Selected microRNA Expression and Protein Regulator Secretion by Adipose Tissue-Derived Mesenchymal Stem Cells and Metabolic Syndrome
Abstract
:1. Introduction
2. Results
2.1. Basic Clinical Parameters
2.2. Cytometric Ad-MSC Verification
2.3. Expression of microRNAs
2.3.1. Expression of microRNAs across the Studied Subgroups
2.3.2. Expression of microRNAs in Relation to Clinical Parameters
2.4. Secretion of Protein Regulators
2.4.1. Secretion of Protein Regulators across the Studied Subgroups
2.4.2. Secretion of Protein Regulators in Relation to Clinical Parameters
2.5. Expression of microRNAs vs. Secretion of Protein Regulators
3. Discussion
3.1. Ad-MSC Antigenic Characteristic
3.2. Decreased Ad-MSC Expression of miR-155 as a Hallmark/Source of Obesity and Metabolic Microinflammation
3.2.1. IL-10 as a Possible Anti-Inflammatory Effector of Ad-MSC miR-155
3.2.2. Ad-MSC miR-155 as a Primer of Adipose Tissue Regulatory T Cells
3.2.3. Ad-MSC miR-155 as an Autocrine Inhibitor of Adipogenesis
3.2.4. Ad-MSC miR-155 as an Inhibitor of IGF-1
3.3. Significance of Ad-MSC IL-6 and VEGF
3.4. Study Limitations
4. Materials and Methods
4.1. Study Participants and Assessment of Basic Clinical Parameters
4.2. Ad-MSC Culture
4.3. Assessment of microRNA Expression in Ad-MSCs
4.4. Assessment of Ad-MSC Secretion of Protein Regulators
4.5. Cytometric Ad-MSC Verification
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Blanc, K.; Tammik, C.; Rosendahl, K.; Zetterberg, E.; Ringdén, O. HLA Expression and Immunologic Properties of Differentiated and Undifferentiated Mesenchymal Stem Cells. Exp. Hematol. 2003, 31, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.B.; Moncivais, K.; Caplan, A.I. Mesenchymal Stem Cells: Environmentally Responsive Therapeutics for Regenerative Medicine. Exp. Mol. Med. 2013, 45, e54. [Google Scholar] [CrossRef] [PubMed]
- Sikora, B.; Skubis-Sikora, A.; Prusek, A.; Gola, J. Paracrine Activity of Adipose Derived Stem Cells on Limbal Epithelial Stem Cells. Sci. Rep. 2021, 11, 19956. [Google Scholar] [CrossRef] [PubMed]
- Luz-Crawford, P.; Kurte, M.; Bravo-Alegría, J.; Contreras, R.; Nova-Lamperti, E.; Tejedor, G.; Noël, D.; Jorgensen, C.; Figueroa, F.; Djouad, F.; et al. Mesenchymal Stem Cells Generate a CD4+CD25+Foxp3+ Regulatory T Cell Population during the Differentiation Process of Th1 and Th17 Cells. Stem Cell Res. Ther. 2013, 4, 65. [Google Scholar] [CrossRef] [PubMed]
- Pestel, J.; Blangero, F.; Eljaafari, A. Pathogenic Role of Adipose Tissue-Derived Mesenchymal Stem Cells in Obesity and Obesity-Related Inflammatory Diseases. Cells 2023, 12, 348. [Google Scholar] [CrossRef] [PubMed]
- Waterman, R.S.; Tomchuck, S.L.; Henkle, S.L.; Betancourt, A.M. A New Mesenchymal Stem Cell (MSC) Paradigm: Polarization into a pro-Inflammatory MSC1 or an Immunosuppressive MSC2 Phenotype. PLoS ONE 2010, 5, e10088. [Google Scholar] [CrossRef] [PubMed]
- Serena, C.; Keiran, N.; Ceperuelo-Mallafre, V.; Ejarque, M.; Fradera, R.; Roche, K.; Nuñez-Roa, C.; Vendrell, J.; Fernández-Veledo, S. Obesity and Type 2 Diabetes Alters the Immune Properties of Human Adipose Derived Stem Cells. Stem Cells 2016, 34, 2559–2573. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.R.; Liechocki, S.; Carneiro, J.R.; Claudio-da-Silva, C.; Maya-Monteiro, C.M.; Borojevic, R.; Baptista, L.S. Stromal-Vascular Fraction Content and Adipose Stem Cell Behavior Are Altered in Morbid Obese and Post Bariatric Surgery Ex-Obese Women. Stem Cell Res. Ther. 2015, 6, 72. [Google Scholar] [CrossRef] [PubMed]
