Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle
Abstract
:1. Introduction
2. Results
2.1. Sequencing and Alignment Statistics
2.2. Population Structure and Relationships
2.3. Genetic Diversity and Linkage Disequilibrium Decay
2.4. Signatures of Selection in Barka Cattle
2.5. Functional Annotations of Putative Selection Sweeps
3. Discussion
3.1. Genetic Diversity, Relationships, and Population Structure
3.2. Candidate Genes Associated with Milk Production and Composition Traits
3.2.1. Milk Production Traits
3.2.2. Milk Fat Content
3.2.3. Milk Protein Content
3.2.4. Mammary Gland Development
4. Materials and Methods
4.1. Study Populations and Sequencing
4.2. Alignment and Variant Identification
4.3. Genetic Diversity and Linkage Disequilibrium
4.4. Population Structure and Relationships
4.5. Selective Sweep Analysis and Annotation
4.6. Functional Analysis of the Candidate Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randhawa, I.A.; Khatkar, M.S.; Thomson, P.C.; Raadsma, H.W. A meta-assembly of selection signatures in cattle. PLoS ONE 2016, 11, e0153013. [Google Scholar] [CrossRef] [PubMed]
- Flori, L.; Fritz, S.; Jaffrézic, F.; Boussaha, M.; Gut, I.; Heath, S.; Foulley, J.L.; Gautier, M. The genome response to artificial selection: A case study in dairy cattle. PLoS ONE 2009, 4, e6595. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, J.J.; Silva, M.V.; Paiva, S.R.; Oliveira, S.M. Identification of selection signatures in livestock species. Genet. Mol. Biol. 2014, 37, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Mwai, O.; Hanotte, O.; Kwon, Y.J.; Cho, S. African indigenous cattle: Unique genetic resources in a rapidly changing world. Asian-Australas. J. Anim. Sci. 2015, 28, 911. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kwon, T.; Dessie, T.; Yoo, D.; Mwai, O.A.; Jang, J.; Sung, S.; Lee, S.; Salim, B.; Jung, J.; et al. The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism. Nat. Genet. 2020, 52, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Nanaei, H.A.; Qanatqestani, M.D.; Esmailizadeh, A. Whole-genome resequencing reveals selection signatures associated with milk production traits in African Kenana dairy zebu cattle. Genomics 2020, 112, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Kambal, S.; Tijjani, A.; Ibrahim, S.A.; Ahmed, M.K.; Mwacharo, J.M.; Hanotte, O. Candidate signatures of positive selection for environmental adaptation in indigenous African cattle: A review. Anim. Genet. 2023, 54, 689–708. [Google Scholar] [CrossRef] [PubMed]
- Rege, J.E. The state of African cattle genetic resources I. Classification framework and identification of threatened and extinct breeds. Anim. Genet. Resour./Resour. Génétiques Anim./Recur. Genéticos Anim. 1999, 25, 1–25. [Google Scholar] [CrossRef]
- Taye, M.; Kim, J.; Yoon, S.H.; Lee, W.; Hanotte, O.; Dessie, T.; Kemp, S.; Mwai, O.A.; Caetano-Anolles, K.; Cho, S.; et al. Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genet. 2017, 18, 11. [Google Scholar] [CrossRef]
- Bahbahani, H.; Salim, B.; Almathen, F.; Al Enezi, F.; Mwacharo, J.M.; Hanotte, O. Signatures of positive selection in African Butana and Kenana dairy zebu cattle. PLoS ONE 2018, 13, e0190446. [Google Scholar] [CrossRef]
- Pizarro Inostroza, M.G.; Landi, V.; Navas González, F.J.; León Jurado, J.M.; Delgado Bermejo, J.V.; Fernández Álvarez, J.; Martínez Martínez, M.D. Integrating casein complex SNPs additive, dominance and epistatic effects on genetic parameters and breeding values estimation for murciano-granadina goat milk yield and components. Genes 2020, 11, 309. [Google Scholar] [CrossRef] [PubMed]
