Debley, J.; Reeves, S.; Parks, W.; Ziegler, S. Interplay of extracellular matrix and leukocytes in lung inflammation. Cell. Immunol. 2017, 312, 1–14. [Google Scholar] [CrossRef]
- Takahashi, N.; Sugaya, M.; Suga, H.; Oka, T.; Kawaguchi, M.; Miyagaki, T.; Fujita, H.; Sato, S. Thymic Stromal Chemokine TSLP Acts through Th2 Cytokine Production to Induce Cutaneous T-cell Lymphoma. Cancer Res. 2016, 76, 6241–6252. [Google Scholar] [CrossRef]
- Yamada, T.; Ogi, K.; Sakashita, M.; Kanno, M.; Kubo, S.; Ito, Y.; Imoto, Y.; Tokunaga, T.; Okamoto, M.; Narita, N.; et al. Toll-like receptor ligands induce cytokine and chemokine production in human inner ear endolymphatic sac fibroblasts. Auris Nasus Larynx 2017, 44, 398–403. [Google Scholar] [CrossRef]
- Yamamoto, T. Animal model of systemic sclerosis. J. Dermatol. 2010, 37, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T. Animal Models of Systemic Sclerosis. In Systemic Sclerosis; Springer: Tokyo, Japan, 2016; pp. 57–79. [Google Scholar] [CrossRef]
- Corrado, A.; Rotondo, C.; Sanpaolo, E.; Altomare, A.; Maruotti, N.; Cici, D.; Cantatore, F. 1,25OH-Vitamin D3 and IL-17 Inhibition Modulate Pro-Fibrotic Cytokines Production in Peripheral Blood Mononuclear Cells of Patients with Systemic Sclerosis. Int. J. Med. Sci. 2022, 19, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Kioon, M.; Tripodo, C.; Fernandez, D.; Kirou, K.; Spiera, R.; Crow, M.; Gordon, J.; Barrat, F. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci. Transl. Med. 2018, 10, eaam8458. [Google Scholar] [CrossRef]
- Kafaja, S.; Valera, I.; Divekar, A.; Saggar, R.; Abtin, F.; Furst, D.; Khanna, D.; Singh, R. pDCs in lung and skin fibrosis in a bleomycin-induced model and patients with systemic sclerosis. JCI Insight 2018, 3, e98380. [Google Scholar] [CrossRef] [PubMed]
- Angiolilli, C.; Marut, W.; Kroef, M.; Chouri, E.; Reedquist, K.; Radstake, T. New insights into the genetics and epigenetics of systemic sclerosis. Nat. Rev. Rheumatol. 2018, 14, 657–673. [Google Scholar] [CrossRef]
- Christensen, S.R.; Shupe, J.; Nickerson, K.; Kashgarian, M.; Flavell, R.A.; Shlomchik, M.J. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 2006, 25, 417–428. [Google Scholar] [CrossRef]
- Chen, J.; Szodoray, P.; Zeher, M. Toll-Like Receptor Pathways in Autoimmune Diseases. Clin. Rev. Allergy Immunol. 2016, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yoshizaki, A.; Taniguchi, T.; Saigusa, R.; Fukasawa, T.; Ebata, S.; Numajiri, H.; Nakamura, K.; Yamashita, T.; Takahashi, T.; Toyama, T.; et al. Nucleosome in patients with systemic sclerosis: Possible association with immunological abnormalities via abnormal activation of T and B cells. Ann. Rheum. Dis. 2016, 75, 1858–1865. [Google Scholar] [CrossRef] [PubMed]
- Talaat, R.; Mohamed, S.; Bassyouni, I.; Raouf, A. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 2015, 72, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, T. Regulatory and effector B cells: Friends or foes? J. Dermatol. Sci. 2019, 93, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Vreća, M.; Zeković, A.; Damjanov, N.; Andjelković, M.; Ugrin, M.; Pavlović, S.; Spasovski, V. Expression of TLR7, TLR9, JAK2, and STAT3 genes in peripheral blood mononuclear cells from patients with systemic sclerosis. J. Appl. Genet. 2018, 59, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Calderon, L.; Pope, J. Precursors to Systemic Sclerosis and Systemic Lupus Erythematosus: From Undifferentiated Connective Tissue Disease to the Development of Identifiable Connective Tissue Diseases. Front. Immunol. 2022, 13, 869172. [Google Scholar] [CrossRef] [PubMed]
