Current Novel Targeted Therapeutic Strategies in Multiple Myeloma
Abstract
:1. Introduction
2. B Cell Maturation Antigen (BCMA)
2.1. Anti-BCMA Chimeric Antigen Receptor (CAR) T Cell Therapies
2.1.1. Approved BMCA-Directed CAR T Cell Therapies
2.1.2. Investigational BCMA-Directed CAR T Cell Therapies
2.2. Anti-BCMA Multispecific Antibodies
2.2.1. Approved Anti-BCMA Bispecific Antibodies
2.2.2. Investigational Anti-BCMA Bispecific Antibodies
2.3. Anti-BCMA Antibody–Drug Conjugate (ADC)
3. G Protein–Coupled Receptor, Class C, Group 5, Member D (GPRC5D)
3.1. GPRC5D CAR T Cell Therapy
3.2. GPRC5D Bispecific Antibodies
4. Fc Receptor-Homolog 5 (FcRH5)
4.1. FcRH5 CAR T Cell Therapy
4.2. FcRH5 Bispecific T Cell Antibodies
5. Cluster of Differentiation 38 (CD38)
5.1. Anti-CD38 T Cell Engagers
5.2. Anti-CD38 Antibody–Drug Conjugates (ADCs)
5.3. Anti-CD38 CAR and Dimeric Antigen Receptor (DAR) T Cell Therapies
6. Cereblon
Cereblon-E3 Ligase Modulating Agents
7. Signaling Lymphocyte Activation Molecular Family 7 (SLAMF7)
8. B Cell Lymphoma-2 (BCL-2)
9. NK Cell Therapy
9.1. Autologous Non-CAR NK Cells
9.2. Nonautologous CAR NK Cells
10. Kinesin Spindle Protein Inhibitors
11. Proteolysis-Targeting Chimera
12. Protein Disulfide Isomerase 1 (PDIA1)
13. Peptidylprolyl Isomerase A (PPIA)
14. Sec61 Translocon
15. Cyclin-Dependent Kinase 6 (CDK6)
16. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cowan, A.J.; Green, D.J.; Kwok, M.; Lee, S.; Coffey, D.G.; Holmberg, L.A.; Tuazon, S.; Gopal, A.K.; Libby, E.N. Diagnosis and Management of Multiple Myeloma: A Review. JAMA 2022, 327, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Dima, D.; Jiang, D.; Singh, D.J.; Hasipek, M.; Shah, H.S.; Ullah, F.; Khouri, J.; Maciejewski, J.P.; Jha, B.K. Multiple Myeloma Therapy: Emerging Trends and Challenges. Cancers 2022, 14, 4082. [Google Scholar] [CrossRef] [PubMed]
- Dima, D.; Ullah, F.; Mazzoni, S.; Williams, L.; Faiman, B.; Kurkowski, A.; Chaulagain, C.; Raza, S.; Samaras, C.; Valent, J.; et al. Management of Relapsed-Refractory Multiple Myeloma in the Era of Advanced Therapies: Evidence-Based Recommendations for Routine Clinical Practice. Cancers 2023, 15, 2160. [Google Scholar] [CrossRef] [PubMed]
- Markouli, M.; Ullah, F.; Unlu, S.; Omar, N.; Lopetegui-Lia, N.; Duco, M.; Anwer, F.; Raza, S.; Dima, D. Toxicity Profile of Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapies in Multiple Myeloma: Pathogenesis, Prevention and Management. Curr. Oncol. 2023, 30, 6330–6352. [Google Scholar] [CrossRef]
- O’Connor, B.P.; Raman, V.S.; Erickson, L.D.; Cook, W.J.; Weaver, L.K.; Ahonen, C.; Lin, L.L.; Mantchev, G.T.; Bram, R.J.; Noelle, R.J. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 2004, 199, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.J.; Dillon, S.R.; Castigli, E.; Geha, R.S.; Xu, S.; Lam, K.P.; Noelle, R.J. Cutting edge: The dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J. Immunol. 2008, 180, 3655–3659. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.F.; Anderson, K.C.; Tai, Y.T. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front. Immunol. 2018, 9, 1821. [Google Scholar] [CrossRef] [PubMed]
- Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am. J. Hematol. 2019, 94, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Vormittag, P.; Gunn, R.; Ghorashian, S.; Veraitch, F.S. A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol. 2018, 53, 164–181. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, an Anti-B-cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. J. Clin. Oncol. 2023, 41, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef]
- Baz, R.; Rodriguez Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.K.; Nooka, A.K.; Costa, L.; Raje, N.S.; Abrahamsen, I.W.; Delforge, M.; et al. Idecabtagene Vicleucel (ide-cel) Versus Standard (std) Regimens in Patients (pts) with Triple-Class-Exposed (TCE) Relapsed and Refractory Multiple Myeloma (RRMM): Analysis of Cytopenias and Infections in Pts from KarMMa-3. Blood 2023, 142 (Suppl. S1), 4879. [Google Scholar] [CrossRef]
- Hansen, D.K.; Sidana, S.; Peres, L.C.; Colin Leitzinger, C.; Shune, L.; Shrewsbury, A.; Gonzalez, R.; Sborov, D.W.; Wagner, C.; Dima, D.; et al. Idecabtagene Vicleucel for Relapsed/Refractory Multiple Myeloma: Real-World Experience From the Myeloma CAR T Consortium. J. Clin. Oncol. 2023, 41, 2087–2097. [Google Scholar] [CrossRef] [PubMed]
- Sidana, S.; Peres, L.C.; Hashmi, H.; Hosoya, H.; Ferreri, C.; Khouri, J.; Dima, D.; Atrash, S.; Voorhees, P.; Simmons, G.; et al. Idecabtagene vicleucel chimeric antigen receptor T-cell therapy for relapsed/refractory multiple myeloma with renal impairment. Haematologica 2024, 109, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Dima, D.; Ahmed, N.; DeJarnette, S.; McGuirk, J.; Jia, X.; Raza, S.; Khouri, J.; Valent, J.; Anwer, F.; et al. Impact of Frailty on Outcomes after Chimeric Antigen Receptor T Cell Therapy for Patients with Relapsed/Refractory Multiple Myeloma. Transplant. Cell Ther. 2024, 30, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, C.J.; Hildebrandt, M.A.T.; Hashmi, H.; Shune, L.O.; McGuirk, J.P.; Sborov, D.W.; Wagner, C.B.; Kocoglu, M.H.; Rapoport, A.; Atrash, S.; et al. Real-world experience of patients with multiple myeloma receiving ide-cel after a prior BCMA-targeted therapy. Blood Cancer J. 2023, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, H.; Hansen, D.K.; Peres, L.C.; Puglianini, O.C.; Freeman, C.; De Avila, G.; Sidana, S.; Shune, L.; Sborov, D.W.; Davis, J.; et al. Factors associated with refractoriness or early progression after idecabtagene vicleucel in patients with relapsed/refractory multiple myeloma: U.S. Myeloma Immunotherapy Consortium real world experience. Haematologica 2024, 109, 1514–1524. [Google Scholar] [CrossRef]
- Hillengass, J.; Cohen, A.D.; Agha, M.E.; Delforge, M.; Kerre, T.; Roeloffzen, W.; Einsele, H.; Goldschmidt, H.; Weisel, K.; Raab, M.S.; et al. The Phase 2 CARTITUDE-2 Trial: Updated Efficacy and Safety of Ciltacabtagene Autoleucel in Patients with Multiple Myeloma and 1-3 Prior Lines of Therapy (Cohort A) and with Early Relapse after First Line Treatment (Cohort B). Blood 2023, 142, 1021. [Google Scholar] [CrossRef]
- San-Miguel, J.; Dhakal, B.; Yong, K.; Spencer, A.; Anguille, S.; Mateos, M.-V.; Fernández de Larrea, C.; Martínez-López, J.; Moreau, P.; Touzeau, C.; et al. Cilta-cel or Standard Care in Lenalidomide-Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 389, 335–347. [Google Scholar] [CrossRef]