- Cochran, S.D.; Cole, J.B.; Null, D.J.; Hansen, P.J. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genet. 2013, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Szyda, J.; Komisarek, J. Statistical modeling of candidate gene effects on milk production traits in dairy cattle. J. Dairy Sci. 2007, 90, 2971–2979. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, G.; Huang, J.; Li, Q.; Wang, C.; Zhong, J. Novel SNPs in the ATP1B2 gene and their associations with milk yield, milk composition and heat-resistance traits in Chinese Holstein cows. Mol. Biol. Rep. 2011, 38, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Fontanesi, L.; Calo, D.G.; Galimberti, G.; Negrini, R.; Marino, R.; Nardone, A.; Ajmone-Marsan, P.; Russo, V. A candidate gene association study for nine economically important traits in Italian Holstein cattle. Anim. Genet. 2014, 45, 576–580. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Gao, Y.; Hou, Y.; Li, W.; Zhang, S.; Zhang, Q.; Sun, D. Whole-genome resequencing of Holstein bulls for indel discovery and identification of genes associated with milk composition traits in dairy cattle. PLoS ONE 2016, 11, e0168946. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Jiang, J.; Yang, S.; Hou, Y.; Liu, G.E.; Zhang, S.; Zhang, Q.; Sun, D. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing. BMC Genom. 2017, 18, 265. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, D.; Zhang, S.; Wang, S.; Wu, X.; Zhang, Q.; Liu, L.; Li, Y.; Qiao, L. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS ONE 2014, 9, e96186. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yao, Y.; Ma, P.; Wang, Q.; Pan, Y. Haplotype-based genome-wide association study identifies loci and candidate genes for milk yield in Holsteins. PLoS ONE 2018, 13, e0192695. [Google Scholar] [CrossRef]
- Pedrosa, V.B.; Schenkel, F.S.; Chen, S.Y.; Oliveira, H.R.; Casey, T.M.; Melka, M.G.; Brito, L.F. Genome-wide association analyses of lactation persistency and milk production traits in Holstein cattle based on imputed whole-genome sequence data. Genes 2021, 12, 1830. [Google Scholar] [CrossRef]
- Pradeep, J.; Monika, S.; Ankita, S.; Umesh, K.S.; Amit, K.; Ashok, M.; Mishra, B.P.; Sandeep, M.; Kataria, R.S.; Kaushik, J.; et al. Expression analysis of solute carrier (SLC2A) genes in milk derived mammary epithelial cells during different stages of lactation in sahiwal (Bos indicus) cows. J. Adv. Dairy Res. 2014, 2, 2. [Google Scholar]
- Yang, J.; Jiang, J.; Liu, X.; Wang, H.; Guo, G.; Zhang, Q.; Jiang, L. Differential expression of genes in milk of dairy cattle during lactation. Anim. Genet. 2016, 47, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, X.; Zhu, Y.; Wei, J.; Zhang, C.; Kong, Q.; Nie, X.; Zhang, Q.; Wang, Z. Genome-wide association analysis of milk production, somatic cell score, and body conformation traits in Holstein cows. Front. Vet. Sci. 2022, 9, 932034. [Google Scholar] [CrossRef] [PubMed]
- Central Statistical Agency of Ethiopia (CSA). Agricultural Sample Survey Vol. II. Report on Livestock and Livestock Characteristics; Statistical Bulletin: Addis Ababa, Ethiopia, 2021.
- Domestic Animal Diversity Information System (DADIS). Number of Breeds by Species and Country. Available online: http://dad.fao.org/ (accessed on 20 June 2021).
