Limited Added Diagnostic Value of Whole Genome Sequencing in Genetic Testing of Inherited Retinal Diseases in a Swiss Patient Cohort
Abstract
:1. Introduction
2. Results
2.1. Short Variants
2.2. Structural Variants
2.3. Diagnostic Yield and Added Diagnostic Value
Fam. | Clinical Phen. | Age at Ref. | Gene | Variant (cNomen) | Size (kb) | Affected Exon(s) | Zyg. | gnomAD All (%) | gnomAD Max (%) | In-House (%) | IRD (%) | ACMG | HGMD | ClinVar | Ref. | Seg. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16 | RP | 16 | CNGA1 | NM_001142564.1:c.507-1368_*6475del 1 | 14.8 | ex. 6–10 | Hom. | 0 | 0 | 1.52 * | 1.52 * | VUS | - | - | TS | Y |
17 | RP | 26 | EYS | NM_001142800.1:c.-203835_863-36502del 2 NM_001142800.1:c.8543T>G (p.(Ile2848Ser)) | 468.7 | ex. 1–5 | Het. | 0 | 0 | 0.76 * | 0.76 * | LP | - | - | TS | NA |
Het. | 0 | 0 | 0.063 | 0.11 | VUS | - | - | TS | ||||||||
18 | CRD | 11 | CLN3 | NM_001042432.1:c.461-280_677+382del 3 NM_001042432.1:c.883G>A (p.(Glu295Lys)) | 0.97 | ex. 8–9 | Het. | 0.125 | 0.556 | 1.52 * | 1.52 * | P | P | - | [36] | Y |
Het. | 0.003 | 0.014 | 0.063 | 0.11 | P | P | P | [37] | ||||||||
19 | CRD | 34 | KIF11 | NM_004523.4:c.-5104_78-494delins GCATGAGCCTGAGATCAAGG 4 | 17.5 | ex. 1 | Het. | 0 | 0 | 0.76 * | 0.76 * | LP | - | - | TS | Y |
Study | Country | Year | Fam. | Cohort | Diag. Yield Overall (%) | Added Diag. Value (%) 1 | Structural Variant 2 | Int. or Reg. Variants 2 | Splicing Assay |
---|---|---|---|---|---|---|---|---|---|
Ellingford et al. [38] | World | 2016 | 562 | IRD | 52.0 | 18.5 (5/27) | 5 | 0 3 | No |
Carss et al. [39] | UK | 2017 | 722 | IRD | 56.0 | 9.6 (34/355) | 28 | 6 3 | No |
Numa et al. [40] | Japan | 2020 | 220 | RP | 44.5 | 1.6 (2/124) | 2 | 0 | No |
Weisschuh et al. [41] | Germany | 2023 | 968 | IRD/ION | 57.3 | 15.7 (77/490) | 59 | 20 | RNA-seq |
Liu et al. [42] | China | 2024 | 271 | IRD | - | 12.5 (34/271) | 29 | 5 | Minigene |
This study | Switzerland | 2024 | 66 | IRD/MED | 28.8 | 9.6 (5/52) | 4 | 1 | No |
3. Discussion
3.1. Undiagnosed Families
3.2. Structural Variants
3.3. Deep-Intronic Variants
3.4. Limitations
4. Materials and Methods
4.1. Cohort Selection
4.2. Genetic Testing
4.3. Sequencing Data Analysis
4.4. Variants Database
4.5. Variant Interpretation
4.6. Segregation Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanany, M.; Shalom, S.; Ben-Yosef, T.; Sharon, D. Comparison of Worldwide Disease Prevalence and Genetic Prevalence of Inherited Retinal Diseases and Variant Interpretation Considerations. Cold Spring Harb. Perspect. Med. 2024, 14, a041277. [Google Scholar] [CrossRef]
- Berger, W.; Kloeckener-Gruissem, B.; Neidhardt, J. The Molecular Basis of Human Retinal and Vitreoretinal Diseases. Prog. Retin. Eye Res. 2010, 29, 335–375. [Google Scholar] [CrossRef] [PubMed]
- Dockery, A.; Whelan, L.; Humphries, P.; Jane Farrar, G. Next-Generation Sequencing Applications for Inherited Retinal Diseases. Int. J. Mol. Sci. 2021, 22, 5684. [Google Scholar] [CrossRef]
- Bacquet, J.; Stojkovic, T.; Boyer, A.; Martini, N.; Audic, F.; Chabrol, B.; Salort-Campana, E.; Delmont, E.; Desvignes, J.P.; Verschueren, A.; et al. Molecular Diagnosis of Inherited Peripheral Neuropathies by Targeted Next-Generation Sequencing: Molecular Spectrum Delineation. BMJ Open 2018, 8, e021632. [Google Scholar] [CrossRef] [PubMed]
- Sitek, J.C.; Kulseth, M.A.; Rypdal, K.B.; Skodje, T.; Sheng, Y.; Retterstøl, L. Whole-Exome Sequencing for Diagnosis of Hereditary Ichthyosis. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1022–1027. [Google Scholar] [CrossRef]