- Geginat, J.; Vasco, M.; Gerosa, M.; Tas, S.; Pagani, M.; Grassi, F.; Flavell, R.; Meroni, P.; Abrignani, S. IL-10 producing regulatory and helper T-cells in systemic lupus erythematosus. Semin. Immunol. 2019, 44, 101330. [Google Scholar] [CrossRef]
- Mande, P.; Zirak, B.; Ko, W.C.; Taravati, K.; Bride, K.L.; Brodeur, T.Y.; Deng, A.; Dresser, K.; Jiang, Z.; Ettinger, R.; et al. Fas ligand promotes an inducible TLR-dependent model of cutaneous lupus-like inflammation. J. Clin. Investig. 2018, 128, 2966–2978. [Google Scholar] [CrossRef] [PubMed]
- To, S.; Agarwal, S. Macrophages and cadherins in fibrosis and systemic sclerosis. Curr. Opin. Rheumatol. 2019, 31, 582–588. [Google Scholar] [CrossRef]
- Dou, R.; Zhang, X.; Xu, X.; Wang, P.; Yan, B. Mesenchymal stem cell exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Mol. Immunol. 2021, 139, 106–114. [Google Scholar] [CrossRef]
- Deng, W.; Chen, W.; Zhang, Z.; Huang, S.; Kong, W.; Sun, Y.; Tang, X.; Yao, G.; Feng, X.; Chen, W.; et al. Mesenchymal stem cells promote CD206 expression and phagocytic activity of macrophages through IL-6 in systemic lupus erythematosus. Clin. Immunol. 2015, 161, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Koo, D.; Kang, N.; Yoon, W.; Kang, G.; Kang, H.; Yoo, E. Docosahexaenoic Acid Alleviates Atopic Dermatitis by Generating Tregs and IL-10/TGF-β-Modified Macrophages via a TGF-β-Dependent Mechanism. J. Investig. Dermatol. 2015, 135, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Gui, L.; Niu, F.; Yu, B.; Lauda, N.; Liu, J.; Mao, X.; Chen, Y. Macrophages in keloid are potent at promoting the differentiation and function of regulatory T cells. Exp. Cell Res. 2018, 362, 472–476. [Google Scholar] [CrossRef]
- Shan, J.; Jin, H.; Xu, Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus. Front. Immunol. 2020, 11, 542018. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J. Inflammation: Differential effects of salt on immune cell activity. Nat. Rev. Nephrol. 2016, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Putoczki, T.; Markovic-Plese, S. IL-11 in multiple sclerosis. Oncotarget 2015, 6, 32297–32298. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Liao, Y.; Liang, J.; Chen, X.; Li, S.; Liu, W.; Gao, C.; Zhong, Z.; Kong, D.; Deng, J.; et al. Immunomodulation of human CD19+CD25high regulatory B cells via Th17/Foxp3 regulatory T cells and Th1/Th2 cytokines. Hum. Immunol. 2019, 80, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wong, C.; Dong, J.; Jiao, D.; Chu, M.; Leung, P.; Lau, C.; Lau, C.; Tam, L.; Lam, C. Anti-inflammatory activities of Ganoderma lucidum (Lingzhi) and San-Miao-San supplements in MRL/lpr mice for the treatment of systemic lupus erythematosus. Chin. Med. 2016, 11, 23. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, M.; Song, G.; Gao, J.; Zhang, Y.; Jing, Z.; Liu, T.; Dong, C. Schisandrin B inhibits Th1/Th17 differentiation and promotes regulatory T cell expansion in mouse lymphocytes. Int. Immunopharmacol. 2016, 35, 257–264. [Google Scholar] [CrossRef]