- Zerabruk, M.; Vangen, O.; Haile, M. The status of cattle genetic resources in North Ethiopia: On-farm characterization of six major cattle breeds. Anim. Genet. Resour./Resour. Génétiques Anim./Recur. Genéticos Anim. 2007, 40, 15–32. [Google Scholar] [CrossRef]
- Gebrekidan, B.; Tegegne, A.; Regassa, F. Assessment of reproductive performance of Begait cattle in in-situ and ex-situ sites and in different production systems in northern Ethiopia. Anim. Reprod. Sci. 2016, 166, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mezgebe, G.; Gizaw, S.; Urge, M.; Chavhan, A. Begait cattle production systems and production performances in northern Ethiopia. Int. J. Life Sci. 2017, 5, 506–516. [Google Scholar]
- Zegeye, T.; Belay, G.; Vallejo-Trujillo, A.; Han, J.; Hanotte, O. Genome-wide diversity and admixture of five indigenous cattle populations from the Tigray region of northern Ethiopia. Front. Genet. 2023, 14, 1050365. [Google Scholar] [CrossRef] [PubMed]
- Edea, Z.; Bhuiyan, M.S.; Dessie, T.; Rothschild, M.F.; Dadi, H.; Kim, K.S. Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds. Animal 2015, 9, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Terefe, E.; Belay, G.; Tijjani, A.; Han, J.; Hanotte, O. Whole genome resequencing reveals genetic diversity and selection signatures of Ethiopian indigenous cattle adapted to local environments. Diversity 2023, 15, 540. [Google Scholar] [CrossRef]
- Kugonza, D.R.; Nabasirye, M.; Mpairwe, D.; Hanotte, O.; Okeyo, A.M. Productivity and morphology of Ankole cattle in three livestock production systems in Uganda. Anim. Genet. Resour./Resour. Génétiques Anim./Recur. Genéticos Anim. 2011, 48, 13–22. [Google Scholar] [CrossRef]
- Coffie, I.; Annor, S.Y.; Kagya-Agyemang, J.K.; Bonsu, F.R. Effect of breed and non-genetic factors on milk yield of dual-purpose cattle in Ashanti Region, Ghana. Livest. Resour. Rural Dev. 2015, 27, 7. [Google Scholar]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Sasaki, K.; Bessho, T.; Kobayashi, E.; Abe, T.; Sasazaki, S.; Oyama, K.; Mannen, H. The SNPs in the ACACA gene are effective on fatty acid composition in Holstein milk. Mol. Biol. Rep. 2012, 39, 8637–8644. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.Y.; Hou, X.M.; Qu, B.; Zhang, N.; Li, N.; Cui, Y.J.; Li, Q.Z.; Gao, X.J. Functional analysis of FABP3 in the milk fat synthesis signaling pathway of dairy cow mammary epithelial cells. Vitr. Cell. Dev. Biol.-Anim. 2014, 50, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinform. Biol. Insights 2011, 5, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.; Kim, K.; Yoon, J.; Jeong, J.Y.; Lee, H.J.; Cho, S.; Kim, H. RNA-seq analysis for detecting quantitative trait-associated genes. Sci. Rep. 2016, 6, 24375. [Google Scholar] [CrossRef] [PubMed]
- Ouattara, B.; Bissonnette, N.; Duplessis, M.; Girard, C.L. Supplements of vitamins B9 and B12 affect hepatic and mammary gland gene expression profiles in lactating dairy cows. BMC Genom. 2016, 17, 640. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Wu, J.; Abdel-Shafy, H.; Wang, X.; Lv, H.; Shaukat, A.; Zhou, X.; Zhou, Y.; Sun, H.; Wei, P.; et al. Comparative genomic analysis of the Thiolase family and functional characterization of the acetyl-coenzyme a Acyltransferase-1 gene for Milk biosynthesis and production of Buffalo and cattle. J. Agric. Food Chem. 2023, 71, 3325–3337. [Google Scholar] [CrossRef] [PubMed]