- Hathaway, J.; Heliö, K.; Saarinen, I.; Tallila, J.; Seppälä, E.H.; Tuupanen, S.; Turpeinen, H.; Kangas-Kontio, T.; Schleit, J.; Tommiska, J.; et al. Diagnostic Yield of Genetic Testing in a Heterogeneous Cohort of 1376 HCM Patients. BMC Cardiovasc. Disord. 2021, 21, 126. [Google Scholar] [CrossRef]
- Lemke, J.R.; Riesch, E.; Scheurenbrand, T.; Schubach, M.; Wilhelm, C.; Steiner, I.; Hansen, J.; Courage, C.; Gallati, S.; Bürki, S.; et al. Targeted next Generation Sequencing as a Diagnostic Tool in Epileptic Disorders. Epilepsia 2012, 53, 1387–1398. [Google Scholar] [CrossRef]
- Gonzalez-Quereda, L.; Rodriguez, M.J.; Diaz-Manera, J.; Alonso-Perez, J.; Gallardo, E.; Nascimento, A.; Ortez, C.; Natera-De Benito, D.; Olive, M.; Gonzalez-Mera, L.; et al. Targeted Next-Generation Sequencing in a Large Cohort of Genetically Undiagnosed Patients with Neuromuscular Disorders in Spain. Genes 2020, 11, 539. [Google Scholar] [CrossRef] [PubMed]
- Farrar, G.J.; Carrigan, M.; Dockery, A.; Millington-Ward, S.; Palfi, A.; Chadderton, N.; Humphries, M.; Kiang, A.S.; Kenna, P.F.; Humphries, P. Toward an Elucidation of the Molecular Genetics of Inherited Retinal Degenerations. Hum. Mol. Genet. 2017, 26, R2. [Google Scholar] [CrossRef]
- Maggi, J.; Koller, S.; Bähr, L.; Feil, S.; Pfiffner, F.K.; Hanson, J.V.M.; Maspoli, A.; Gerth-Kahlert, C.; Berger, W. Long-Range PCR-Based NGS Applications to Diagnose Mendelian Retinal Diseases. Int. J. Mol. Sci. 2021, 22, 1508. [Google Scholar] [CrossRef]
- Raychaudhuri, S.; Iartchouk, O.; Chin, K.; Tan, P.L.; Tai, A.K.; Ripke, S.; Gowrisankar, S.; Vemuri, S.; Montgomery, K.; Yu, Y.; et al. A Rare Penetrant Mutation in CFH Confers High Risk of Age-Related Macular Degeneration. Nat. Genet. 2011, 43, 1232–1236. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, M.; Chauhan, M.Z.; Michaelides, M.; Uwaydat, S.H. IMPG2-Associated Unilateral Adult Onset Vitelliform Macular Dystrophy. Am. J. Ophthalmol. Case Rep. 2022, 28, 101699. [Google Scholar] [CrossRef] [PubMed]
- Karali, M.; Testa, F.; Di Iorio, V.; Torella, A.; Zeuli, R.; Scarpato, M.; Romano, F.; Onore, M.E.; Pizzo, M.; Melillo, P.; et al. Genetic Epidemiology of Inherited Retinal Diseases in a Large Patient Cohort Followed at a Single Center in Italy. Sci. Rep. 2022, 12, 20815. [Google Scholar] [CrossRef] [PubMed]
- Den Hollander, A.I.; Heckenlively, J.R.; van den Born, L.I.; De Kok, Y.J.M.; Van der Velde-Visser, S.D.; Kellner, U.; Jurklies, B.; Van Schooneveld, M.J.; Blankenagel, A.; Rohrschneider, K.; et al. Leber Congenital Amaurosis and Retinitis Pigmentosa with Coats-like Exudative Vasculopathy Are Associated with Mutations in the Crumbs Homologue 1 (CRB1) Gene. Am. J. Hum. Genet. 2001, 69, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Daich Varela, M.; Bellingham, J.; Motta, F.; Jurkute, N.; Ellingford, J.M.; Quinodoz, M.; Oprych, K.; Niblock, M.; Janeschitz-Kriegl, L.; Kaminska, K.; et al. Multidisciplinary Team Directed Analysis of Whole Genome Sequencing Reveals Pathogenic Non-Coding Variants in Molecularly Undiagnosed Inherited Retinal Dystrophies. Hum. Mol. Genet. 2023, 32, 595. [Google Scholar] [CrossRef] [PubMed]
- Pierce, E.A.; Quinn, T.; Meehan, T.; McGee, T.L.; Berson, E.L.; Dryja, T.P. Mutations in a Gene Encoding a New Oxygen-Regulated Photoreceptor Protein Cause Dominant Retinitis Pigmentosa. Nat. Genet. 1999, 22, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Westaway, S.K.; Levinson, B.; Johnson, M.A.; Gitschier, J.; Hayflick, S.J. A Novel Pantothenate Kinase Gene (PANK2) Is Defective in Hallervorden-Spatz Syndrome. Nat. Genet. 2001, 28, 345–349. [Google Scholar] [CrossRef]
- Charif, M.; Gueguen, N.; Ferré, M.; Elkarhat, Z.; Khiati, S.; Lemao, M.; Chevrollier, A.; Desquiret-Dumas, V.; Goudenège, D.; Bris, C.; et al. Dominant ACO2 Mutations Are a Frequent Cause of Isolated Optic Atrophy. Brain Commun. 2021, 3, fcab063. [Google Scholar] [CrossRef]