- Eljaafari, A.; Robert, M.; Chehimi, M.; Chanon, S.; Durand, C.; Vial, G.; Bendridi, N.; Madec, A.-M.; Disse, E.; Laville, M.; et al. Adipose Tissue-Derived Stem Cells from Obese Subjects Contribute to Inflammation and Reduced Insulin Response in Adipocytes Through Differential Regulation of the Th1/Th17 Balance and Monocyte Activation. Diabetes 2015, 64, 2477–2488. [Google Scholar] [CrossRef] [PubMed]
- Van Tienen, F.H.J.; van der Kallen, C.J.H.; Lindsey, P.J.; Wanders, R.J.; van Greevenbroek, M.M.; Smeets, H.J.M. Preadipocytes of Type 2 Diabetes Subjects Display an Intrinsic Gene Expression Profile of Decreased Differentiation Capacity. Int. J. Obes. 2011, 35, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Stafeev, I.; Podkuychenko, N.; Michurina, S.; Sklyanik, I.; Panevina, A.; Shestakova, E.; Yah’yaev, K.; Fedenko, V.; Ratner, E.; Vorotnikov, A.; et al. Low Proliferative Potential of Adipose-Derived Stromal Cells Associates with Hypertrophy and Inflammation in Subcutaneous and Omental Adipose Tissue of Patients with Type 2 Diabetes Mellitus. J. Diabetes Complicat. 2019, 33, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Strong, A.L.; Strong, T.A.; Rhodes, L.V.; Semon, J.A.; Zhang, X.; Shi, Z.; Zhang, S.; Gimble, J.M.; Burow, M.E.; Bunnell, B.A. Obesity Associated Alterations in the Biology of Adipose Stem Cells Mediate Enhanced Tumorigenesis by Estrogen Dependent Pathways. Breast Cancer Res. 2013, 15, R102. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Xie, Y.; Li, Q.; Chen, X. Stem Cell-Based Cell Therapy for Glomerulonephritis. BioMed Res. Int. 2014, 2014, 124730. [Google Scholar] [CrossRef] [PubMed]
- Corvera, S.; Solivan-Rivera, J.; Yang Loureiro, Z. Angiogenesis in Adipose Tissue and Obesity. Angiogenesis 2022, 25, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Wernstedt Asterholm, I.; Kusminski, C.M.; Bueno, A.C.; Wang, Z.V.; Pollard, J.W.; Brekken, R.A.; Scherer, P.E. Dichotomous Effects of VEGF-A on Adipose Tissue Dysfunction. Proc. Natl. Acad. Sci. USA 2012, 109, 5874–5879. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, G.A.; De Ita, J.R.; de la Garza, R.G.; Castilla-Cortazar, I. Insulin-like Growth Factor-1 Deficiency and Metabolic Syndrome. J. Transl. Med. 2016, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, M.S.; Heald, A.H.; Gibson, J.M.; Cruickshank, J.K.; Dunger, D.B.; Wareham, N.J. Circulating Concentrations of Insulin-like Growth Factor-I and Development of Glucose Intolerance: A Prospective Observational Study. Lancet 2002, 359, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Succurro, E.; Andreozzi, F.; Marini, M.A.; Lauro, R.; Hribal, M.L.; Perticone, F.; Sesti, G. Low Plasma Insulin-like Growth Factor-1 Levels Are Associated with Reduced Insulin Sensitivity and Increased Insulin Secretion in Nondiabetic Subjects. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Mauer, J.; Chaurasia, B.; Goldau, J.; Vogt, M.C.; Ruud, J.; Nguyen, K.D.; Theurich, S.; Hausen, A.C.; Schmitz, J.; Brönneke, H.S.; et al. Signaling by IL-6 Promotes Alternative Activation of Macrophages to Limit Endotoxemia and Obesity-Associated Resistance to Insulin. Nat. Immunol. 2014, 15, 423–430. [Google Scholar] [CrossRef]