- Ibeagha-Awemu, E.M.; Peters, S.O.; Akwanji, K.A.; Imumorin, I.G.; Zhao, X. High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits. Sci. Rep. 2016, 6, 31109. [Google Scholar] [CrossRef]
- Kemper, K.; Vander Jagt, C.; Bowman, P.; Reich, C.; Mason, B.; Hayes, B.; Goddard, M. Mapping QTL in Australian dairy cattle using Genomic Selection Methodologies. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- Shi, L.; Lv, X.; Liu, L.; Yang, Y.; Ma, Z.; Han, B.; Sun, D. A post-GWAS confirming effects of PRKG1 gene on milk fatty acids in a Chinese Holstein dairy population. BMC Genet. 2019, 20, 53. [Google Scholar] [CrossRef]
- Van Nguyen, A.; Pollard, J.W. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev. Biol. 2002, 247, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Stern, D.F. ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer. J. Mammary Gland Biol. Neoplasia 2008, 13, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.M.; Vaught, D.B.; Joly, M.M.; Hicks, D.J.; Sanchez, V.; Owens, P.; Rahman, B.; Elion, D.L.; Balko, J.M.; Cook, R.S. ErbB3 drives mammary epithelial survival and differentiation during pregnancy and lactation. Breast Cancer Res. 2017, 19, 105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, J.; Wang, C.; Liu, Y.; Li, D.; Zhong, J.; Wang, G. Relationship between erythrocyte Na+-K+-ATPase activity and heat-resistance ability in Holstein cows. China Cattle Sci. 2009, 35, 1–5. [Google Scholar]
- Hasegawa, N.; Sumitomo, A.; Fujita, A.; Aritome, N.; Mizuta, S.; Matsui, K.; Ishino, R.; Inoue, K.; Urahama, N.; Nose, J.; et al. Mediator subunits MED1 and MED24 cooperatively contribute to pubertal mammary gland development and growth of breast carcinoma cells. Mol. Cell. Biol. 2012, 32, 1483–1495. [Google Scholar] [CrossRef] [PubMed]
- Schmidtmann, C.; Schönherz, A.; Guldbrandtsen, B.; Marjanovic, J.; Calus, M.; Hinrichs, D.; Thaller, G. Assessing the genetic background and genomic relatedness of red cattle populations originating from Northern Europe. Genet. Sel. Evol. 2021, 53, 23. [Google Scholar] [CrossRef] [PubMed]
- Menzies, K.K.; Lefèvre, C.; Macmillan, K.L.; Nicholas, K.R. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland. Funct. Integr. Genom. 2009, 9, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cai, W.; Zhou, C.; Yin, H.; Zhang, Z.; Loor, J.J. RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population. Sci. Rep. 2016, 6, 26813. [Google Scholar] [CrossRef] [PubMed]
- Groeneveld, L.F.; Lenstra, J.A.; Eding, H.; Toro, M.A.; Scherf, B.; Pilling, D.; Negrini, R.; Finlay, E.K.; Jianlin, H.; Groeneveld, E.J.; et al. Genetic diversity in farm animals—A review. Anim. Genet. 2010, 41, 6–31. [Google Scholar] [CrossRef]
- Epstein, H. The Origin of the Domestic Animals of Africa. 1. Cattle; Africana Publishing Corporation: New York, NY, USA, 1971; p. 573. [Google Scholar]
- Tijjani, A.; Salim, B.; da Silva, M.V.; Eltahir, H.A.; Musa, T.H.; Marshall, K.; Hanotte, O.; Musa, H.H. Genomic signatures for drylands adaptation at gene-rich regions in African zebu cattle. Genomics 2022, 114, 110423. [Google Scholar] [CrossRef]
- Oba, M. Effects of feeding sugars on productivity of lactating dairy cows. Can. J. Anim. Sci. 2011, 91, 37–46. [Google Scholar] [CrossRef]