- Janeschitz-Kriegl, L.; Kamdar, D.; Quinodoz, M.; Kaminska, K.; Folcher, M.; György, B.; Meyer, P.; Wild, A.; Escher, P.; Scholl, H.P.N.; et al. C.-61G>A in OVOL2 Is a Pathogenic 5′ Untranslated Region Variant Causing Posterior Polymorphous Corneal Dystrophy 1. Cornea 2022, 41, 89–94. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Zhang, B.; Zhao, L.; Lyubasyuk, V.; Wang, K.; Xu, M.; Li, Y.; Wu, F.; Wen, C.; et al. A Missense Mutation in HK1 Leads to Autosomal Dominant Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7159–7164. [Google Scholar] [CrossRef]
- Jauregui, R.; Thomas, A.L.; Liechty, B.; Velez, G.; Mahajan, V.B.; Clark, L.; Tsang, S.H. SCAPER-Associated Nonsyndromic Autosomal Recessive Retinitis Pigmentosa. Am. J. Med. Genet. A 2019, 179, 312–316. [Google Scholar] [CrossRef]
- Tatour, Y.; Sanchez-Navarro, I.; Chervinsky, E.; Hakonarson, H.; Gawi, H.; Tahsin-Swafiri, S.; Leibu, R.; Lopez-Molina, M.I.; Fernandez-Sanz, G.; Ayuso, C.; et al. Mutations in SCAPER Cause Autosomal Recessive Retinitis Pigmentosa with Intellectual Disability. J. Med. Genet. 2017, 54, 698–704. [Google Scholar] [CrossRef]
- Magliyah, M.S.; Geuer, S.; Alsalamah, A.K.; Lenzner, S.; Drasdo, M.; Schatz, P. Association of the Recurrent Rare Variant c.415T>C p.Phe139Leu in CLN5 With a Recessively Inherited Macular Dystrophy. JAMA Ophthalmol. 2021, 139, 339–343. [Google Scholar] [CrossRef]
- Zeitz, C.; Nassisi, M.; Laurent-Coriat, C.; Andrieu, C.; Boyard, F.; Condroyer, C.; Démontant, V.; Antonio, A.; Lancelot, M.E.; Frederiksen, H.; et al. CHM Mutation Spectrum and Disease: An Update at the Time of Human Therapeutic Trials. Hum. Mutat. 2021, 42, 323–341. [Google Scholar] [CrossRef]
- Hartig, M.B.; Hörtnagel, K.; Garavaglia, B.; Zorzi, G.; Kmiec, T.; Klopstock, T.; Rostasy, K.; Svetel, M.; Kostic, V.S.; Schuelke, M.; et al. Genotypic and Phenotypic Spectrum of PANK2 Mutations in Patients with Neurodegeneration with Brain Iron Accumulation. Ann. Neurol. 2006, 59, 248–256. [Google Scholar] [CrossRef]
- van Huet, R.A.C.; Collin, R.W.J.; Siemiatkowska, A.M.; Klaver, C.C.W.; Hoyng, C.B.; Simonelli, F.; Khan, M.I.; Qamar, R.; Banin, E.; Cremers, F.P.M.; et al. IMPG2-Associated Retinitis Pigmentosa Displays Relatively Early Macular Involvement. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3939–3953. [Google Scholar] [CrossRef] [PubMed]
- Neveling, K.; Collin, R.W.J.; Gilissen, C.; Van Huet, R.A.C.; Visser, L.; Kwint, M.P.; Gijsen, S.J.; Zonneveld, M.N.; Wieskamp, N.; De Ligt, J.; et al. Next-Generation Genetic Testing for Retinitis Pigmentosa. Hum. Mutat. 2012, 33, 963–972. [Google Scholar] [CrossRef]
- Weisschuh, N.; Obermaier, C.D.; Battke, F.; Bernd, A.; Kuehlewein, L.; Nasser, F.; Zobor, D.; Zrenner, E.; Weber, E.; Wissinger, B.; et al. Genetic Architecture of Inherited Retinal Degeneration in Germany: A Large Cohort Study from a Single Diagnostic Center over a 9-Year Period. Hum. Mutat. 2020, 41, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Li, Y.I. Predicting RNA Splicing from DNA Sequence Using Pangolin. Genome Biol. 2022, 23, 103. [Google Scholar] [CrossRef]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef]
- Klambauer, G.; Schwarzbauer, K.; Mayr, A.; Clevert, D.A.; Mitterecker, A.; Bodenhofer, U.; Hochreiter, S. Cn. MOPS: Mixture of Poissons for Discovering Copy Number Variations in next-Generation Sequencing Data with a Low False Discovery Rate. Nucleic Acids Res. 2012, 40, e69. [Google Scholar] [CrossRef]