- Wueest, S.; Konrad, D. The Controversial Role of IL-6 in Adipose Tissue on Obesity-Induced Dysregulation of Glucose Metabolism. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E607–E613. [Google Scholar] [CrossRef] [PubMed]
- Wueest, S.; Item, F.; Lucchini, F.C.; Challa, T.D.; Müller, W.; Blüher, M.; Konrad, D. Mesenteric Fat Lipolysis Mediates Obesity-Associated Hepatic Steatosis and Insulin Resistance. Diabetes 2016, 65, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Rajbhandari, P.; Thomas, B.J.; Feng, A.-C.; Hong, C.; Wang, J.; Vergnes, L.; Sallam, T.; Wang, B.; Sandhu, J.; Seldin, M.M.; et al. IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell 2018, 172, 218–233.e17. [Google Scholar] [CrossRef] [PubMed]
- Beppu, L.Y.; Mooli, R.G.R.; Qu, X.; Marrero, G.J.; Finley, C.A.; Fooks, A.N.; Mullen, Z.P.; Frias, A.B.; Sipula, I.; Xie, B.; et al. Tregs Facilitate Obesity and Insulin Resistance via a Blimp-1/IL-10 Axis. JCI Insight 2021, 6, 140644. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Guo, X. The Clinical Potential of Circulating microRNAs in Obesity. Nat. Rev. Endocrinol. 2019, 15, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, S.; Mahdavi, R.; Alipoor, B.; Panahi, G.; Nasli Esfahani, E.; Razi, F.; Taghikhani, M.; Meshkani, R. Decreased Serum microRNA-21 Level Is Associated with Obesity in Healthy and Type 2 Diabetic Subjects. Arch. Physiol. Biochem. 2018, 124, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Willeit, P.; Skroblin, P.; Moschen, A.R.; Yin, X.; Kaudewitz, D.; Zampetaki, A.; Barwari, T.; Whitehead, M.; Ramírez, C.M.; Goedeke, L.; et al. Circulating MicroRNA-122 Is Associated with the Risk of New-Onset Metabolic Syndrome and Type 2 Diabetes. Diabetes 2017, 66, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Ying, W.; Riopel, M.; Bandyopadhyay, G.; Dong, Y.; Birmingham, A.; Seo, J.B.; Ofrecio, J.M.; Wollam, J.; Hernandez-Carretero, A.; Fu, W.; et al. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity. Cell 2017, 171, 372–384.e12. [Google Scholar] [CrossRef] [PubMed]
- Párrizas, M.; Brugnara, L.; Esteban, Y.; González-Franquesa, A.; Canivell, S.; Murillo, S.; Gordillo-Bastidas, E.; Cussó, R.; Cadefau, J.A.; García-Roves, P.M.; et al. Circulating miR-192 and miR-193b Are Markers of Prediabetes and Are Modulated by an Exercise Intervention. J. Clin. Endocrinol. Metab. 2015, 100, E407–E415. [Google Scholar] [CrossRef]
- Baglio, S.R.; Rooijers, K.; Koppers-Lalic, D.; Verweij, F.J.; Pérez Lanzón, M.; Zini, N.; Naaijkens, B.; Perut, F.; Niessen, H.W.M.; Baldini, N.; et al. Human Bone Marrow- and Adipose-Mesenchymal Stem Cells Secrete Exosomes Enriched in Distinctive miRNA and tRNA Species. Stem Cell Res. Ther. 2015, 6, 127. [Google Scholar] [CrossRef] [PubMed]
- Jothimani, G.; Pathak, S.; Dutta, S.; Duttaroy, A.K.; Banerjee, A. A Comprehensive Cancer-Associated MicroRNA Expression Profiling and Proteomic Analysis of Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes. Tissue Eng. Regen. Med. 2022, 19, 1013–1031. [Google Scholar] [CrossRef] [PubMed]