- Sidiqi, M.H.; Corradini, P.; Purtill, D.; Einsele, H.; Dhakal, B.; Karlin, L.; Manier, S.; Iida, S.; Giebel, S.; Harrison, S.J.; et al. Efficacy and Safety in Patients with Lenalidomide-Refractory Multiple Myeloma after 1-3 Prior Lines Who Received a Single Infusion of Ciltacabtagene Autoleucel As Study Treatment in the Phase 3 CARTITUDE-4 Trial. Blood 2023, 142 (Suppl. S1), 4866. [Google Scholar] [CrossRef]
- Qin, H.; Edwards, J.P.; Zaritskaya, L.; Gupta, A.; Mu, C.J.; Fry, T.J.; Hilbert, D.M.; LaFleur, D.W. Chimeric Antigen Receptors Incorporating D Domains Targeting CD123 Direct Potent Mono- and Bi-specific Antitumor Activity of T Cells. Mol. Ther. 2019, 27, 1262–1274. [Google Scholar] [CrossRef] [PubMed]
- Frigault, M.J.; Rosenblatt, J.; Dhakal, B.; Raje, N.S.; Cook, D.; Gaballa, M.; Emmanuel-Alejandro, E.; Nissen, D.; Banerjee, K.C.; Rotte, A.; et al. Phase 1 Study of CART-Ddbcma for the Treatment of Patients with Relapsed and/or Refractory Multiple Myeloma: Results from at Least 1-Year Follow-up in All Patients. Blood 2023, 142, 1023. [Google Scholar] [CrossRef]
- Oliver-Caldes, A.; Gonzalez-Calle, V.; Cabañas, V.; Lopez-Muñoz, N.; Rodriguez Otero, P.; Reguera, J.L.; Español-Rego, M.; Inoges, S.; Zabaleta, A.; Lopez Corral, L.; et al. ARI0002h (Cesnicabtagene Autoleucel), an Academic Point-of-Care B-Cell Maturation Antigen (BCMA)-Directed Chimeric Antigen Receptor (CAR) T-Cell Strategy: Activity and Safety after Fractionated Initial Therapy and Booster Dose in 60 Patients with Relapsed/Refractory Multiple Myeloma. Blood 2023, 142, 1026. [Google Scholar]
- Asherie, N.; Kfir-Erenfeld, S.; Avni, B.; Assayag, M.; Dubnikov, T.; Zalcman, N.; Lebel, E.; Zimran, E.; Shaulov, A.; Pick, M.; et al. Development and manufacture of novel locally produced anti-BCMA CAR T cells for the treatment of relapsed/refractory multiple myeloma: Results from a phase I clinical trial. Haematologica 2023, 108, 1827–1839. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Fu, W.-J.; Jiang, H.; Dong, B.; Gao, L.; Liu, L.; Ge, J.; He, A.; Li, L.; Lu, J.; et al. Updated results of a phase I, open-label study of BCMA/CD19 dual-targeting fast CAR-T GC012F for patients with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2023, 41 (Suppl. S15), 8005. [Google Scholar] [CrossRef]
- Sperling, A.S.; Derman, B.A.; Nikiforow, S.; Im, S.-Y.; Ikegawa, S.; Prabhala, R.H.; Rodriguez, D.H.; Li, Y.; Quinn, D.S.; Pearson, D.; et al. Updated phase I study results of PHE885, a T-Charge manufactured BCMA-directed CAR-T cell therapy, for patients (pts) with r/r multiple myeloma (RRMM). J. Clin. Oncol. 2023, 41 (Suppl. S16), 8004. [Google Scholar] [CrossRef]
- Ikegawa, S.; Sperling, A.S.; Ansuinelli, M.; Nikiforow, S.; Quinn, D.; Bu, D.; Mataraza, J.; Pearson, D.; Rispoli, L.; Credi, M.A.; et al. T-Charge™ Manufacturing of the Anti-BCMA CAR-T, Durcabtagene Autoleucel (PHE885), Promotes Expansion and Persistence of CAR-T Cells with High TCR Repertoire Diversity. Blood 2023, 142 (Suppl. S1), 3469. [Google Scholar] [CrossRef]
- Fu, C.; Chen, W.; Cai, Z.; Yan, L.; Wang, H.; Shang, J.; Wu, Y.; Yan, S.; Gao, W.; Shi, X.; et al. Three-Year Follow-up on Efficacy and Safety Results from Phase 1 Lummicar Study 1 of Zevorcabtagene Autoleucel in Chinese Patients with Relapsed or Refractory Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 4845. [Google Scholar] [CrossRef]
- Kumar, S.K.; Baz, R.C.; Orlowski, R.Z.; Anderson, L.D.; Ma, H.; Shrewsbury, A.; Croghan, K.A.; Bilgi, M.; Kansagra, A.; Kapoor, P.; et al. Results from Lummicar-2: A Phase 1b/2 Study of Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (CT053) in Patients with Relapsed and/or Refractory Multiple Myeloma. Blood 2020, 136, 28–29. [Google Scholar] [CrossRef]
- Mailankody, S.; Jakubowiak, A.J.; Htut, M.; Costa, L.J.; Lee, K.; Ganguly, S.; Kaufman, J.L.; Siegel, D.S.D.; Bensinger, W.; Cota, M.; et al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): Update of the phase 1/2 EVOLVE study (NCT03430011). J. Clin. Oncol. 2020, 38 (Suppl. S15), 8504. [Google Scholar] [CrossRef]
- Metelo, A.M.; Jozwik, A.; Luong, L.A.; Dominey-Foy, D.; Graham, C.; Attwood, C.; Inam, S.; Dunlop, A.; Sanchez, K.; Cuthill, K.; et al. Allogeneic Anti-BCMA CAR T Cells Are Superior to Multiple Myeloma-derived CAR T Cells in Preclinical Studies and May Be Combined with Gamma Secretase Inhibitors. Cancer Res. Commun. 2022, 2, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Dholaria, B.; Kocoglu, M.H.; Kin, A.; Asch, A.S.; Ramakrishnan, A.; Bachier, C.; Rodriguez, T.E.; Shune, L.; McArthur, K.; McCaigue, J.; et al. Early Safety Results of P-BCMA-ALLO1, a Fully Allogeneic Chimeric Antigen Receptor T-Cell (CAR-T), in Patients with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2023, 142 (Suppl. S1), 3479. [Google Scholar] [CrossRef]
- Mailankody, S.; Matous, J.V.; Chhabra, S.; Liedtke, M.; Sidana, S.; Oluwole, O.O.; Malik, S.; Nath, R.; Anwer, F.; Cruz, J.C.; et al. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: Phase 1 UNIVERSAL trial interim results. Nat. Med. 2023, 29, 422–429. [Google Scholar] [CrossRef]
- Ma, J.; Mo, Y.; Tang, M.; Shen, J.; Qi, Y.; Zhao, W.; Huang, Y.; Xu, Y.; Qian, C. Bispecific Antibodies: From Research to Clinical Application. Front. Immunol. 2021, 12, 626616. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Garfall, A.L.; van de Donk, N.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Dima, D.; Davis, J.A.; Ahmed, N.; Sannareddy, A.; Shaikh, H.; Mahmoudjafari, Z.; Khouri, J.; Kaur, G.; Strouse, C.; Valent, J.; et al. Real-World Safety and Efficacy of Teclistamab for Patients with Heavily Pretreated Relapsed-Refractory Multiple Myeloma. Blood 2023, 142, 91. [Google Scholar] [CrossRef]
- Dima, D.; Sannareddy, A.; Ahmed, N.; Davis, J.A.; Shaikh, H.; Mahmoudjafari, Z.; Duco, M.; Khouri, J.; Kaur, G.; Lochner, J.; et al. Toxicity and Efficacy Outcomes of Teclistamab in Patients with Relapsed-Refractory Multiple Myeloma (RRMM) Above the Age of 70 Years: A Multicenter Study. Blood 2023, 142 (Suppl. S1), 3330. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Miles Prince, H.; Niesvizky, R.; Rodrίguez-Otero, P.; Martinez-Lopez, J.; Koehne, G.; Touzeau, C.; et al. Elranatamab in relapsed or refractory multiple myeloma: Phase 2 MagnetisMM-3 trial results. Nat. Med. 2023, 29, 2259–2267. [Google Scholar] [CrossRef]