- Haug, P.; Koller, S.; Maggi, J.; Lang, E.; Feil, S.; Bähr, L.; Steindl, K.; Rohrbach, M.; Gerth-kahlert, C.; Berger, W. Whole Exome Sequencing in Coloboma/Microphthalmia: Identification of Novel and Recurrent Variants in Seven Genes. Genes 2021, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Gerth-Kahlert, C.; Maggi, J.; Töteberg-Harms, M.; Tiwari, A.; Budde, B.; Nürnberg, P.; Koller, S.; Berger, W. Absence of Goniodysgenesis in Patients with Chromosome 13Q Microdeletion-Related Microcoria. Ophthalmol. Glaucoma 2018, 1, 145–147. [Google Scholar] [CrossRef]
- Gordeeva, V.; Sharova, E.; Babalyan, K.; Sultanov, R.; Govorun, V.M.; Arapidi, G. Benchmarking Germline CNV Calling Tools from Exome Sequencing Data. Sci. Rep. 2021, 11, 14416. [Google Scholar] [CrossRef]
- Gabrielaite, M.; Torp, M.H.; Rasmussen, M.S.; Andreu-Sánchez, S.; Vieira, F.G.; Pedersen, C.B.; Kinalis, S.; Madsen, M.B.; Kodama, M.; Demircan, G.S.; et al. A Comparison of Tools for Copy-Number Variation Detection in Germline Whole Exome and Whole Genome Sequencing Data. Cancers 2021, 13, 6283. [Google Scholar] [CrossRef]
- Smirnov, V.M.; Nassisi, M.; Solis Hernandez, C.; Méjécase, C.; El Shamieh, S.; Condroyer, C.; Antonio, A.; Meunier, I.; Andrieu, C.; Defoort-Dhellemmes, S.; et al. Retinal Phenotype of Patients With Isolated Retinal Degeneration Due to CLN3 Pathogenic Variants in a French Retinitis Pigmentosa Cohort. JAMA Ophthalmol. 2021, 139, 278–291. [Google Scholar] [CrossRef]
- Munroe, P.B.; Mitchison, H.M.; O’Rawe, A.M.; Anderson, J.W.; Boustany, R.M.; Lerner, T.J.; Taschner, P.E.M.; De Vos, N.; Breuning, M.H.; Gardiner, R.M.; et al. Spectrum of Mutations in the Batten Disease Gene, CLN3. Am. J. Hum. Genet. 1997, 61, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Ellingford, J.M.; Barton, S.; Bhaskar, S.; Williams, S.G.; Sergouniotis, P.I.; O’Sullivan, J.; Lamb, J.A.; Perveen, R.; Hall, G.; Newman, W.G.; et al. Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease. Ophthalmology 2016, 123, 1143–1150. [Google Scholar] [CrossRef]
- Carss, K.; Arno, G.; Erwood, M.; Stephens, J.; Sanchis-Juan, A.; Hull, S.; Megy, K.; Grozeva, D.; Dewhurst, E.; Malka, S.; et al. Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. Am. J. Hum. Genet. 2017, 100, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Numa, S.; Oishi, A.; Higasa, K.; Oishi, M.; Miyata, M.; Hasegawa, T.; Ikeda, H.O.; Otsuka, Y.; Matsuda, F.; Tsujikawa, A. EYS Is a Major Gene Involved in Retinitis Pigmentosa in Japan: Genetic Landscapes Revealed by Stepwise Genetic Screening. Sci. Rep. 2020, 10, 20770. [Google Scholar] [CrossRef]
- Weisschuh, N.; Mazzola, P.; Zuleger, T.; Schaeferhoff, K.; Kühlewein, L.; Kortüm, F.; Witt, D.; Liebmann, A.; Falb, R.; Pohl, L.; et al. Diagnostic Genome Sequencing Improves Diagnostic Yield: A Prospective Single-Centre Study in 1000 Patients with Inherited Eye Diseases. J. Med. Genet. 2023, 61, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, F.; Zhang, D.; Li, Z.; He, J.; Zhang, S.; Wang, Z.; Zhao, Y.; Wu, J.; Liu, C.; et al. Whole Genome Sequencing Enables New Genetic Diagnosis for Inherited Retinal Diseases by Identifying Pathogenic Variants. Npj Genom. Med. 2024, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Bahr, A.; Bähr, L.; Fleischhauer, J.; Zinkernagel, M.S.; Winkler, N.; Barthelmes, D.; Berger, L.; Gerth-Kahlert, C.; Neidhardt, J.; et al. Next Generation Sequencing Based Identification of Disease-Associated Mutations in Swiss Patients with Retinal Dystrophies. Sci. Rep. 2016, 6, 28755. [Google Scholar] [CrossRef] [PubMed]