- Vaka, R.; Parent, S.; Risha, Y.; Khan, S.; Courtman, D.; Stewart, D.J.; Davis, D.R. Extracellular Vesicle microRNA and Protein Cargo Profiling in Three Clinical-Grade Stem Cell Products Reveals Key Functional Pathways. Mol. Ther. Nucleic Acids 2023, 32, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Pers, Y.-M.; Bony, C.; Duroux-Richard, I.; Bernard, L.; Maumus, M.; Assou, S.; Barry, F.; Jorgensen, C.; Noël, D. miR-155 Contributes to the Immunoregulatory Function of Human Mesenchymal Stem Cells. Front. Immunol. 2021, 12, 624024. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Zhang, H.; Gao, Y. Adipose Mesenchymal Stem Cells-Secreted Extracellular Vesicles Containing microRNA-192 Delays Diabetic Retinopathy by Targeting ITGA1. J. Cell. Physiol. 2021, 236, 5036–5051. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Wang, S.; Zhou, Y.; Li, H.; Wu, Y. Mesenchymal Stem Cell Subpopulations: Phenotype, Property and Therapeutic Potential. Cell. Mol. Life Sci. 2016, 73, 3311–3321. [Google Scholar] [CrossRef] [PubMed]
- Rider, D.A.; Dombrowski, C.; Sawyer, A.A.; Ng, G.H.B.; Leong, D.; Hutmacher, D.W.; Nurcombe, V.; Cool, S.M. Autocrine Fibroblast Growth Factor 2 Increases the Multipotentiality of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cells 2008, 26, 1598–1608. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Duda, M.; Ren, G.; Xuan, Z.; Pennisi, C.P.; Porsborg, S.R.; Fink, T.; Zachar, V. Multiplex Analysis of Adipose-Derived Stem Cell (ASC) Immunophenotype Adaption to In Vitro Expansion. Cells 2021, 10, 218. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, W.; Zha, K.; Jing, X.; Wang, M.; Zhang, Y.; Hao, C.; Gao, S.; Chen, M.; Yuan, Z.; et al. Enrichment of CD146+ Adipose-Derived Stem Cells in Combination with Articular Cartilage Extracellular Matrix Scaffold Promotes Cartilage Regeneration. Theranostics 2019, 9, 5105–5121. [Google Scholar] [CrossRef] [PubMed]
- Lauvrud, A.T.; Kelk, P.; Wiberg, M.; Kingham, P.J. Characterization of Human Adipose Tissue-Derived Stem Cells with Enhanced Angiogenic and Adipogenic Properties. J. Tissue Eng. Regen. Med. 2017, 11, 2490–2502. [Google Scholar] [CrossRef] [PubMed]
- Mashima, R. Physiological Roles of miR-155. Immunology 2015, 145, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Huang, S.; Liu, X.; Zhang, Y.; Wei, S.; Hu, X. miR-155: An Important Role in Inflammation Response. J. Immunol. Res. 2022, 2022, e7437281. [Google Scholar] [CrossRef]
- Kurowska-Stolarska, M.; Alivernini, S.; Ballantine, L.E.; Asquith, D.L.; Millar, N.L.; Gilchrist, D.S.; Reilly, J.; Ierna, M.; Fraser, A.R.; Stolarski, B.; et al. MicroRNA-155 as a Proinflammatory Regulator in Clinical and Experimental Arthritis. Proc. Natl. Acad. Sci. USA 2011, 108, 11193–11198. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.M.; Kahn, D.; Gibson, W.S.J.; Round, J.L.; Scholz, R.L.; Chaudhuri, A.A.; Kahn, M.E.; Rao, D.S.; Baltimore, D. MicroRNA-155 Promotes Autoimmune Inflammation by Enhancing Inflammatory T Cell Development. Immunity 2010, 33, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Pasca, S.; Jurj, A.; Petrushev, B.; Tomuleasa, C.; Matei, D. MicroRNA-155 Implication in M1 Polarization and the Impact in Inflammatory Diseases. Front. Immunol. 