- Brosinsky, P.; Leister, H.; Cheng, N.; Varelas, X.; Visekruna, A.; Luu, M. Verteporfin protects against Th17 cell-mediated EAE independently of YAP inhibition. Eur. J. Immunol. 2022, 52, 1523–1526. [Google Scholar] [CrossRef]
- Ancuța, C.; Pomȋrleanu, C.; Mihailov, C.; Ancuta, E.; Opriș, D. BAFF System in Rheumatoid Arthritis: From Pathobiology to Therapeutic Targets. In New Developments in the Pathogenesis of Rheumatoid Arthritis; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Malkiel, S.; Barlev, A.; Atisha-Fregoso, Y.; Suurmond, J.; Diamond, B. Plasma Cell Differentiation Pathways in Systemic Lupus Erythematosus. Front. Immunol. 2018, 9, 350346. [Google Scholar] [CrossRef]
- Chavele, K.; Merry, E.; Ehrenstein, M. Cutting Edge: Circulating Plasmablasts Induce the Differentiation of Human T Follicular Helper Cells via IL-6 Production. J. Immunol. Author Choice 2015, 194, 2482–2485. [Google Scholar] [CrossRef]
- Kräutler, N.; Suan, D.; Butt, D.; Bourne, K.; Hermes, J.; Chan, T.; Sundling, C.; Kaplan, W.; Schofield, P.; Jackson, J.; et al. Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. J. Exp. Med. 2017, 214, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Camarena, D.; Ortiz-Lazareno, P.; Marín-Rosales, M.; Cruz, A.; Muñoz-Valle, F.; Tapia-Llanos, R.; Orozco-Barocio, G.; Machado-Contreras, R.; Palafox-Sánchez, C. BAFF-R and TACI expression on CD3+ T cells: Interplay among BAFF, APRIL and T helper cytokines profile in systemic lupus erythematosus. Cytokine 2019, 114, 115–127. [Google Scholar] [CrossRef]
- Kasembeli, M.; Bharadwaj, U.; Robinson, P.; Tweardy, D. Contribution of STAT3 to Inflammatory and Fibrotic Diseases and Prospects for its Targeting for Treatment. Int. J. Mol. Sci. 2018, 19, 2299. [Google Scholar] [CrossRef]
- Sziksz, E.; Pap, D.; Lippai, R.; Béres, N.; Fekete, A.; Szabó, A.; Vannay, Á. Fibrosis Related Inflammatory Mediators: Role of the IL-10 Cytokine Family. Mediat. Inflamm. 2015, 2015, 764641. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, D.; Tsun, A.; Li, B. FOXP3+ regulatory T cells and their functional regulation. Cell. Mol. Immunol. 2015, 12, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Barbi, J.; Pan, F. The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol. 2017, 17, 703–717. [Google Scholar] [CrossRef]
- Becher, J.; Simula, L.; Volpe, E.; Procaccini, C.; Rocca, C.; D’Acunzo, P.; Cianfanelli, V.; Strappazzon, F.; Caruana, I.; Nazio, F.; et al. AMBRA1 Controls Regulatory T-Cell Differentiation and Homeostasis Upstream of the FOXO3-FOXP3 Axis. Dev. Cell 2018, 47, 592–607.e6. [Google Scholar] [CrossRef]
- Matsushita, T.; Kobayashi, T.; Mizumaki, K.; Kano, M.; Sawada, T.; Tennichi, M.; Okamura, A.; Hamaguchi, Y.; Iwakura, Y.; Hasegawa, M.; et al. BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and effector B cell balance. Sci. Adv. 2018, 4, eaas9944. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Lu, Y.; Zhuang, H.; Gu, W.; Liu, B.; Liu, F.; Sun, J.; Yan, B.; Weng, D.; et al. IL-10-Producing CD1dhiCD5+ Regulatory B Cells May Play a Critical Role in Modulating Immune Homeostasis in Silicosis Patients. Front. Immunol. 2017, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Rosa, I.; Romano, E.; Fioretto, B.; Aoufy, K.; Bellando-Randone, S.; Matucci-Cerinic, M.; Manetti, M. Lymphatic Endothelial-to-Myofibroblast Transition: A Potential New Mechanism Underlying Skin Fibrosis in Systemic Sclerosis. Cells 2023, 12, 2195. [Google Scholar] [CrossRef] [PubMed]