- Small, K.W.; DeLuca, A.P.; Whitmore, S.S.; Rosenberg, T.; Silva-Garcia, R.; Udar, N.; Puech, B.; Garcia, C.A.; Rice, T.A.; Fishman, G.A.; et al. North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13. Ophthalmology 2016, 123, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Namburi, P.; Khateb, S.; Meyer, S.; Bentovim, T.; Ratnapriya, R.; Khramushin, A.; Swaroop, A.; Schueler-Furman, O.; Banin, E.; Sharon, D. A Unique PRDM13-Associated Variant in a Georgian Jewish Family with Probable North Carolina Macular Dystrophy and the Possible Contribution of a Unique CFH Variant. Mol. Vis. 2020, 26, 299. [Google Scholar] [PubMed]
- Silva, R.S.; Arno, G.; Cipriani, V.; Pontikos, N.; Defoort-Dhellemmes, S.; Kalhoro, A.; Carss, K.J.; Raymond, F.L.; Dhaenens, C.M.; Jensen, H.; et al. Unique Noncoding Variants Upstream of PRDM13 Are Associated with a Spectrum of Developmental Retinal Dystrophies Including Progressive Bifocal Chorioretinal Atrophy. Hum. Mutat. 2019, 40, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Peng, J.; Li, J.; Zhang, Q.; Li, J.; Zhang, X.; Fei, P.; She, K.; Zhao, P. The Characteristics of Digenic Familial Exudative Vitreoretinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Kondo, H.; Tsukahara-Kawamura, T.; Matsushita, I.; Nagata, T.; Hayashi, T.; Nishina, S.; Higasa, K.; Uchio, E.; Kondo, M.; Sakamoto, T.; et al. Familial Exudative Vitreoretinopathy with and without Pathogenic Variants of Norrin/β-Catenin Signaling Genes. Ophthalmol. Sci. 2024, 4, 100514. [Google Scholar] [CrossRef]
- Campbell, P.; Ellingford, J.M.; Parry, N.R.A.; Fletcher, T.; Ramsden, S.C.; Gale, T.; Hall, G.; Smith, K.; Kasperaviciute, D.; Thomas, E.; et al. Clinical and Genetic Variability in Children with Partial Albinism. Sci. Rep. 2019, 9, 16576. [Google Scholar] [CrossRef]
- Wei, A.H.; Yang, X.M.; Lian, S.; Li, W. Genetic Analyses of Chinese Patients with Digenic Oculocutaneous Albinism. Chin. Med. J. 2013, 126, 226–230. [Google Scholar] [CrossRef]
- Azadi, S.; Molday, L.L.; Molday, R.S. RD3, the Protein Associated with Leber Congenital Amaurosis Type 12, Is Required for Guanylate Cyclase Trafficking in Photoreceptor Cells. Proc. Natl. Acad. Sci. USA 2010, 107, 21158–21163. [Google Scholar] [CrossRef] [PubMed]
- Souzeau, E.; Siggs, O.M.; Mullany, S.; Schmidt, J.M.; Hassall, M.M.; Dubowsky, A.; Chappell, A.; Breen, J.; Bae, H.; Nicholl, J.; et al. Diagnostic Yield of Candidate Genes in an Australian Corneal Dystrophy Cohort. Mol. Genet. Genom. Med. 2022, 10, e2023. [Google Scholar] [CrossRef]
- Tilemis, F.N.; Marinakis, N.M.; Veltra, D.; Svingou, M.; Kekou, K.; Mitrakos, A.; Tzetis, M.; Kosma, K.; Makrythanasis, P.; Traeger-Synodinos, J.; et al. Germline CNV Detection through Whole-Exome Sequencing (WES) Data Analysis Enhances Resolution of Rare Genetic Diseases. Genes 2023, 14, 1490. [Google Scholar] [CrossRef] [PubMed]
- Louw, N.; Carstens, N.; Lombard, Z. Incorporating CNV Analysis Improves the Yield of Exome Sequencing for Rare Monogenic Disorders—An Important Consideration for Resource-Constrained Settings. Front. Genet. 2023, 14, 1277784. [Google Scholar] [CrossRef] [PubMed]
- Hayman, T.; Millo, T.; Hendler, K.; Chowers, I.; Gross, M.; Banin, E.; Sharon, D. Whole Exome Sequencing of 491 Individuals with Inherited Retinal Diseases Reveals a Large Spectrum of Variants and Identification of Novel Candidate Genes. J. Med. Genet. 2024, 61, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Zampaglione, E.; Kinde, B.; Place, E.M.; Navarro-Gomez, D.; Maher, M.; Jamshidi, F.; Nassiri, S.; Mazzone, J.A.; Finn, C.; Schlegel, D.; et al. Copy-Number Variation Contributes 9% of Pathogenicity in the Inherited Retinal Degenerations. Genet. Med. 2020, 22, 1079–1087. [Google Scholar] [CrossRef]
- Quinodoz, M.; Kaminska, K.; Cancellieri, F.; Han, J.H.; Peter, V.G.; Celik, E.; Janeschitz-Kriegl, L.; Schärer, N.; Hauenstein, D.; György, B.; et al. Detection of Elusive DNA Copy-Number Variations in Hereditary Disease and Cancer through the Use of Noncoding and off-Target Sequencing Reads. Am. J. Hum. Genet. 2024, 111, 701–713. [Google Scholar] [CrossRef]