2020, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Fairfax, K.A.; Gantier, M.P.; Mackay, F.; Williams, B.R.G.; McCoy, C.E. IL-10 Regulates Aicda Expression through miR-155. J. Leukoc. Biol. 2015, 97, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.T.; So, E.Y.; Chang, D.; Ming-Lum, A.; Mui, A.L.-F. Interleukin-10 Inhibits Lipopolysaccharide Induced miR-155 Precursor Stability and Maturation. PLoS ONE 2013, 8, e71336. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ge, W.; Ma, Y.; Xie, G.; Wang, W.; Han, L.; Bian, B.; Li, L.; Shen, L. miR-155 Regulates IL-10-Producing CD24hiCD27+ B Cells and Impairs Their Function in Patients with Crohn’s Disease. Front. Immunol. 2017, 8, 914. [Google Scholar] [CrossRef] [PubMed]
- Cancello, R.; Henegar, C.; Viguerie, N.; Taleb, S.; Poitou, C.; Rouault, C.; Coupaye, M.; Pelloux, V.; Hugol, D.; Bouillot, J.-L.; et al. Reduction of Macrophage Infiltration and Chemoattractant Gene Expression Changes in White Adipose Tissue of Morbidly Obese Subjects after Surgery-Induced Weight Loss. Diabetes 2005, 54, 2277–2286. [Google Scholar] [CrossRef] [PubMed]
- Clément, K.; Viguerie, N.; Poitou, C.; Carette, C.; Pelloux, V.; Curat, C.A.; Sicard, A.; Rome, S.; Benis, A.; Zucker, J.-D.; et al. Weight Loss Regulates Inflammation-Related Genes in White Adipose Tissue of Obese Subjects. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2004, 18, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.R.; Tavira, B.; Douagi, I.; Kulyté, A.; Arner, P.; Rydén, M.; Laurencikiene, J. Human-Specific Function of IL-10 in Adipose Tissue Linked to Insulin Resistance. J. Clin. Endocrinol. Metab. 2019, 104, 4552–4562. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.-F.; Thai, T.-H.; Calado, D.P.; Chaudhry, A.; Kubo, M.; Tanaka, K.; Loeb, G.B.; Lee, H.; Yoshimura, A.; Rajewsky, K.; et al. Foxp3-Dependent microRNA155 Confers Competitive Fitness to Regulatory T Cells through Targeting SOCS1. Immunity 2009, 30, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Kohlhaas, S.; Garden, O.A.; Scudamore, C.; Turner, M.; Okkenhaug, K.; Vigorito, E. Cutting Edge: The Foxp3 Target miR-155 Contributes to the Development of Regulatory T Cells1. J. Immunol. 2009, 182, 2578–2582. [Google Scholar] [CrossRef] [PubMed]
- Piekarska, K.; Urban-Wójciuk, Z.; Kurkowiak, M.; Pelikant-Małecka, I.; Schumacher, A.; Sakowska, J.; Spodnik, J.H.; Arcimowicz, Ł.; Zielińska, H.; Tymoniuk, B.; et al. Mesenchymal Stem Cells Transfer Mitochondria to Allogeneic Tregs in an HLA-Dependent Manner Improving Their Immunosuppressive Activity. Nat. Commun. 2022, 13, 856. [Google Scholar] [CrossRef] [PubMed]
- Bradley, D.; Smith, A.J.; Blaszczak, A.; Shantaram, D.; Bergin, S.M.; Jalilvand, A.; Wright, V.; Wyne, K.L.; Dewal, R.S.; Baer, L.A.; et al. Interferon Gamma Mediates the Reduction of Adipose Tissue Regulatory T Cells in Human Obesity. Nat. Commun. 2022, 13, 5606. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, Y.; Wu, J. TNFα-Induced up-Regulation of miR-155 Inhibits Adipogenesis by down-Regulating Early Adipogenic Transcription Factors. Biochem. Biophys. Res. Commun. 2011, 414, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Karkeni, E.; Astier, J.; Tourniaire, F.; El Abed, M.; Romier, B.; Gouranton, E.; Wan, L.; Borel, P.; Salles, J.; Walrand, S.; et al. Obesity-Associated Inflammation Induces microRNA-155 Expression in Adipocytes and Adipose Tissue: Outcome on Adipocyte Function. J. Clin. Endocrinol. Metab. 2016, 101, 1615–1626. [Google Scholar] [CrossRef] [PubMed]