- Jagannath, S.; Richter, J.; Dhodapkar, M.V.; Hoffman, J.E.; Lee, H.C.; Suvannasankha, A.; Shah, M.R.; Lentzsch, S.; Zonder, J.A.; Baz, R.; et al. Patterns of Response to 200 Mg Linvoseltamab in Patients with Relapsed/Refractory Multiple Myeloma: Longer Follow-Up of the Linker-MM1 Study. Blood 2023, 142 (Suppl. S1), 4746. [Google Scholar] [CrossRef]
- Sun, M.; Qi, J.; Qiu, L.; Jin, J.; Li, X.; Wei, Y.; Zhang, G.; Liu, X.; Yin, S. A Phase 1 First-in-Human Monotherapy Study of F182112, a B-Cell Maturation Antigen (BCMA)-CD3 Bispecific Antibody, in Patients with Relapsed or Refractory Multiple Myeloma. Blood 2023, 142, 1978. [Google Scholar] [CrossRef]
- Bar, N.; Mateos, M.V.; Ribas, P.; Hansson, M.; Paris, L.; Hofmeister, C.C.; Rodriguez Otero, P.; Bermúdez, M.A.; Martin, T.; Santoro, A.; et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a 2+1 B-Cell Maturation Antigen (BCMA) × CD3 T-Cell Engager (TCE), Administered Subcutaneously (SC) in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from a Phase 1 First-in-Human Clinical Study. Blood 2023, 142 (Suppl. S1), 2011. [Google Scholar]
- Vij, R.; Kumar, S.K.; D’Souza, A.; Mckay, J.T.; Voorhees, P.M.; Chung, A.; Tuchman, S.A.; Korde, N.; Weisel, K.; Teipel, R.; et al. Updated Safety and Efficacy Results of Abbv-383, a BCMA x CD3 Bispecific T-Cell Redirecting Antibody, in a First-in-Human Phase 1 Study in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 3378. [Google Scholar] [CrossRef]
- Madan, S.; Costello, C.L.; Lipe, B.; Cowan, A.J.; Medvedova, E.; Hillengass, J.; Bergsagel, P.L.; Leleu, X.; Touzeau, C.; Morillo, D.; et al. Results from the Completed Dose Escalation Portion of the Phase 1 Study of HPN217, a Half-Life Extended Tri-Specific T Cell Activating Construct (TriTAC®) Targeting B Cell Maturation Antigen (BCMA) for Relapsed/Refractory Multiple Myeloma (MM). Blood 2023, 142, 1012. [Google Scholar] [CrossRef]
- Tang, A.; Gauthier, L.; Beninga, J.; Rossi, B.; Gourdin, N.; Blanchard-Alvarez, A.; Amara, C.; Courta, J.; Basset, A.; Bourges, D.; et al. The Novel Trifunctional Anti-BCMA NK Cell Engager SAR’514 Has Potent in-Vitro and in-Vivo Anti-Myeloma Effect through Dual NK Cell Engagement. Blood 2022, 140 (Suppl. S1), 9985–9986. [Google Scholar] [CrossRef]
- Pillarisetti, R.; Yang, D.; Yao, J.; Smith, M.; Luistro, L.; Vulfson, P.; Testa, J., Jr.; Packman, K.; Brodeur, S.; Attar, R.M.; et al. Characterization of JNJ-79635322, a Novel BCMAxGPRC5DxCD3 T-Cell Redirecting Trispecific Antibody, for the Treatment of Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 4566. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Mielnik, M.; Byun, J.M.; Alonso, A.A.; Abdallah, A.-O.A.; Garg, M.; Quach, H.; Min, C.-K.; Janowski, W.; Ocio, E.M.; et al. A phase 1 study of belantamab mafodotin in combination with standard of care in newly diagnosed multiple myeloma: An interim analysis of DREAMM-9. J. Clin. Oncol. 2023, 41 (Suppl. S16), 8018. [Google Scholar] [CrossRef]
- Popat, R.; Augustson, B.; Gironella, M.; Lee, C.; Cannell, P.; Patel, N.; Kasinathan, R.; Rogers, R.; Curry, A.; Carreno, F.; et al. Belantamab Mafodotin in Combination with Lenalidomide Plus Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma: Safety and Efficacy Analysis of DREAMM-6 Trial Arm-a. Blood 2023, 142 (Suppl. S1), 2010. [Google Scholar] [CrossRef]
- Lonial, S.; Grosicki, S.; Hus, M.; Song, K.W.; Facon, T.; Callander, N.S.; Ribrag, V.; Uttervall, K.; Quach, H.; Vorobyev, V.I.; et al. Synergistic effects of low-dose belantamab mafodotin in combination with a gamma-secretase inhibitor (nirogacestat) in patients with relapsed/refractory multiple myeloma (RRMM): DREAMM-5 study. J. Clin. Oncol. 2022, 40 (Suppl. S16), 8019. [Google Scholar] [CrossRef]
- Hultcrantz, M.; Kleinman, D.; Ghataorhe, P.; McKeown, A.; He, W.; Ling, T.; Jewell, R.C.; Byrne, J.; Eliason, L.; Scott, E.C.; et al. Exploring alternative dosing regimens of single-agent belantamab mafodotin on safety and efficacy in patients with relapsed or refractory multiple myeloma: DREAMM-14. J. Clin. Oncol. 2022, 40 (Suppl. S16), TPS8073. [Google Scholar] [CrossRef]
- Trudel, S.; Davis, R.; Lewis, N.M.; Bakshi, K.K.; Chopra, B.; Montes de Oca, R.; Ferron-Brady, G.; Eliason, L.; Kremer, B.E.; Gupta, I.; et al. DREAMM-8: A Phase III Study of the Efficacy and Safety of Belantamab Mafodotin with Pomalidomide and Dexamethasone (B-Pd) vs. Pomalidomide Plus Bortezomib and Dexamethasone (PVd) in Patients with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2020, 136 (Suppl. S1), 4. [Google Scholar] [CrossRef]
- GSK. GSK Announces Positive Results from DREAMM-8 Phase III Trial for Blenrep Versus Standard of Care Combination in Relapsed/Refractory Multiple Myeloma. Available online: https://www.gsk.com/en-gb/media/press-releases/gsk-announces-positive-results-from-dreamm-8-phase-iii-trial-for-blenrep-versus-standard-of-care-combination-in-relapsedrefractory-multiple-myeloma/ (accessed on 28 May 2024).
- Mateos, M.-V.; Robak, P.; Hus, M.; Xia, Z.; Zherebtsova, V.; Ward, C.; Ho, P.J.; Hajek, R.; Kim, K.; Dimopoulos, M.A.; et al. Results from the randomized phase III DREAMM-7 study of belantamab mafodotin (belamaf) + bortezomib, and dexamethasone (BVd) vs. daratumumab, bortezomib, and dexamethasone (DVd) in relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2024, 42 (Suppl. S36), 439572. [Google Scholar] [CrossRef]
- Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med. 2019, 11, eaau7746. [Google Scholar] [CrossRef]
- Cohen, Y.; Gutwein, O.; Garach-Jehoshua, O.; Bar-Haim, A.; Kornberg, A. GPRC5D is a promising marker for monitoring the tumor load and to target multiple myeloma cells. Hematology 2013, 18, 348–351. [Google Scholar] [CrossRef]
- Inoue, S.; Nambu, T.; Shimomura, T. The RAIG family member, GPRC5D, is associated with hard-keratinized structures. J. Invest. Dermatol. 2004, 122, 565–573. [Google Scholar] [CrossRef]
- Mailankody, S.; Devlin, S.M.; Landa, J.; Nath, K.; Diamonte, C.; Carstens, E.J.; Russo, D.; Auclair, R.; Fitzgerald, L.; Cadzin, B.; et al. GPRC5D-Targeted CAR T Cells for Myeloma. N. Engl. J. Med. 2022, 387, 1196–1206. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, G.; Zhou, L.; Zhou, J.; Chen, S.; Zhang, W.; Wang, D.; Luo, X.; Cui, J.; Huang, S.; et al. GPRC5D CAR T cells (OriCAR-017) in patients with relapsed or refractory multiple myeloma (POLARIS): A first-in-human, single-centre, single-arm, phase 1 trial. Lancet Haematol. 2023, 10, e107–e116. [Google Scholar] [CrossRef]