- Nash, B.M.; Ma, A.; Ho, G.; Farnsworth, E.; Minoche, A.E.; Cowley, M.J.; Barnett, C.; Smith, J.M.; Loi, T.H.; Wong, K.; et al. Whole Genome Sequencing, Focused Assays and Functional Studies Increasing Understanding in Cryptic Inherited Retinal Dystrophies. Int. J. Mol. Sci. 2022, 23, 3905. [Google Scholar] [CrossRef]
- Yépez, V.A.; Gusic, M.; Kopajtich, R.; Mertes, C.; Smith, N.H.; Alston, C.L.; Ban, R.; Beblo, S.; Berutti, R.; Blessing, H.; et al. Clinical Implementation of RNA Sequencing for Mendelian Disease Diagnostics. Genome Med. 2022, 14, 38. [Google Scholar] [CrossRef]
- Depristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A Framework for Variation Discovery and Genotyping Using Next-Generation DNA Sequencing Data. Nat. Genet. 2011, 43, 491–501. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Poplin, R.; Chang, P.-C.; Alexander, D.; Schwartz, S.; Colthurst, T.; Ku, A.; Newburger, D.; Dijamco, J.; Nguyen, N.; Afshar, P.T.; et al. A Universal SNP and Small-Indel Variant Caller Using Deep Neural Networks. Nat. Biotechnol. 2018, 36, 983–987. [Google Scholar] [CrossRef]
- Poplin, R.; Ruano-Rubio, V.; DePristo, M.A.; Fennell, T.J.; Carneiro, M.O.; Van der Auwera, G.A.; Kling, D.E.; Gauthier, L.D.; Levy-Moonshine, A.; Roazen, D.; et al. Scaling Accurate Genetic Variant Discovery to Tens of Thousands of Samples. bioRxiv 2018. [Google Scholar] [CrossRef]
- Layer, R.M.; Chiang, C.; Quinlan, A.R.; Hall, I.M. LUMPY: A Probabilistic Framework for Structural Variant Discovery. Genome Biol. 2014, 15, R84. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Källberg, M.; Cox, A.J.; Kruglyak, S.; Saunders, C.T. Manta: Rapid Detection of Structural Variants and Indels for Germline and Cancer Sequencing Applications. Bioinformatics 2016, 32, 1220–1222. [Google Scholar] [CrossRef]
- Suvakov, M.; Panda, A.; Diesh, C.; Holmes, I.; Abyzov, A. CNVpytor: A Tool for Copy Number Variation Detection and Analysis from Read Depth and Allele Imbalance in Whole-Genome Sequencing. Gigascience 2021, 10, giab074. [Google Scholar] [CrossRef] [PubMed]
- Rausch, T.; Zichner, T.; Schlattl, A.; Stütz, A.M.; Benes, V.; Korbel, J.O. DELLY: Structural Variant Discovery by Integrated Paired-End and Split-Read Analysis. Bioinformatics 2012, 28, i333–i339. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.L.; Schröder, J.; Penington, J.S.; Do, H.; Molania, R.; Dobrovic, A.; Speed, T.P.; Papenfuss, A.T. GRIDSS: Sensitive and Specific Genomic Rearrangement Detection Using Positional de Bruijn Graph Assembly. Genome Res. 2017, 27, 2050–2060. [Google Scholar] [CrossRef]
- Kronenberg, Z.N.; Osborne, E.J.; Cone, K.R.; Kennedy, B.J.; Domyan, E.T.; Shapiro, M.D.; Elde, N.C.; Yandell, M. Wham: Identifying Structural Variants of Biological Consequence. PLoS Comput. Biol. 2015, 11, e1004572. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving Access to Variant Interpretations and Supporting Evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [PubMed]
- Pollard, K.S.; Hubisz, M.J.; Rosenbloom, K.R.; Siepel, A. Detection of Nonneutral Substitution Rates on Mammalian Phylogenies. Genome Res. 2010, 20, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Rentzsch, P.; Schubach, M.; Shendure, J.; Kircher, M. CADD-Splice—Improving Genome-Wide Variant Effect Prediction Using Deep Learning-Derived Splice Scores. Genome Med. 2021, 13, 31. [Google Scholar] [CrossRef]