- Klöting, N.; Berthold, S.; Kovacs, P.; Schön, M.R.; Fasshauer, M.; Ruschke, K.; Stumvoll, M.; Blüher, M. MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue. PLoS ONE 2009, 4, e4699. [Google Scholar] [CrossRef] [PubMed]
- Cerda, A.; Amaral, A.A.; de Oliveira, R.; Moraes, T.I.; Braga, A.A.; Graciano-Saldarriaga, M.E.; Fajardo, C.M.; Hirata, T.D.C.; Bonezi, V.; Campos-Salazar, A.B.; et al. Peripheral Blood miRome Identified miR-155 as Potential Biomarker of MetS and Cardiometabolic Risk in Obese Patients. Int. J. Mol. Sci. 2021, 22, 1468. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Nagafuku, M.; Shimizu, K.; Taira, T.; Igarashi, Y.; Inokuchi, J. Physiological Levels of Insulin and IGF-1 Synergistically Enhance the Differentiation of Mesenteric Adipocytes. Cell Biol. Int. 2008, 32, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Scavo, L.M.; Karas, M.; Murray, M.; Leroith, D. Insulin-Like Growth Factor-I Stimulates Both Cell Growth and Lipogenesis during Differentiation of Human Mesenchymal Stem Cells into Adipocytes. J. Clin. Endocrinol. Metab. 2004, 89, 3543–3553. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhao, Z.; Yang, B. MicroRNA-155 Promotes Apoptosis of Colonic Smooth Muscle Cells and Aggravates Colonic Dysmotility by Targeting IGF-1. Exp. Ther. Med. 2020, 19, 2725–2732. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Watanabe, H.; Nakano, T.; Imafuku, T.; Kato, H.; Tokumaru, K.; Arimura, N.; Enoki, Y.; Maeda, H.; Tanaka, M.; et al. Indoxyl Sulfate Contributes to Adipose Tissue Inflammation through the Activation of NADPH Oxidase. Toxins 2020, 12, 502. [Google Scholar] [CrossRef] [PubMed]
- Idziak, M.; Pędzisz, P.; Burdzińska, A.; Gala, K.; Pączek, L. Uremic Toxins Impair Human Bone Marrow-Derived Mesenchymal Stem Cells Functionality in Vitro. Exp. Toxicol. Pathol. Off. J. Ges. Toxikol. Pathol. 2014, 66, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Kamprom, W.; Tawonsawatruk, T.; Mas-Oodi, S.; Anansilp, K.; Rattanasompattikul, M.; Supokawej, A. P-Cresol and Indoxyl Sulfate Impair Osteogenic Differentiation by Triggering Mesenchymal Stem Cell Senescence. Int. J. Med. Sci. 2021, 18, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Alicka, M.; Major, P.; Wysocki, M.; Marycz, K. Adipose-Derived Mesenchymal Stem Cells Isolated from Patients with Type 2 Diabetes Show Reduced “Stemness” through an Altered Secretome Profile, Impaired Anti-Oxidative Protection, and Mitochondrial Dynamics Deterioration. J. Clin. Med. 2019, 8, 765. [Google Scholar] [CrossRef] [PubMed]
- Gan, F.; Liu, L.; Zhou, Q.; Huang, W.; Huang, X.; Zhao, X. Effects of Adipose-Derived Stromal Cells and Endothelial Progenitor Cells on Adipose Transplant Survival and Angiogenesis. PLoS ONE 2022, 17, e0261498. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Zhang, Y.; Yu, H.; Li, X. Role of Hyperglycemia in the Senescence of Mesenchymal Stem Cells. Front. Cell Dev. Biol. 2021, 9, 665412. [Google Scholar] [CrossRef]