- Bal, S.; Kocoglu, M.H.; Nadeem, O.; Htut, M.; Gregory, T.; Anderson, L.D., Jr.; Costa, L.J.; Buchholz, T.J.; Ziyad, S.; Li, M.; et al. Clinical Activity of BMS-986393 (CC-95266), a G Protein-Coupled Receptor Class C Group 5 Member D (GPRC5D)-Targeted Chimeric Antigen Receptor (CAR) T Cell Therapy, in Patients with Relapsed and/or Refractory (R/R) Multiple Myeloma (MM): First Results from a Phase 1, Multicenter, Open-Label Study. Blood 2022, 140 (Suppl. S1), 883–885. [Google Scholar]
- Bal, S.; Htut, M.; Nadeem, O.; Anderson, L.D.; Koçoğlu, H.; Gregory, T.; Rossi, A.C.; Martin, T.; Egan, D.N.; Costa, L.; et al. BMS-986393 (CC-95266), a G Protein-Coupled Receptor Class C Group 5 Member D (GPRC5D)-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy for Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from a Phase 1 Study. Blood 2023, 142, 219. [Google Scholar] [CrossRef]
- Xia, J.; Li, H.; Yan, Z.; Zhou, D.; Wang, Y.; Qi, Y.; Cao, J.; Li, D.; Cheng, H.; Sang, W.; et al. Anti-G Protein-Coupled Receptor, Class C Group 5 Member D Chimeric Antigen Receptor T Cells in Patients With Relapsed or Refractory Multiple Myeloma: A Single-Arm, Phase II Trial. J. Clin. Oncol. 2023, 41, 2583–2593. [Google Scholar] [CrossRef]
- Schinke, C.D.; Touzeau, C.; Minnema, M.C.; van de Donk, N.W.; Rodríguez-Otero, P.; Mateos, M.-V.; Rasche, L.; Ye, J.C.; Vishwamitra, D.; Ma, X.; et al. Pivotal phase 2 MonumenTAL-1 results of talquetamab (tal), a GPRC5DxCD3 bispecific antibody (BsAb), for relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2023, 41 (Suppl. S16), 8036. [Google Scholar] [CrossRef]
- Jakubowiak, A.J.; Anguille, S.; Karlin, L.; Chari, A.; Schinke, C.; Rasche, L.; San-Miguel, J.; Campagna, M.; Hilder, B.W.; Masterson, T.J.; et al. Updated Results of Talquetamab, a GPRC5D × CD3 Bispecific Antibody, in Patients with Relapsed/Refractory Multiple Myeloma with Prior Exposure to T-Cell Redirecting Therapies: Results of the Phase 1/2 MonumenTAL-1 Study. Blood 2023, 142 (Suppl. S1), 3377. [Google Scholar] [CrossRef]
- Sanchez, L.; Schinke, C.; Krishnan, A.; Berdeja, J.; Donk, N.; Mateos, M.; Chari, A.; Parekh, S.; Mouhieddine, T.; Jagannath, S.; et al. Clinical Outcomes of Subsequent Therapies in Patients with Relapsed/Refractory Multiple Myeloma Following Talquetamab Treatment: Analyses from the Phase 1/2 MonumenTAL-1 Study. Blood 2023, 142, 2007. [Google Scholar] [CrossRef]
- Matous, J.; Biran, N.; Perrot, A.; Berdeja, J.G.; Dorritie, K.; Elssen, J.V.; Searle, E.; Touzeau, C.; Anguille, S.; Vishwamitra, D.; et al. Talquetamab + Pomalidomide in Patients with Relapsed/Refractory Multiple Myeloma: Safety and Preliminary Efficacy Results from the Phase 1b MonumenTAL-2 Study. Blood 2023, 142, 1014. [Google Scholar] [CrossRef]
- Cohen, Y.C.; Morillo, D.; Gatt, M.E.; Sebag, M.; Kim, K.; Min, C.-K.; Oriol, A.; Ocio, E.M.; Yoon, S.-S.; Mateos, M.-V.; et al. First results from the RedirecTT-1 study with teclistamab (tec) + talquetamab (tal) simultaneously targeting BCMA and GPRC5D in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2023, 41 (Suppl. S16), 8002. [Google Scholar] [CrossRef]
- Carlo-Stella, C.; Mazza, R.; Manier, S.; Facon, T.; Yoon, S.-S.; Koh, Y.; Harrison, S.J.; Er, J.; Pinto, A.; Volzone, F.; et al. RG6234, a GPRC5DxCD3 T-Cell Engaging Bispecific Antibody, Is Highly Active in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Updated Intravenous (IV) and First Subcutaneous (SC) Results from a Phase I Dose-Escalation Study. Blood 2022, 140 (Suppl. S1), 397–399. [Google Scholar] [CrossRef]
- Polson, A.G.; Zheng, B.; Elkins, K.; Chang, W.; Du, C.; Dowd, P.; Yen, L.; Tan, C.; Hongo, J.A.; Koeppen, H.; et al. Expression pattern of the human FcRH/IRTA receptors in normal tissue and in B-chronic lymphocytic leukemia. Int. Immunol. 2006, 18, 1363–1373. [Google Scholar] [CrossRef]
- Elkins, K.; Zheng, B.; Go, M.; Slaga, D.; Du, C.; Scales, S.J.; Yu, S.F.; McBride, J.; de Tute, R.; Rawstron, A.; et al. FcRL5 as a target of antibody-drug conjugates for the treatment of multiple myeloma. Mol. Cancer Ther. 2012, 11, 2222–2232. [Google Scholar] [CrossRef]
- Jiang, D.; Huang, H.; Qin, H.; Tang, K.; Shi, X.; Zhu, T.; Gao, Y.; Zhang, Y.; Tian, X.; Fu, J.; et al. Chimeric antigen receptor T cells targeting FcRH5 provide robust tumour-specific responses in murine xenograft models of multiple myeloma. Nat. Commun. 2023, 14, 3642. [Google Scholar] [CrossRef]
- Kumar, S.; Bachier, C.R.; Cavo, M.; Corradini, P.; Delforge, M.; Janowski, W.; Lesokhin, A.M.; Mina, R.; Paris, L.; Rosiñol, L.; et al. CAMMA 2: A phase I/II trial evaluating the efficacy and safety of cevostamab in patients with relapsed/refractory multiple myeloma (RRMM) who have triple-class refractory disease and have received a prior anti-B-cell maturation antigen (BCMA) agent. J. Clin. Oncol. 2023, 41 (Suppl. S16), TPS8064. [Google Scholar] [CrossRef]
- Cohen, A.D.; Hwang, W.-T.; Susanibar-Adaniya, S.; Vogl, D.T.; Garfall, A.L.; Waxman, A.; Zubka, D.; Nguyen, C.; Diaczynsky, C.; Ruella, M.; et al. Sequential T-Cell Engagement for Myeloma (“STEM”) Trial: A Phase 2 Study of Cevostamab Consolidation Following BCMA CAR T Cell Therapy. Blood 2023, 142, 3389. [Google Scholar] [CrossRef]
- Malavasi, F.; Funaro, A.; Roggero, S.; Horenstein, A.; Calosso, L.; Mehta, K. Human CD38: A glycoprotein in search of a function. Immunol. Today 1994, 15, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.; Grimaldi, J.C.; Bazan, J.F.; Lund, F.E.; Santos-Argumedo, L.; Parkhouse, R.M.; Walseth, T.F.; Lee, H.C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 1993, 262, 1056–1059. [Google Scholar] [CrossRef] [PubMed]
- Dima, D.; Dower, J.; Comenzo, R.L.; Varga, C. Evaluating Daratumumab in the Treatment of Multiple Myeloma: Safety, Efficacy and Place in Therapy. Cancer Manag. Res. 2020, 12, 7891–7903. [Google Scholar] [CrossRef]
- Li, K.; Yun, R.; Chai, M.; Yakkundi, P.; Rosete, R.; Li, G.; Liu, L.; Ng, D.; Hinton, P.R.; Kotturi, M.F.; et al. Igm-2644, a Novel CD38 × CD3 Bispecific IgM T Cell Engager Demonstrates Potent Efficacy on Myeloma Cells with an Improved Preclinical Safety Profile. Blood 2022, 140 (Suppl. S1), 6010–6011. [Google Scholar] [CrossRef]
- Zabaleta, A.; Blanco, L.; Kim, P.; Bisht, K.; Wang, H.; Van de Velde, H.J.; Lasa, M.; Tamariz-Amador, L.-E.; Rodriguez Otero, P.; San Miguel, J.; et al. A CD38/CD28 × CD3 Trispecific T-Cell Engager (TCE) As a Potentially Active Agent in Multiple Myeloma Patients Relapsed and/or Refractory (RRMM) to Anti-CD38 Monoclonal Antibodies (mAbs). Blood 2023, 142 (Suppl. S1), 1921. [Google Scholar] [CrossRef]