- Sundaram, L.; Gao, H.; Padigepati, S.R.; McRae, J.F.; Li, Y.; Kosmicki, J.A.; Fritzilas, N.; Hakenberg, J.; Dutta, A.; Shon, J.; et al. Predicting the Clinical Impact of Human Mutation with Deep Neural. Nat. Genet. 2018, 50, 1161. [Google Scholar] [CrossRef]
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016, 99, 877. [Google Scholar] [CrossRef]
- Sim, N.L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT Web Server: Predicting Effects of Amino Acid Substitutions on Proteins. Nucleic Acids Res. 2012, 40, W452. [Google Scholar] [CrossRef]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7.20.1–7.20.41. [Google Scholar] [CrossRef]
- Stenson, P.D.; Ball, E.V.; Mort, M.; Phillips, A.D.; Shiel, J.A.; Thomas, N.S.T.; Abeysinghe, S.; Krawczak, M.; Cooper, D.N. Human Gene Mutation Database (HGMD): 2003 Update. Hum. Mutat. 2003, 21, 577–581. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Santos Gonzalez, F.; Mordaunt, D.; Stark, Z.; Dalziel, K.; Christodoulou, J.; Goranitis, I. Microcosting Diagnostic Genomic Sequencing: A Systematic Review. Genet. Med. 2023, 25, 100829. [Google Scholar] [CrossRef]
Family | Clinical Phenotype | Sex | Age at Referral | Family History | Status | Gene |
---|---|---|---|---|---|---|
1 | MD | M | 69 | ND | Diagnosed | CFH |
2 | MD | M | 47 | ND | Diagnosed | IMPG2 |
3 | CACD | F | 58 | dominant | Diagnosed | CFH |
4 | RP | M | 63 | dominant | Diagnosed | CHM |
5 | RP | F | 8 | negative | Diagnosed | CRB1 |
6 | RP | F | 54 | dominant | Diagnosed | RP1 |
7 | EVR | F | 0 | negative | Diagnosed | KIF11 |
8 | RP | F | 8 | recessive | Diagnosed | NRL |
9 | RP | M | 29 | negative | Diagnosed | PANK2 |
10 | RP | F | 31 | recessive | Diagnosed | SCAPER |
11 | RP | M | 50 | negative | Diagnosed | KLHL7 |
12 | OPA | F | 43 | unclear | Diagnosed | ACO2 |
13 | CD | M | 67 | dominant | Diagnosed | OVOL2 |
14 | MD | F | 71 | dominant | Diagnosed | HK1 |
15 | COD | M | 35 | negative | Diagnosed | CLN5 |
16 | RP | M | 16 | negative | Diagnosed | CNGA1 |
17 | RP | M | 26 | negative | Diagnosed | EYS |
18 | CRD | F | 11 | negative | Diagnosed | CLN3 |
19 | CRD | M | 34 | unclear | Diagnosed | KIF11 |
20 | CRD | M | 45 | ND | Undiagnosed | |
21 | MD | M | 43 | unclear | Undiagnosed | |
22 | CRD | F | 33 | ND | Undiagnosed | |
23 | VMD | F | 43 | ND | Undiagnosed | |
24 | MD | F | 27 | negative | Undiagnosed | |
25 | MD | F | 11 | dominant | Undiagnosed | |
26 | MD | F | 34 | ND | Undiagnosed | |
27 | EVR | F | 9 | negative | Undiagnosed | |
28 | RP | F | 31 | recessive | Undiagnosed | |
29 | MD | F | 34 | dominant | Undiagnosed | |
30 | CRD | M | 45 | dominant | Undiagnosed | |
31 | STGD | M | 49 | ND | Undiagnosed | |
32 | RP | M | 33 | negative | Undiagnosed | |
33 | RP | M | 34 | dominant | Undiagnosed | |
34 | MD | F | 34 | recessive | Undiagnosed | |
35 | MD | M | 45 | ND | Undiagnosed | |
36 | EVR | F | 6 | negative | Undiagnosed | |
37 | RP | F | 32 | negative | Undiagnosed | |
38 | DHDD | M | 43 | ND | Undiagnosed | |
39 | STGD | M | 10 | negative | Undiagnosed | |
40 | MD | F | 33 | negative | Undiagnosed | |
41 | RP | F | 43 | negative | Undiagnosed | |
42 | MD | F | 32 | negative | Undiagnosed | |
43 | MD | M | 67 | ND | Undiagnosed | |
44 | RP | F | 30 | recessive | Undiagnosed | |
45 | MD | M | 37 | recessive | Undiagnosed | |
46 | MD | F | 46 | negative | Undiagnosed | |
47 | WGN | M | 30 | ND | Undiagnosed | |
48 | OCA | M | 32 | dominant | Undiagnosed | |
49 | RD | M | 2 | negative | Undiagnosed | |
50 | EVR | F | 1 | negative | Undiagnosed | |
51 | LHON | F | 26 | ND | Undiagnosed | |
52 | USH | F | 10 | negative | Undiagnosed | |
53 | CHM | M | 58 | ND | Undiagnosed | |
54 | MD | F | 39 | negative | Undiagnosed | |
55 | COD | M | 10 | recessive | Undiagnosed | |
56 | RP | M | 61 | negative | Undiagnosed | |