- Cramer, C.; Freisinger, E.; Jones, R.K.; Slakey, D.P.; Dupin, C.L.; Newsome, E.R.; Alt, E.U.; Izadpanah, R. Persistent High Glucose Concentrations Alter the Regenerative Potential of Mesenchymal Stem Cells. Stem Cells Dev. 2010, 19, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Nan, L.-P.; Wang, F.; Zhou, S.-F.; Wang, J.-C.; Feng, X.-M.; Zhang, L. The Effect of High Glucose on the Biological Characteristics of Nucleus Pulposus-Derived Mesenchymal Stem Cells. Cell Biochem. Funct. 2020, 38, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Zhang, D.; Liu, Z.; Jin, W.; Huang, G.; Wei, Z.; Wang, D.; Deng, C. Diabetes-Induced Glucolipotoxicity Impairs Wound Healing Ability of Adipose-Derived Stem Cells-through the miR-1248/CITED2/HIF-1α Pathway. Aging 2020, 12, 6947–6965. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [CrossRef] [PubMed]
- Stojanovic, M.; Popevic, M.; Pekic, S.; Doknic, M.; Miljic, D.; Medic-Stojanoska, M.; Topalov, D.; Stojanovic, J.; Milovanovic, A.; Petakov, M.; et al. Serum Insulin-Like Growth Factor-1 (IGF-1) Age-Specific Reference Values for Healthy Adult Population of Serbia. Acta Endocrinol. Buchar. 2021, 17, 462–471. [Google Scholar] [CrossRef] [PubMed]
All Subjects n = 23 | Obese n = 10 | Overweight n = 8 | Normal Weight n = 5 | |
---|---|---|---|---|
Age [years] | 43.0 ± 8.9 (28–63) | 44.0 ± 9.0 (31–60) | 41.3 ± 10.7 (28–63) | 43.8 ± 6.6 (39–54) |
Sex [M/F] * | 4/19 | 0/10 | 4/4 | 0/5 |
Arterial hypertension [%] * | 5 (21.7%) | 4 (40.0%) | 1 (12.5%) | 0 |
Body weight [kg] # | 84.0 ± 19.3 (59.9–126.0) | 99.6 ± 17.4 (75.0–126.0) 1,2 | 76.7 ± 9.8 (63.9–89.9) 2 | 64.7 ± 2.9 (59.9–67.0) |
BMI [kg/m2] # | 30.3 ± 7.5 (21.4–47.6) | 36.9 ± 6.8 (30.0–47.6) 1,2 | 27.0 ± 0.9 (25.7–28.6) 2 | 22.6 ± 1.4 (21.4–24.8) |
Total fat tissue mass [kg] # | 31.9 ± 14.0 (14.0–60.5) | 43.2 ± 11.7 (27.0–60.5) 1,2 | 21.7 ± 5.8 (14.0–34.6) | 21.2 ± 3.6 (17.1–23.8) |
Total fat tissue mass/body weight [%] # | 36.0 ± 8.7 (15.6–48.0) | 42.7 ± 4.6 (36.0–48.0) 1,2 | 28.7 ± 7.3 (15.6–40.9) | 32.7 ± 3.7 (28.5–35.7) |
Visceral fat indicator # | 8.7 ± 4.1 (3–17) | 11.0 ± 3.8 (6–17) 1,2 | 7.0 ± 3.5 (3–14) | 5.3 ± 1.1 (4–6) |
HOMA-IR | 2.6 ± 2.5 (0.6–11.5) | 3.9 ± 3.3 (0.6–11.4) | 1.5 ± 1.0 (0.7–3.0) | 1.9 ± 1.1 (0.7–3.5) |
Fasting serum glucose [mg/dL] # | 85.0 ± 10.7 (65.0–108.1) | 93.2 ± 8.7 (81.8–108.1) 1,2 | 77.2 ± 8.1 (65.0–88.3) | 81.4 ± 5.6 (74.0–89.0) |
HbA1c [%] # | 5.4 ± 0.4 (4.8–6.1) | 5.6 ± 0.3 (5.1–6.1) 1 | 5.1 ± 0.3 (4.8–5.4) | 5.3 ± 0.3 (5.0–5.7) |
Serum HDL cholesterol [mg/dL] # | 63.2 ± 11.9 (43.6–87.0) | 56.7 ± 9.5 (43.6–68.8) 2 | 63.1 ± 10.0 (53.0–79.0) 2 | 76.4 ± 9.1 (65.0–87.0) |
Serum LDL cholesterol [mg/dL] | 113.5 ± 31.3 (42.2–176.0) | 104.0 ± 32.2 (42.2–150.9) | 123.1 ± 19.1 (94.0–149.0) | 117.0 ± 44.7 (69.0–176.0) |
Serum triglycerides [mg/dL] | 111.2 ± 60.0 (38.0–252.5) | 130.8 ± 72,5 (38.0–252.5) | 87.3 ± 23.6 (55.0–122.0) | 110.2 ± 69.8 (49.0–190.0) |
eGFR (CKD-EPI) [mL/min/1.73 m2] | 82.6 ± 12.1 (65.2–115.1) | 100.5 ± 20.0 (72.5–144.3) | 92.8 ± 9.0 (79.7–105.4) | 85.0 ± 5.4 (80.0–92.9) |
Serum CRP [mg/L] # | 3.0 ± 4.2 (0.1–13.4) | 5.8 ± 5.2 (0.6–13.4) 1,2 | 1.0 ± 0.9 (0.1–2.4) | 0.7 ± 0.5 (0.1–1.3) |
All Subjects n = 23 | Obese n = 10 | Overweight n = 8 | Normal Weight n = 5 | Obese | ||
---|---|---|---|---|---|---|
Prediabetic n = 6 | Euglycemic n = 4 | |||||