- Peterova, E.; Mrkvicová, A.; Podmolíková, L.; Řezáčová, M.; Kanta, J. The role of cytokines TGF-beta1 and FGF-1 in the expression of characteristic markers of rat liver myofibroblasts cultured in three-dimensional collagen gel. Physiol. Res. 2016, 65, 661–672. [Google Scholar] [CrossRef]
- Dufour, A.; Alvarez, M.; Russo, B.; Chizzolini, C. Interleukin-6 and Type-I Collagen Production by Systemic Sclerosis Fibroblasts Are Differentially Regulated by Interleukin-17A in the Presence of Transforming Growth Factor-Beta 1. Front. Immunol. 2018, 9, 1865. [Google Scholar] [CrossRef]
- Raschi, E.; Privitera, D.; Bodio, C.; Lonati, P.; Borghi, M.; Ingegnoli, F.; Meroni, P.; Chighizola, C. Scleroderma-specific autoantibodies embedded in immune complexes mediate endothelial damage: An early event in the pathogenesis of systemic sclerosis. Arthritis Res. Ther. 2020, 22, 265. [Google Scholar] [CrossRef]
- Sakkas, L.; Bogdanos, D. Systemic sclerosis: New evidence re-enforces the role of B cells. Autoimmun. Rev. 2016, 15, 155–161. [Google Scholar] [CrossRef]
- Sawada, K.; Hamaguchi, Y.; Mizumaki, K.; Oishi, K.; Maeda, S.; Ikawa, Y.; Komuro, A.; Takehara, K.; Matsushita, T. A role for FcγRIIB in the development of murine bleomycin-induced fibrosis. J. Dermatol. Sci. 2021, 104, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Błyszczuk, P.; Kozlova, A.; Guo, Z.; Kania, G.; Distler, O. Experimental Mouse Model of Bleomycin-Induced Skin Fibrosis. Curr. Protoc. Immunol. 2019, 126, e88. [Google Scholar] [CrossRef]
- Ashcroft, T.; Simpson, J.M.; Timbrell, V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol. 1988, 41, 467–470. [Google Scholar] [CrossRef]
- Zhao, C.; Matsushita, T.; Ha Nguyen, V.T.; Tennichi, M.; Fujimoto, M.; Takehara, K.; Hamaguchi, Y. CD22 and CD72 contribute to the development of scleroderma in a murine model. J. Dermatol. Sci. 2020, 97, 66–76. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Oishi, K.; Kobayashi, T.; Fujii, K.; Horii, M.; Fushida, N.; Kitano, T.; Maeda, S.; Ikawa, Y.; Komuro, A.; et al. The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis. Int. J. Mol. Sci. 2024, 25, 6133. https://doi.org/10.3390/ijms25116133
Wang C, Oishi K, Kobayashi T, Fujii K, Horii M, Fushida N, Kitano T, Maeda S, Ikawa Y, Komuro A, et al. The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis. International Journal of Molecular Sciences. 2024; 25(11):6133. https://doi.org/10.3390/ijms25116133
Chicago/Turabian StyleWang, Chenyang, Kyosuke Oishi, Tadahiro Kobayashi, Ko Fujii, Motoki Horii, Natsumi Fushida, Tasuku Kitano, Shintaro Maeda, Yuichi Ikawa, Akito Komuro, and et al. 2024. "The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis" International Journal of Molecular Sciences 25, no. 11: 6133. https://doi.org/10.3390/ijms25116133
APA StyleWang, C., Oishi, K., Kobayashi, T., Fujii, K., Horii, M., Fushida, N., Kitano, T., Maeda, S., Ikawa, Y., Komuro, A., Hamaguchi, Y., & Matsushita, T. (2024). The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis. International Journal of Molecular Sciences, 25(11), 6133. https://doi.org/10.3390/ijms25116133