57 | MD | M | 13 | dominant | Undiagnosed | |
58 | MD | M | 55 | recessive | Undiagnosed | |
59 | RP | M | 23 | dominant | Undiagnosed | |
60 | RP | F | 20 | negative | Undiagnosed | |
61 | MD | F | 58 | ND | Undiagnosed | |
62 | CRD | F | 45 | ND | Undiagnosed | |
63 | EVR | M | 1 | negative | Undiagnosed | |
64 | EVR | M | 9 | dominant | Undiagnosed | |
65 | MD | F | 10 | negative | Undiagnosed | |
66 | OPA | M | 65 | ND | Undiagnosed |
Fam. | Clinical Phen. | Age at Ref. | Gene | Variant (cNomen) | pNomen | Zyg. | gnomAD All (%) | gnomAD Max (%) | In-House (%) | IRD (%) | ACMG | HGMD | ClinVar | Ref. | Seg. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | MD | 69 | CFH | NM_000186.3:c.3628C>T | p.(Arg1210Cys) | Het. | 0.03 | 0.06 | 0.32 | 0.44 | LP | P | P/VUS | [11] | NA |
2 | MD | 47 | IMPG2 | NM_016247.3:c.3423-7_3423-4del | p.? | Het. | 0.01 | 0.02 | 0.06 | 0.11 | LP | P | P/LP/VUS | [12] | NA |
3 | CACD | 58 | CFH | NM_000186.3:c.3628C>T | p.(Arg1210Cys) | Hom. | 0.03 | 0.06 | 0.32 | 0.44 | LP | P | P/VUS | [11] | NA |
4 | RP | 63 | CHM | NM_000390.3:c.1413G>C | p.(Gln471His) | Het. | 0 | 0 | 0.19 | 0.33 | VUS | P | - | [13] | NA |
5 | RP | 8 | CRB1 | NM_201253.2:c.2401A>T | p.(Lys801*) | Het. | 0.006 | 0.028 | 0.06 | 0.11 | P | P | P | [14] | Y |
NM_201253.2:c.3879-1203C>G | p.(Trp1293_Cys1294insPhe*) | Het. | 0.003 | 0.007 | 0.76 * | 0.76 * | VUS | P | - | [15] | |||||
6 | RP | 54 | RP1 | NM_006269.1:c.2285_2289del | p.(Leu762Tyrfs*17) | Het. | 0 | 0 | 0.06 | 0.11 | P | P | P | [16] | Y |
7 | EVR | 0 | KIF11 | NM_004523.3:c.1875+2T>A | p.? | Het. | 0 | 0 | 0.08 | 0.12 | LP | - | - | TS | Y |
8 | RP | 8 | NRL | NM_006177.3:c.-41_-28+23del | p.? | Hom. | 0 | 0 | 0.44 | 0.88 | VUS | - | - | TS | Y |
9 | RP | 29 | PANK2 | NM_024960.4:c.395G>T | p.(Cys132Phe) | Het. | 0.001 | 0.016 | 0.06 | 0.11 | LP | - | - | TS | Y |
NM_024960.4:c.688G>A | p.(Gly230Arg) | Het. | 0.013 | 0.042 | 0.06 | 0.11 | P | P | P | [17] | |||||
10 | RP | 31 | SCAPER | NM_020843.2:c.334C>T | p.(Arg112*) | Hom. | 0.002 | 0.003 | 0.13 | 0.22 | P | - | - | TS | Y |
11 | RP | 50 | KLHL7 | NM_001031710.2:c.1191_1192del | p.(Tyr398Phefs*3) | Het. | 0 | 0 | 0.06 | 0.11 | LP | - | - | TS | Y |
12 | OPA | 43 | ACO2 | NM_001098.2:c.2006C>T | p.(Ser669Leu) | Het. | 0.0004 | 0.001 | 0.06 | 0.11 | VUS | P | VUS | [18] | NA |
13 | CD | 67 | OVOL2 | NM_021220.2:c.-61G>A | p.? | Het. | 0 | 0 | 0.06 | 0.11 | LP | P | - | [19] | NA |
14 | MD | 71 | HK1 | NM_000188.2:c.2539G>A | p.(Glu847Lys) | Het. | 0.001 | 0.011 | 0.06 | 0.11 | LP | P | P/LP | [20] | NA |
15 | COD | 35 | CLN5 | NM_006493.2:c.445C>A | p.(Leu149Ile) | Hom. | 0 | 0 | 0.13 | 0.22 | VUS | - | VUS | TS | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maggi, J.; Koller, S.; Feil, S.; Bachmann-Gagescu, R.; Gerth-Kahlert, C.; Berger, W. Limited Added Diagnostic Value of Whole Genome Sequencing in Genetic Testing of Inherited Retinal Diseases in a Swiss Patient Cohort. Int. J. Mol. Sci. 2024, 25, 6540. https://doi.org/10.3390/ijms25126540
Maggi J, Koller S, Feil S, Bachmann-Gagescu R, Gerth-Kahlert C, Berger W. Limited Added Diagnostic Value of Whole Genome Sequencing in Genetic Testing of Inherited Retinal Diseases in a Swiss Patient Cohort. International Journal of Molecular Sciences. 2024; 25(12):6540. https://doi.org/10.3390/ijms25126540
Chicago/Turabian StyleMaggi, Jordi, Samuel Koller, Silke Feil, Ruxandra Bachmann-Gagescu, Christina Gerth-Kahlert, and Wolfgang Berger. 2024. "Limited Added Diagnostic Value of Whole Genome Sequencing in Genetic Testing of Inherited Retinal Diseases in a Swiss Patient Cohort" International Journal of Molecular Sciences 25, no. 12: 6540. https://doi.org/10.3390/ijms25126540