- Drake, A.; Pihlgren, M.; Menon, V.; Pais, D.; Carretero-Iglesia, L.; Berret, J.; Hall, O.; Macoin, J.; Gruber, I.; Stainnack, E.; et al. Integrated Preclinical Data Analysis of ISB 2001 Enables Optimal Starting Dose Selection for a First-in-Class Trispecific T Cell Engager Phase1 Study in Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 6574. [Google Scholar] [CrossRef]
- Sia, H.; Menon, V.; Garton, A.; Wolff, E.; Shah, T.; Charpentier, C.; Duchesne, D.; Pihlgren, M.; Koch-Olsen, J.; Drake, A.; et al. A Phase 1, First-in-Human, Dose Escalation and Dose-Expansion Study of a BCMA × CD38 × CD3 Targeting Trispecific Antibody ISB 2001 in Subjects with Relapsed/Refractory Multiple Myeloma. Blood 2023, 142, 3396. [Google Scholar] [CrossRef]
- Vogl, D.T.; Kaufman, J.L.; Holstein, S.A.; Atrash, S.; Nadeem, O.; Janakiram, M.; Suryanarayan, K.; Liu, Y.; Collins, S.; Parot, X.; et al. Modakafusp Alfa (TAK-573), an Immunocytokine, Shows Clinical Activity in Patients with Relapsed/Refractory Multiple Myeloma; Updated Results from a First-in-Human Phase 1 Study. Blood 2021, 138 (Suppl. S1), 898. [Google Scholar] [CrossRef]
- Dholaria, B.; Mamuye, A.; Yurewicz, D.; Dabovic, K.; Yuet, A.; Abonour, R.; Kelly, K.R.; Voorhees, T.J.; Kazandjian, D. A Phase 1, Open-Label, Dose-Escalation and Expansion, Multicenter Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Efficacy of MT-0169 in Patients with Relapsed or Refractory Multiple Myeloma or Non-Hodgkin Lymphoma. Blood 2022, 140 (Suppl. S1), 12621–12622. [Google Scholar] [CrossRef]
- Willert, E.K.; Robinson, G.L.; Higgins, J.P.; Liu, J.; Lee, J.; Syed, S.; Zhang, Y.; Tavares, D.; Lublinsky, A.; Chattopadhyay, N.; et al. Abstract 2384: TAK-169, an exceptionally potent CD38 targeted engineered toxin body, as a novel direct cell kill approach for the treatment of multiple myeloma. Cancer Res. 2019, 79 (Suppl. S13), 2384. [Google Scholar] [CrossRef]
- Glisovic-Aplenc, T.; Diorio, C.; Chukinas, J.A.; Veliz, K.; Shestova, O.; Shen, F.; Nunez-Cruz, S.; Vincent, T.L.; Miao, F.; Milone, M.C.; et al. CD38 as a pan-hematologic target for chimeric antigen receptor T cells. Blood Adv. 2023, 7, 4418–4430. [Google Scholar] [CrossRef] [PubMed]
- Drent, E.; Groen, R.W.; Noort, W.A.; Themeli, M.; Lammerts van Bueren, J.J.; Parren, P.W.; Kuball, J.; Sebestyen, Z.; Yuan, H.; de Bruijn, J.; et al. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica 2016, 101, 616–625. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Hou, Y.N.; Zhang, Q.X.; Li, T.; Zhang, Q.L.; Fang, C.; Chen, H.; Lee, H.C.; Zhao, Y.J.; Du, X. Anti-Multiple Myeloma Activity of Nanobody-Based Anti-CD38 Chimeric Antigen Receptor T Cells. Mol. Pharm. 2018, 15, 4577–4588. [Google Scholar] [CrossRef] [PubMed]
- Stadtmauer, E.A.; Elghawy, O.; Roberts, T.F.; Madduri, D.; Ailawadhi, S.; Royal, M.; Yan, Y. SOR-CART-MM-001 Study: A Phase I, Open-Label, Dose-Escalation, Pharmacokinetic, and Pharmacodynamic Study of Safety and Efficacy of CAR2 Anti-CD38 A2 CAR-T Cells in Patients with Relapsed or Refractory Multiple Myeloma (RRMM). Blood 2023, 142 (Suppl. S1), 6851. [Google Scholar] [CrossRef]
- Righi, M.; Gannon, I.; Robson, M.; Srivastava, S.; Kokalaki, E.; Grothier, T.; Nannini, F.; Allen, C.; Bai, Y.V.; Sillibourne, J.; et al. Enhancing CAR T-cell Therapy Using Fab-Based Constitutively Heterodimeric Cytokine Receptors. Cancer Immunol. Res. 2023, 11, 1203–1221. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Middleton, R.E.; Sun, H.; Naniong, M.; Ott, C.J.; Mitsiades, C.S.; Wong, K.K.; Bradner, J.E.; Kaelin, W.G., Jr. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 2014, 343, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Galustian, C.; Labarthe, M.-C.; Bartlett, J.B.; Dalgleish, A.G. Thalidomide-derived immunomodulatory drugs as therapeutic agents. Expert. Opin. Biol. Ther. 2004, 4, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Thakurta, A.; Pierceall, W.E.; Amatangelo, M.D.; Flynt, E.; Agarwal, A. Developing next generation immunomodulatory drugs and their combinations in multiple myeloma. Oncotarget 2021, 12, 1555–1563. [Google Scholar] [CrossRef]
- Bjorklund, C.C.; Kang, J.; Amatangelo, M.; Polonskaia, A.; Katz, M.; Chiu, H.; Couto, S.; Wang, M.; Ren, Y.; Ortiz, M.; et al. Iberdomide (CC-220) is a potent cereblon E3 ligase modulator with antitumor and immunostimulatory activities in lenalidomide- and pomalidomide-resistant multiple myeloma cells with dysregulated CRBN. Leukemia 2020, 34, 1197–1201. [Google Scholar] [CrossRef]
- Schafer, P.H.; Ye, Y.; Wu, L.; Kosek, J.; Ringheim, G.; Yang, Z.; Liu, L.; Thomas, M.; Palmisano, M.; Chopra, R. Cereblon modulator iberdomide induces degradation of the transcription factors Ikaros and Aiolos: Immunomodulation in healthy volunteers and relevance to systemic lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 1516–1523. [Google Scholar] [CrossRef] [PubMed]
- Lonial, S.; Popat, R.; Hulin, C.; Jagannath, S.; Oriol, A.; Richardson, P.G.; Facon, T.; Weisel, K.; Larsen, J.T.; Minnema, M.C.; et al. Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): A multicentre, multicohort, open-label, phase 1/2 trial. Lancet Haematol. 2022, 9, e822–e832. [Google Scholar] [CrossRef] [PubMed]
- Biran, N.; Vesole, D.H.; Parmar, H.; Phull, P.; Doucette, K.; Feinman, R.; Zenreich, J.; Anand, P.; Ivanovski, K.; Pace, M.; et al. A Phase 1/2 Study of Carfilzomib, Iberdomide and Dexamethasone (KID) in Patients with Newly Diagnosed Transplant-Eligible Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 2022. [Google Scholar] [CrossRef]
- Van de Donk, N.W.C.J.; Touzeau, C.; Terpos, E.; Perrot, A.; Mina, R.; de Ruijter, M.; Antonioli, E.; Katodritou, E.; Pescosta, N.; Geerts, P.A.F.; et al. Iberdomide Maintenance after Autologous Stem-Cell Transplantation in Newly Diagnosed MM: First Results of the Phase 2 EMN26 Study. Blood 2023, 142, 208. [Google Scholar] [CrossRef]
- Cavo, M.; Gay, F.; Beksac, M.; Pantani, L.; Petrucci, M.T.; Dimopoulos, M.A.; Dozza, L.; van der Holt, B.; Zweegman, S.; Oliva, S.; et al. Autologous haematopoietic stem-cell transplantation versus bortezomib-melphalan-prednisone, with or without bortezomib-lenalidomide-dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): A multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020, 7, e456–e468. [Google Scholar] [PubMed]