- Hui, J.; Stangl, K.; Lane, W.S.; Bindereif, A. HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nat. Struct. Biology. 2003, 10, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Malla, W.A.; Kumar, A.; Jain, A.; Thakur, M.S.; Khare, V.; Tiwari, S.P. genetic background of milk fatty acid synthesis in bovines. Trop. Anim. Health Prod. 2023, 55, 328. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 Are the Most Abundant Isoforms in Bovine Mammary Tissue and Their Expression Is Affected by Stage of Lactation3. J. Nutr. 2008, 138, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Kulig, H.; Kowalewska-Łuczak, I.; Kmieć, M.; Wojdak-Maksymiec, K. ANXA9, SLC27A3, FABP3 and FABP4 single nucleotide polymorphisms in relation to milk production traits in Jersey cows. Czech J. Anim. Sci. 2010, 55, 463–467. [Google Scholar] [CrossRef]
- Sato, T.N.; Tozawa, Y.; Deutsch, U.; Wolburg-Buchholz, K.; Fujiwara, Y.; Gendron-Maguire, M.; Gridley, T.; Wolburg, H.; Risau, W.; Qin, Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995, 376, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Kolle, G.; Georgas, K.; Holmes, G.P.; Little, M.H.; Yamada, T. CRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesis. Mech. Dev. 2000, 90, 181–193. [Google Scholar] [CrossRef]
- Rezvannejad, E.; Asadollahpour Nanaei, H.; Esmailizadeh, A. Detection of candidate genes affecting milk production traits in sheep using whole-genome sequencing analysis. Vet. Med. Sci. 2022, 8, 1197–1204. [Google Scholar]
- Davis, S.R. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Mammary growth during pregnancy and lactation and its relationship with milk yield. J. Anim. Sci. 2017, 95, 5675–5688. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Cao, Y. Effect of the ACAA1 Gene on preadipocyte differentiation in sheep. Front. Genet. 2021, 12, 649140. [Google Scholar] [CrossRef]
- Cansever, D.; Petrova, E.; Krishnarajah, S.; Mussak, C.; Welsh, C.A.; Mildenberger, W.; Mulder, K.; Kreiner, V.; Roussel, E.; Stifter, S.A.; et al. Lactation-associated macrophages exist in murine mammary tissue and human milk. Nat. Immunol. 2023, 24, 1098–1109. [Google Scholar] [CrossRef] [PubMed]
- Jardé, T.; Lloyd-Lewis, B.; Thomas, M.; Kendrick, H.; Melchor, L.; Bougaret, L.; Watson, P.D.; Ewan, K.; Smalley, M.J.; Dale, T.C. Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat. Commun. 2016, 7, 13207. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Chao, T.; Zhang, C.; Liu, Z.; Hou, L.; Wang, J.; Wang, A.; Wang, Y.; Zhou, J.; Xuan, R.; et al. Transcriptome analysis of dairy goat mammary gland tissues from different lactation stages. DNA Cell Biol. 2019, 38, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.; Kim, S.; Kim, N.; Shin, H.Y. Mammary-Enriched Transcription Factors Synergize to Activate the Wap Super-Enhancer for Mammary Gland Development. Int. J. Mol. Sci. 2022, 23, 11680. [Google Scholar] [CrossRef] [PubMed]
- Stothard, P.; Choi, J.W.; Basu, U.; Sumner-Thomson, J.M.; Meng, Y.; Liao, X.; Moore, S.S. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genom. 2011, 12, 559. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hanotte, O.; Mwai, O.A.; Dessie, T.; Bashir, S.; Diallo, B.; Agaba, M.; Kim, K.; Kwak, W.; Sung, S.; et al. The genome landscape of indigenous African cattle. Genome Biol. 2017, 18, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ayalew, W.; Wu, X.; Tarekegn, G.M.; Sisay Tessema, T.; Naboulsi, R.; Van Damme, R.; Bongcam-Rudloff, E.; Edea, Z.; Enquahone, S.; Yan, P. Whole-Genome Resequencing Reveals Selection Signatures of Abigar Cattle for Local Adaptation. Animals 2023, 13, 3269. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Rosen, B.D.; Bickhart, D.M.; Schnabel, R.D.; Koren, S.; Elsik, C.G.; Tseng, E.; Rowan, T.N.; Low, W.Y.; Zimin, A.; Couldrey, C.; et al. De novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience 2020, 9, giaa021. [Google Scholar] [CrossRef]
- Li, H. SAMtools 1.6: A toolkit for DNA sequence analysis. Bioinformatics 2017, 34, 3313–3314. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dong, S.S.; Xu, J.Y.; He, W.M.; Yang, T.L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Qi, X.; Cheng, H.; Chen, N.; Ahmed, Z.; Chen, Q.; Lei, C.; Yang, X. Genome-wide analysis emancipates genomic diversity and signature of selection in Altay white-headed cattle of Xinjiang, China. Front. Genet. 2023, 14, 1144249. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Francis, R.M. Pophelper: An R package and web app to analyze and visualize population structure. Mol. Ecol. Resour. 2017, 17, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 2011, 12, 246. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 1984, 38, 1358. [Google Scholar] [CrossRef]
- Kinsella, R.J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
Breeds | ABI | ANK | BAR | BOR | FEL | FOG | GOH | HOL | HOR | NDA |
---|---|---|---|---|---|---|---|---|---|---|
ABI | ||||||||||
ANK | 0.055 | |||||||||
BAR | 0.062 | 0.122 | ||||||||
BOR | 0.026 | 0.0827 | 0.057 | |||||||
FEL | 0.0275 | 0.0795 | 0.061 | 0.0334 | ||||||
FOG | 0.0275 | 0.0891 | 0.065 | 0.0192 | 0.042 | |||||
GOH | 0.0219 | 0.074 | 0.055 | 0.0115 | 0.029 | 0.019 | ||||
HOL | 0.062 | 0.25 | 0.349 | 0.3513 | 0.316 | 0.349 | 0.332 | |||
HOR | 0.0211 | 0.0733 | 0.058 | 0.014 | 0.03 | 0.021 | 0.0061 | 0.336 | ||
NDA | 0.189 | 0.173 | 0.267 | 0.2594 | 0.222 | 0.259 | 0.2418 | 0.265 | 0.243 |
Methods | BTA | Start Position | End Position | Gene Name | Summary of Gene Function | References |
---|---|---|---|---|---|---|
ZFST | 2 | 122285620 | 122294666 | FABP3 | Milk fat | [35,36] |
2 | 1679994 | 1864849 | ARHGEF4 | Milk yield | [19] | |
6 | 86381836 | 86809131 | SLC4A4 | Milk production | [20] | |
14 | 56984054 | 57285247 | ANGPT1 | Milk composition traits | [37] | |
18 | 48557658 | 48569498 | HNRNPL | Milk yield | [38] | |
21 | 65626343 | 65634828 | DLK1 | Milk protein and milk fat | [39] | |
22 | 11581703 | 11607351 | ACAA1 | Mammary epithelial cell proliferation | [40] | |
22 | 50983772 | 50997485 | P4HTM | Milk traits | [41] | |
23 | 51168216 | 51604000 | GMDS | Milk production | [42] | |
26 | 6899619 | 8313722 | PRKG1 | Milk fatty acid traits | [18,43] | |
θπ ratio | 3 | 33488957 | 33509479 | CSF1 | Mammary gland development | [44] |
5 | 57215784 | 57236737 | ERBB3 | Mammary development | [45,46] | |
6 | 86381836 | 86809131 | SLC4A4 | Milk production | [20] | |
19 | 13441162 | 13726679 | ACACA | Milk fat | [6,35] | |
19 | 27364091 | 27369121 | ATP1B2 | Milk yield and milk composition | [14,47] | |
19 | 39843840 | 39867840 | MED1 | Mammary gland development | [48] | |
22 | 50983772 | 50997485 | P4HTM | Milk traits | [41] | |
22 | 11581703 | 11607351 | ACAA1 | Mammary epithelial cell proliferation | [40] | |