- Richardson, P.G.; Trudel, S.; Popat, R.; Mateos, M.-V.; Vangsted, A.J.; Ramasamy, K.; Martinez-Lopez, J.; Quach, H.; Orlowski, R.Z.; Arnao, M.; et al. Mezigdomide plus Dexamethasone in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 389, 1009–1022. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Sandhu, I.; Hofmeister, C.C.; Orlowski, R.Z.; White, D.; Belotti, A.; Toftmann Hansen, C.; Raje, N.S.; Chow, T.T.; Zhou, Z.; et al. Mezigdomide (MEZI) Plus Dexamethasone (DEX) and Daratumumab (DARA) or Elotuzumab (ELO) in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Results from the CC-92480-MM-002 Trial. Blood 2023, 142 (Suppl. S1), 1013. [Google Scholar] [CrossRef]
- Kikuchi, J.; Hori, M.; Iha, H.; Toyama-Sorimachi, N.; Hagiwara, S.; Kuroda, Y.; Koyama, D.; Izumi, T.; Yasui, H.; Suzuki, A.; et al. Soluble SLAMF7 promotes the growth of myeloma cells via homophilic interaction with surface SLAMF7. Leukemia 2020, 34, 180–195. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Munoz, M.-E.; Dong, Z.; Shi, X.; Zhang, S.; Veillette, A. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat. Immunol. 2009, 10, 297–305. [Google Scholar] [CrossRef]
- Hsi, E.D.; Steinle, R.; Balasa, B.; Szmania, S.; Draksharapu, A.; Shum, B.P.; Huseni, M.; Powers, D.; Nanisetti, A.; Zhang, Y.; et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin. Cancer Res. 2008, 14, 2775–2784. [Google Scholar] [CrossRef]
- Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.-V.; Magen, H.; et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Dytfeld, D.; Grosicki, S.; Moreau, P.; Takezako, N.; Hori, M.; Leleu, X.; LeBlanc, R.; Suzuki, K.; Raab, M.S.; et al. Elotuzumab plus Pomalidomide and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2018, 379, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, J.; Ritchey, J.K.; Cooper, M.L.; Niswonger, J.; Sofía González, L.; Street, E.; Rettig, M.P.; Gladney, S.W.; Gehrs, L.; Abboud, R.; et al. CS1 CAR-T targeting the distal domain of CS1 (SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+CS1 expressing CAR-T cells. Leukemia 2022, 36, 1625–1634. [Google Scholar] [CrossRef] [PubMed]
- Gogishvili, T.; Danhof, S.; Prommersberger, S.; Rydzek, J.; Schreder, M.; Brede, C.; Einsele, H.; Hudecek, M. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+ normal lymphocytes. Blood 2017, 130, 2838–2847. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Walter, M.; Urak, R.; Weng, L.; Huynh, C.; Lim, L.; Wong, C.W.; Chang, W.-C.; Thomas, S.H.; Sanchez, J.F.; et al. Lenalidomide Enhances the Function of CS1 Chimeric Antigen Receptor–Redirected T Cells Against Multiple Myeloma. Clin. Cancer Res. 2018, 24, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Prommersberger, S.; Reiser, M.; Beckmann, J.; Danhof, S.; Amberger, M.; Quade-Lyssy, P.; Einsele, H.; Hudecek, M.; Bonig, H.; Ivics, Z. CARAMBA: A first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma. Gene Ther. 2021, 28, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Delbridge, A.R.D.; Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015, 22, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Paner, A.; Patel, P.; Dhakal, B. The evolving role of translocation t(11;14) in the biology, prognosis, and management of multiple myeloma. Blood Rev. 2020, 41, 100643. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Quach, H.; Baz, R.; Vangsted, A.J.; Ho, S.-J.; Abildgaard, N.; Laubach, J.; Ribrag, V.; Voorhees, P.M.; Wang, X.; et al. Venetoclax in Combination with Daratumumab and Dexamethasone Elicits Deep, Durable Responses in Patients with t(11;14) Relapsed/Refractory Multiple Myeloma: Updated Analyses of Minimal Residual Disease Negativity in Phase 1/2 Study. Blood 2023, 142 (Suppl. S1), 338. [Google Scholar] [CrossRef]
- Kumar, S.K.; Harrison, S.J.; Cavo, M.; de la Rubia, J.; Popat, R.; Gasparetto, C.; Hungria, V.; Salwender, H.; Suzuki, K.; Kim, I.; et al. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2020, 21, 1630–1642. [Google Scholar] [CrossRef]
- Kumar, S.; Kaufman, J.L.; Gasparetto, C.; Mikhael, J.; Vij, R.; Pegourie, B.; Benboubker, L.; Facon, T.; Amiot, M.; Moreau, P.; et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood 2017, 130, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Quach, H.; Sborov, D.; Kazandjian, D.; Spencer, A.; Low, M.; Bal, S.; Callander, N.S.; Cheng, H.; Patel, S.; Crescenzo, R.J.; et al. Sonrotoclax (BGB-11417) in Combination with Dexamethasone for the Treatment of Relapsed/Refractory Multiple Myeloma with t(11;14): Safety, Efficacy, and Determination of Recommended Phase 2 Dose. Blood 2023, 142, 1011. [Google Scholar] [CrossRef]
- Fu, C.; Chen, Z.; Li, W.; Men, L.; Wu, D.; Yang, D.; Zhai, Y. Trial in Progress: Phase 1b/2 Open-Label Study of Lisaftoclax (APG-2575) Monotherapy or in Combination with Lenalidomide/Dexamethasone in Patients with Relapsed or Refractory Multiple Myeloma (R/R MM). Blood 2021, 138 (Suppl. S1), 4764. [Google Scholar] [CrossRef]
- Ailawadhi, S.; Chanan-Khan, A.A.; Yannakou, C.K.; Gibbs, S.; Khouri, J.; Chen, Z.; Guo, H.; Li, M.; Ahmad, M.; Wang, C.; et al. First Report on the Effects of Lisaftoclax (APG-2575) in Combination with Novel Therapeutic Regimens in Patients with Relapsed or Refractory Multiple Myeloma (R/R MM) or Immunoglobulin Light-Chain (Amyloid Light-Chain [AL]) Amyloidosis. Blood 2023, 142 (Suppl. S1), 2016. [Google Scholar] [CrossRef]
- Roshandel, E.; Ghaffari-Nazari, H.; Mohammadian, M.; Salimi, M.; Abroun, S.; Mirfakhraie, R.; Hajifathali, A. NK cell therapy in relapsed refractory multiple myeloma. Clin. Immunol. 2023, 246, 109168. [Google Scholar] [CrossRef] [PubMed]
- Leivas, A.; Perez-Martinez, A.; Blanchard, M.J.; Martín-Clavero, E.; Fernández, L.; Lahuerta, J.J.; Martinez-Lopez, J. Novel treatment strategy with autologous activated and expanded natural killer cells plus anti-myeloma drugs for multiple myeloma. Oncoimmunology 2016, 5, e1250051. [Google Scholar] [CrossRef] [PubMed]
- Nahi, H.; Chrobok, M.; Meinke, S.; Gran, C.; Marquardt, N.; Afram, G.; Sutlu, T.; Gilljam, M.; Stellan, B.; Wagner, A.K.; et al. Autologous NK cells as consolidation therapy following stem cell transplantation in multiple myeloma. Cell Rep. Med. 2022, 3, 100508. [Google Scholar] [CrossRef] [PubMed]
- Achilli, S.; Berthet, N.; Renaudet, O. Antibody recruiting molecules (ARMs): Synthetic immunotherapeutics to fight cancer. RSC Chem. Biol. 2021, 2, 713–724. [Google Scholar] [CrossRef]
- Birch, G.C.; Vergara-Cadavid, J.; Maqbool, M.; Martini, A.; Dinh, K.; Shapiro, R.M.; Ansuinelli, M.; Nguyen, T.; Reynolds, C.; Soo, Y.I.; et al. Expansion, Persistence, and Characteristics of Autologous, Bhv-1100 Armored Memory-like NK Cells Infused Prior to Autologous Stem Cell Transplant in MRD+ Multiple Myeloma Patients: A First-in-Human Trial. Blood 2023, 142, 2105. [Google Scholar] [CrossRef]