ZHp | 6 | 86381836 | 86809131 | SLC4A4 | Milk production traits | [20] |
20 | 39873127 | 40265889 | ADAMTS12 | Milk production | [49] | |
11 | 18812764 | 19022665 | CRIM1 | Milk protein | [50,51] | |
14 | 56984054 | 57285247 | ANGPT1 | Milk composition traits | [37] | |
15 | 56246885 | 56403904 | ACER3 | Mammary gland development | [41] | |
22 | 50983772 | 50997485 | P4HTM | Milk traits | [41] | |
22 | 11581703 | 11607351 | ACAA1 | Mammary epithelial cell proliferation | [40] |
Term | Count | p-Value | Fold Enrichment | Genes |
---|---|---|---|---|
GO: 0010562—positive regulation of phosphorus metabolic process | 36 | 0.041 | 1.36 | CACUL1, DAB2IP, EPHA5, ETAA1, FXR2, FYN, MYD88, ROS1, SH3RF3, TYRO3, VRK3, ACVRL1, ANGPT1, BMPR2, CHI3L1, CSF1, DSTYK, ERBB3, FGF18, GDF9, HBEGF, HMGA2, HIPK2, INHBC, INHBE, IL23A, KIF14, LEPR, NCF1, RPS6KA5, SLAMF1, SLC4A4, SPPL3, STOML2, TP53, VCP |
GO: 0006913—nucleocytoplasmic transport | 19 | 0.005 | 2.10 | ABCE1, POLDIP3, RANBP1, RANBP17, TRAF3IP2, YTHDC1, AHCYL1, BMPR2, FAM53C, HSPA9, KPNA6, MED1, NUTF2, NPM1, LOC511386, NUP133, NUP62, TCF7L2, TP53 |
GO: 0001932—regulation of protein phosphorylation | 46 | 0.033 | 1.35 | AKT1S1, CACUL1, DAB2IP, ETAA1, FKBP1A, FXR2, FYN, GPS2, MYD88, ROS1, SH3RF3, TIMP3, VRK3, ACVRL1, ANGPT1, BMPR2, CHI3L1, CSF1, CCNG1, CDK12, DSTYK, FGF18, QARS1, GDF9, HBEGF, HMGA2, HIPK2, INHBC, INHBE, IL23A, KIF14, NCF1, LEPR, NPM1, NUP62, PARD6A, PLEC, RPS6KA5, RNF41, STAT2, SLAMF1, SIRT2, SLIT2, SMPD3, TADA2A, TP53 |
GO: 0006820—monoatomic anion transport | 19 | 0.032 | 1.27 | ABCB11, ATP8A1, ATP8B3, ATP9A, ROS1, FABP3, GABRB1, LOC516849, SFRP4, SLC12A4, SLC22A11, SLC22A12, SLC23A1, SLC25A48, SLC38A3, SLC4A4, SLC4A8, SLC4A9, SLC7A6 |
GO: 0008284—positive regulation of cell proliferation | 32 | 0.017 | 1.54 | HTR1B, CACUL1, GNAI2, GLI1, LHX1, MYD88, POU3F3, SOX15, ACVRL1, ACER3, BMPR2, CSF1, EGR1, ERBB3, FGF18, GDF9, HBEGF, HMGA2, HIPK2, IL23A, KIF14, LDLRAP1, MZB1, MED1, NR4A1, NPM1, OTP, SLAMF1, SMPD3, TNC, TCF7L2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayalew, W.; Wu, X.; Tarekegn, G.M.; Sisay Tessema, T.; Naboulsi, R.; Van Damme, R.; Bongcam-Rudloff, E.; Edea, Z.; Chu, M.; Enquahone, S.; et al. Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle. Int. J. Mol. Sci. 2024, 25, 6142. https://doi.org/10.3390/ijms25116142
Ayalew W, Wu X, Tarekegn GM, Sisay Tessema T, Naboulsi R, Van Damme R, Bongcam-Rudloff E, Edea Z, Chu M, Enquahone S, et al. Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle. International Journal of Molecular Sciences. 2024; 25(11):6142. https://doi.org/10.3390/ijms25116142
Chicago/Turabian StyleAyalew, Wondossen, Xiaoyun Wu, Getinet Mekuriaw Tarekegn, Tesfaye Sisay Tessema, Rakan Naboulsi, Renaud Van Damme, Erik Bongcam-Rudloff, Zewdu Edea, Min Chu, Solomon Enquahone, and et al. 2024. "Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle" International Journal of Molecular Sciences 25, no. 11: 6142. https://doi.org/10.3390/ijms25116142
APA StyleAyalew, W., Wu, X., Tarekegn, G. M., Sisay Tessema, T., Naboulsi, R., Van Damme, R., Bongcam-Rudloff, E., Edea, Z., Chu, M., Enquahone, S., Liang, C., & Yan, P. (2024). Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle. International Journal of Molecular Sciences, 25(11), 6142. https://doi.org/10.3390/ijms25116142