- Cao, Z.; Yang, C.; Wang, Y.; Wang, C.; Wang, Q.; Ye, G.; Liu, T.; Wang, Q.; Wang, H.; Gong, Y.; et al. Allogeneic CAR-NK Cell Therapy Targeting Both BCMA and GPRC5D for the Treatment of Multiple Myeloma. Blood 2022, 140 (Suppl. S1), 7378. [Google Scholar] [CrossRef]
- Reiser, J.; Chan, S.R.; Mathavan, K.; Sillitti, D.; Mottershead, C.; Mattson, B.; Pache, M.; Gutierrez, A.; Scoon, W.; Zhu, Y.; et al. FT555: Off-the-Shelf CAR-NK Cell Therapy Co-Targeting GPRC5D and CD38 for the Treatment of Multiple Myeloma. Blood 2022, 140 (Suppl. S1), 4560–4561. [Google Scholar] [CrossRef]
- Lin, P.; Reyes Silva, F.C.; Lin, P.; Gilbert, A.L.; Acharya, S.; Nunez Cortes, A.K.; Banerjee, P.; Fang, D.; Melo Garcia, L.; Daher, M.D.M.; et al. CD70 CAR NK Cells in the Treatment of Multiple Myeloma. Blood 2023, 142, 3463. [Google Scholar] [CrossRef]
- Jackson, J.R.; Patrick, D.R.; Dar, M.M.; Huang, P.S. Targeted anti-mitotic therapies: Can we improve on tubulin agents? Nat. Rev. Cancer 2007, 7, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Ocio, E.M.; Mitsiades, C.S.; Orlowski, R.Z.; Anderson, K.C. Future agents and treatment directions in multiple myeloma. Expert. Rev. Hematol. 2014, 7, 127–141. [Google Scholar] [CrossRef]
- Hernández-García, S.; San-Segundo, L.; González-Méndez, L.; Corchete, L.A.; Misiewicz-Krzeminska, I.; Martín-Sánchez, M.; López-Iglesias, A.A.; Algarín, E.M.; Mogollón, P.; Díaz-Tejedor, A.; et al. The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma. Haematologica 2017, 102, 2113–2124. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.M.; Barwick, B.G.; Joseph, N.; Heffner, L.T.; Hofmeister, C.C.; Bernal, L.; Dhodapkar, M.V.; Gupta, V.A.; Jaye, D.L.; Wu, J.; et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 2019, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.; Weinhold, N.; Schinke, C.; Thanedrarajan, S.; Rasche, L.; Sawyer, J.R.; Tian, E.; van Rhee, F.; Zangari, M. Daratumumab in high-risk relapsed/refractory multiple myeloma patients: Adverse effect of chromosome 1q21 gain/amplification and GEP70 status on outcome. Br. J. Haematol. 2020, 189, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Woessner, R.; Tunquist, B.; Lemieux, C.; Chlipala, E.; Jackinsky, S.; Dewolf, W., Jr.; Voegtli, W.; Cox, A.; Rana, S.; Lee, P.; et al. ARRY-520, a novel KSP inhibitor with potent activity in hematological and taxane-resistant tumor models. Anticancer. Res. 2009, 29, 4373–4380. [Google Scholar] [PubMed]
- Pan, D.; Kaufman, J.L.; Htut, M.; Agrawal, M.; Mazumder, A.; Cornell, R.F.; Zonder, J.A.; Fay, J.W.; Modiano, M.R.; Moshier, E.L.; et al. Filanesib plus bortezomib and dexamethasone in relapsed/refractory t(11;14) and 1q21 gain multiple myeloma. Cancer Med. 2022, 11, 358–370. [Google Scholar] [CrossRef]
- Lai, A.C.; Crews, C.M. Induced protein degradation: An emerging drug discovery paradigm. Nat. Rev. Drug Discov. 2017, 16, 101–114. [Google Scholar] [CrossRef]
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lee, H.C.; Shirazi, F.; Baladandayuthapani, V.; Lin, H.; Kuiatse, I.; Wang, H.; Jones, R.J.; Berkova, Z.; Singh, R.K.; et al. Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia 2018, 32, 2224–2239. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.L.; Damnernsawad, A.; Shyamsunder, P.; Chng, W.J.; Han, B.C.; Xu, L.; Pan, J.; Pravin, D.P.; Alkan, S.; Tyner, J.W.; et al. Proteolysis targeting chimeric molecules as therapy for multiple myeloma: Efficacy, biomarker and drug combinations. Haematologica 2019, 104, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Sabbasani, V.R.; Osei-Amponsa, V.; Evans, C.N.; King, J.C.; Tarasov, S.G.; Dyba, M.; Das, S.; Chan, K.C.; Schwieters, C.D.; et al. Structure-guided bifunctional molecules hit a DEUBAD-lacking hRpn13 species upregulated in multiple myeloma. Nat. Commun. 2021, 12, 7318. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, Y.; Nian, L.; Wang, C.; Yu, M.; Zhang, W.; Li, Z.; Chen, C. The Resistance Mechanism to BET-Protac in Multiple Myeloma. Blood 2023, 142 (Suppl. S1), 6584. [Google Scholar] [CrossRef]
- Freedman, R.B.; Hirst, T.R.; Tuite, M.F. Protein disulphide isomerase: Building bridges in protein folding. Trends Biochem. Sci. 1994, 19, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Kersteen, E.A.; Raines, R.T. Catalysis of protein folding by protein disulfide isomerase and small-molecule mimics. Antioxid. Redox Signal 2003, 5, 413–424. [Google Scholar] [CrossRef]
- Vatolin, S.; Phillips, J.G.; Jha, B.K.; Govindgari, S.; Hu, J.; Grabowski, D.; Parker, Y.; Lindner, D.J.; Zhong, F.; Distelhorst, C.W.; et al. Novel Protein Disulfide Isomerase Inhibitor with Anticancer Activity in Multiple Myeloma. Cancer Res. 2016, 76, 3340–3350. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.M.; Reyes, L.; Duncan, R.M.; Bian, H.; Reitz, A.B.; Manevich, Y.; McClure, J.J.; Champion, M.M.; Chou, C.J.; Sharik, M.E.; et al. Inhibitors of the protein disulfide isomerase family for the treatment of multiple myeloma. Leukemia 2019, 33, 1011–1022. [Google Scholar] [CrossRef]
- Hasipek, M.; Grabowski, D.; Guan, Y.; Alugubelli, R.R.; Tiwari, A.D.; Gu, X.; DeAvila, G.A.; Silva, A.S.; Meads, M.B.; Parker, Y.; et al. Therapeutic Targeting of Protein Disulfide Isomerase PDIA1 in Multiple Myeloma. Cancers 2021, 13, 2649. [Google Scholar] [CrossRef]
- Nigro, P.; Pompilio, G.; Capogrossi, M.C. Cyclophilin A: A key player for human disease. Cell Death Dis. 2013, 4, e888. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.S. Current implications of cyclophilins in human cancers. J. Exp. Clin. Cancer Res. 2010, 29, 97. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.C.; Zada, M.; Wang, S.-Y.; Bornstein, C.; David, E.; Moshe, A.; Li, B.; Shlomi-Loubaton, S.; Gatt, M.E.; Gur, C.; et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat. Med. 2021, 27, 491–503. [Google Scholar] [CrossRef]
- Domenger, A.; Ricci, D.; Mayau, V.; Majlessi, L.; Marcireau, C.; Dadaglio, G.; Demangel, C. Sec61 blockade therapy overrides resistance to proteasome inhibitors and immunomodulatory drugs in multiple myeloma. Front. Oncol. 2023, 13, 1110916. [Google Scholar] [CrossRef] [PubMed]
- Domenger, A.; Choisy, C.; Baron, L.; Mayau, V.; Perthame, E.; Deriano, L.; Arnulf, B.; Bories, J.C.; Dadaglio, G.; Demangel, C. The Sec61 translocon is a therapeutic vulnerability in multiple myeloma. EMBO Mol. Med. 2022, 14, e14740. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, S.; Yu, M.; Kumarasiri, M.; Le, B.T.; Wang, S. Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle 2015, 14, 3220–3230. [Google Scholar] [CrossRef]
- Ng, Y.L.D.; Ramberger, E.; Bohl, S.R.; Dolnik, A.; Steinebach, C.; Conrad, T.; Müller, S.; Popp, O.; Kull, M.; Haji, M.; et al. Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma. Nat. Commun. 2022, 13, 1009. [Google Scholar] [CrossRef]
Target Antigen | Agent Name | NCT Number | Phase | N | Disease Status | Outcomes | CRS ICANS |
---|---|---|---|---|---|---|---|
BCMA × CD3 | Teclistamab | NCT03145181 NCT04557098 (MajesTEC-1) | 1/2 | 165 | RRMM | ORR: 63%, ≥CR 39.4% mPFS: 11.3 mo | CRS: 72% ICANS: 3% |
Elranatamab | NCT04649359 (MagnetisMM-3) | 2 | 123 | RRMM | ORR: 61%, ≥CR: 35% mPFS: NR | CRS: 58% ICANS: 3% | |
Linvoseltamab | NCT03761108 (LINKER-MM1) | 1/2 | 117 | RRMM | ORR: 71%, ≥CR: 29% mPFS: NR | CRS: 45% | |
Alnuctamab | NCT03486067 | 1 | 73 | RRMM | ORR: 54% MRD negative (10−5): 54% mPFS: 10.1 mo | CRS: 40% ICANS: 3% | |
ABBV-383 | NCT03933735 | 1 | 220 | RRMM | ORR: 58%, ≥CR: 24% mPFS: 3.8/13.7/11.2 mo at 20/40/60 mg, respectively | CRS: 60% ICANS: 5% | |
BCMA × GPRC5D × CD3 | JNJ-79635322 | NCT05652335 | 1 | ND | RRMM | ND | ND |
BCMA × CD3 × Albumin | HPN217 | NCT04184050 | 1 | 94 | RRMM | ORR: 55% ≥VGPR: 40% among 12 mg and 24 mg weekly doses | CRS: 28% ICANS: 2% |
GPRC5D × CD3 | Talquetamab | NCT03399799 (MonumenTAL-1) | 1/2 | 288 | RRMM | ORR: 74%/73% ≥VGPR: 59%/57% mPFS: 7.5/11.9 in the QW and Q2W cohorts, respectively | CRS: 79%/75% ICANS: 11%/11% |
NCT05050097 (MonumenTAL-2) | 1b | 35 | RRMM | ORR: 87%/83%, ≥CR: 60%/44% ≥VGPR: 87%/78% in the QW and Q2W cohorts, respectively | CRS: 74% ICANS: 6% | ||
Forimtamig (RG6234) | NCT04557150 | 1 | 51 | RRMM | ORR: 71%, ≥CR: 24% VGPR: 29% | CRS: 78% ICANS: 6% | |
FcRH5 × CD3 | Cevostamab | NCT05535244 (CAMMA 2) | 1/2 | ND | RRMM | ND | ND |
NCT05801939 (STEM) | 2 | ND | RRMM | ND | ND | ||
CD38 × CD3 | Igm-2644 | NCT05908396 | 1 | ND | RRMM | ND | ND |
BCMA × CD38 × CD3 | ISB-2001 | NCT05862012 | 1 | ND | RRMM | ND | ND |
Target Antigen | Agent Name | Cell Source | NCT Number | Phase | N | Disease Status | Outcomes | CRS ICANS |
---|---|---|---|---|---|---|---|---|
BCMA | Idecabtagene vicleucel | Autologous | NCT03361748 (KarMMa-1) | 2 | 128 | RRMM | ORR: 73%, ≥CR: 33% ≥VGPR: 52% mPFS/mOS: 8.8/19.4 mo | CRS: 84% ICANS: 18% |
NCT03651128 (KarMMa-3) | 3 | 386 | RRMM | ORR: 71%, CR: 39% mPFS: 13.3 mo | CRS: 88% ICANS: 15% | |||
Ciltacabtagene autoleucel | Autologous | NCT04133636 (CARTITUDE-2) | 2 | 20 | RRMM | ORR: 95%, CR: 75%, ≥VGPR: 85% | CRS: 85% ICANS: 20% | |
NCT04181827 (CARTITUDE-4) | 3 | 419 | RRMM | ORR: 85%, ≥CR: 73% | CRS: 76% ICANS: 5% | |||
Ddbcma | Autologous | NCT04155749 | 1 | 13 | RRMM | ORR: 100%, ≥CR: 75% VGPR: 8% mPFS: NR | CRS: 100% ICANS: 17% | |
HBI0101 | Autologous | NCT04720313 | 1 | 20 | RRMM | ORR: 75%, ≥CR: 50%, VGPR: 25% mPFS: 160 days mOS: 308 days | CRS: 90% ICANS: 10% | |
ARI0002h (cesnicabtagene autoleucel) | Autologous | NCT04309981 (CARTBCMA-HCB-01) | 1/2 | 60 | RRMM | ORR: 95%, ≥CR: 58% VGPR: 30% mPFS: 15.8 mo | CRS: 90% ICANS: 3% | |
PHE885 (durcabtagene autoleucel) | Autologous | NCT04318327 | 1 | 46 | RRMM | ORR: 98% | CRS: 96% ICANS: 22% | |
Zevorcabtagene Autoleucel (CT053) | Autologous | NCT03975907 (LUMMICAR STUDY 1) | 1 | 14 | RRMM | ORR: 100%, ≥CR: 79% mPFS: 25.0 mo | CRS: 93% ICANS: 0% | |
NCT03915184 (LUMMICAR-2) | 2 | 14 | RRMM | ORR: 100%, ≥CR: 40% VGPR: 10% | CRS: 86% ICANS: 7% | |||
Orvacabtagene Autoleucel (JCARH125) | Autologous | NCT03430011 (EVOLVE) | 1/2 | 44 | RRMM | ORR: 91%, ≥CR: 39% VGPR: 39% | CRS grade ≥ 3: 2%; ICANS grade ≥ 3: 4% | |
NCT04960579 | 1 | 22 | RRMM | ND | CRS: 14% ICANS: 4% GVHD: 0% | |||
BCMA-ALLO1 | Allogeneic | NCT05066646 (FUMANBA-1) | 1/2 | 103 | RRMM | ORR: 96%, ≥CR: 78% MRD negative: 94% | CRS: 93% ICANS: 2% | |
ALLO-715 | Allogeneic | (NCT04093596) UNIVERSAL | 1 | 43 | RRMM | ORR: 71%, ≥CR: 25% VGPR 25% | CRS: 56% ICANS: 14% | |
Equecabtagene autoleucel (eque-cel, CT103A) | Autologous | NCT04236011; NCT04182581 | 1 | 29 | RRMM | ORR: 93%, sCR: 83% ≥VGPR: 90% MRD negativity (10−4–10−6): 100% | CRS: 86% ICANS: 0% | |
CD19/BCMA | GC012F | Autologous | NCT04555551 | 1 | 17 | RRMM | ORR: 71%, ≥CR: 35% VGPR: 24% | CRS: 88% ICANS: 6% |
GPRC5D | MCARH109 | Autologous | NCT05016778 (POLARIS) | 1 | 13 | RRMM | ORR: 100%, ≥CR: 60% VGPR: 40% | CRS: 100% ICANS:0% |
OriCAR-017 | Autologous | NCT04674813 (CC-95266-MM-001) | 1 | 60 | RRMM | ORR: 86%, CR: 38% | CRS: 84% ICANS: 11% | |
BMS-986393 (CC-95266) | Autologous | ChiCTR2100048888 | 2 | 33 | RRMM | ORR: 91%, ≥CR: 63% 12% VGPR | CRS: 76% ICANS: 9% | |
anti-GPRC5D CAR T cells | Autologous | NCT03464916 (SOR-CART-MM-001) | 1 | 9 | RRMM | ORR: 33%, ≥CR: 0% SD: 33% | CRS: 22% ICANS: 11% | |
CD38 | CAR2 Anti-CD38 A2 CAR T Cells | Autologous | NCT05007418 (DART-RRMM-101) | 1 | ND | RRMM | ND | ND |
SLAMF7 | SLAMF7 CAR T Cells | Autologous | NCT04499339 (CARAMBA-1) | 1/2a | ND | RRMM | ND | ND |
CS1-BCMA CAR T cells | Autologous | NCT04662099 | 1 | 16 | RRMM | ORR: 81%, sCR: 38% VGPR: 19% mPFS: NR | CRS: 38% ICANS: 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.H.-T.; Tariq, M.J.; Ullah, F.; Sannareddy, A.; Khalid, F.; Abbas, H.; Bader, A.; Samaras, C.; Valent, J.; Khouri, J.; et al. Current Novel Targeted Therapeutic Strategies in Multiple Myeloma. Int. J. Mol. Sci. 2024, 25, 6192. https://doi.org/10.3390/ijms25116192
Lin CH-T, Tariq MJ, Ullah F, Sannareddy A, Khalid F, Abbas H, Bader A, Samaras C, Valent J, Khouri J, et al. Current Novel Targeted Therapeutic Strategies in Multiple Myeloma. International Journal of Molecular Sciences. 2024; 25(11):6192. https://doi.org/10.3390/ijms25116192
Chicago/Turabian StyleLin, Cindy Hsin-Ti, Muhammad Junaid Tariq, Fauzia Ullah, Aishwarya Sannareddy, Farhan Khalid, Hasan Abbas, Abbas Bader, Christy Samaras, Jason Valent, Jack Khouri, and et al. 2024. "Current Novel Targeted Therapeutic Strategies in Multiple Myeloma" International Journal of Molecular Sciences 25, no. 11: 6192. https://doi.org/10.3390/ijms25116192
APA StyleLin, C. H.-T., Tariq, M. J., Ullah, F., Sannareddy, A., Khalid, F., Abbas, H., Bader, A., Samaras, C., Valent, J., Khouri, J., Anwer, F., Raza, S., & Dima, D. (2024). Current Novel Targeted Therapeutic Strategies in Multiple Myeloma. International Journal of Molecular Sciences, 25(11), 6192. https://doi.org/10.3390/ijms25116192