CD90 | 97.6 ± 3.0% (91.0–100%) | 98.3 ± 3.0% (91.0–100%) | 96.5 ± 3.1% (92.2–100%) | 97.4 ± 2.8% (94.5–100%) | 97.5 ± 3.6% (91.0–100%) | 99.6 ± 0.7% (98.5–100%) |
CD105 | 95.7 ± 4.0% (84.1–100%) | 96.2 ± 4.8% (84.1–100%) | 96.7 ± 1.3% (94.0–98.3%) | 92.0 ± 4.3% (88.2–96.6%) | 95.6 ± 5.8% (84.1–99.5%) | 96.9 ± 3.3% (92.6–100%) |
CD146 | 17.3 ± 9.4% (7.3–38.8%) | 15.5 ± 10.7% (7.3–38.8%) | 26.0 ± 3.5% (23.5–28.4%) | 15.0 ± 2.3% (13.4–16.6%) | 12.5 ± 3.7% (8.8–16.2%) | 17.8 ± 14.3% (7.3–38.8%) |
All Subjects n = 23 | Obese n = 10 | Overweight n = 8 | Normal Weight n = 5 | Obese | ||
---|---|---|---|---|---|---|
Prediabetic n = 6 | Euglycemic n = 4 | |||||
miR-21 | 2.13 ± 1.85 (0.29–7.59) | 2.19 ± 2.35 (0.29–7.59) | 1.55 ± 0.72 (0.41–2.49) | 2.92 ± 2.00 (0.62–5.39) | 1.23 ± 0.73 (0.29–2.18) | 3.64 ± 3.32 (0.43–7.59) |
miR-122 | 0.18 ± 0.13 × 10−3 (0.01–0.42 × 10−3) | 0.19 ± 0.14 × 10−3 (0.01–0.42 × 10−3) | 0.20 ± 0.15 × 10−3 (0.01–0.37 × 10−3) | 0.12 ± 0.06 × 10−3 (0.05–0.21 × 10−3) | 0.19 ± 0.17 × 10−3 (0.01–0.42 × 10−3) | 0.19 ± 0.09 × 10−3 (0.07–0.28 × 10−3) |
miR-155 * | 6.29 ± 5.0 × 10−3 (1.11–20.12 × 10−3) | 3.69 ± 2.67 × 10−3 (1.11–9.07 × 10−3) 1,2 | 7.07 ± 4.42 × 10−3 (3.04–15.4 × 10−3) | 10.25 ± 7.05 × 10−3 (3.35–20.12 × 10−3) | 3.08 ± 1.43 × 10−3 (1.35–4.98 × 10−3) | 4.61 ± 4.01 × 10−3 (1.11–9.07 × 10−3) |
miR-192 | 0.63 ± 0.24 × 10−3 (0.27–1.12 × 10−3) | 0.63 ± 0.30 × 10−3 (0.29–1.12 × 10−3) | 0.60 ± 0.26 × 10−3 (0.27–0.96 × 10−3) | 0.65 ± 0.06 × 10−3 (0.55–0.71 × 10−3) | 0.59 ± 0.23 × 10−3 (0.29–0.86 × 10−3) | 0.71 ± 0.42 × 10−3 (0.29–1.12 × 10−3) |
Ad-MSC Expression of: | ||||
---|---|---|---|---|
miR-21 | miR-122 | miR-155 | miR-192 | |
Age | RS = −0.08 (r = −0.06) | RS = −0.16 (r = −0.15) | RS = −0.28 (r = −0.17) | RS = −0.14 (r = −0.13) |
Body weight | RS = −0.12 (r = −0.16) | RS = 0.10 (r = −0.01) | RS = −0.49, p = 0.02 (r = −0.56, p < 0.01) | RS = −0.18 (r = −0.16)) |
BMI | RS = −0.21 (r = −0.16) | RS = 0.08 (r = −0.01) | RS = −0.65, p < 0.01 (r = −0.64, p < 0.01) | RS = −0.19 (r = −0.20)) |
Total fat tissue mass | RS = −0.11 (r = −0.11) | RS = −0.10 (r = −0.04) | RS = −0.49, p = 0.02 (r = −0.52, p = 0.02) | RS = −0.28 (r = −0.24)) |
Total fat tissue mass/body weight | RS = −0.15 (r = −0.10) | RS = −0.12 (r = −0.16) | RS = −0.42, p = 0.06 (r = −0.52, p = 0.02) | RS = −0.22 (r = −0.35) |
Visceral fat indicator | RS = −0.09 (r = −0.12) | RS = −0.04 (r = −0.07) | RS = −0.55, p = 0.01 (r = −0.49, p = 0.03) | RS = −0.36 (r = −0.27) |
HOMA-IR | RS = −0.18 (r = −0.04) | RS = 0.19 (r = 0.26) | RS = −0.32 (r = −0.23) | RS = −0.20 (r = −0.09) |
Fasting serum glucose | RS = −0.08 (r = 0.04) | RS = 0.16 (r = 0.27) | RS = −0.21 (r = −0.18) | RS = 0.12 (r = 0.27) |
HbA1c | RS = −0.03 (r = 0.04) | RS = 0.18 (r = 0.20) | RS = −0.12 (r = −0.09) | RS = 0.05 (r = 0.13) |
Serum HDL cholesterol | RS = −0.11 (r = −0.09) | RS = −0.21 (r = −0.06) | RS = 0.39, p = 0.06 (r = 0.51, p = 0.02) | RS = −0.11 (r = −0.10) |
Serum LDL cholesterol | RS = 0.16 (r = 0.30) | RS = 0.02 (r = 0.17) | RS = 0.08 (r = 0.09) | RS = −0.01 (r = 0.05) |
Serum triglycerides | RS = 0.24 (r = 0.29) | RS = 0.34 (r = 0.35) | RS = −0.06 (r = −0.02) | RS = 0.15 (r = 0.18) |
eGFR (CKD-EPI) | RS = −0.31 (r = −0.23) | RS = −0.11 (r = −0.12) | RS = −0.22 (r = −0.22) | RS = −0.06 (r = −0.15) |
Serum CRP | RS = −0.23 (r = −0.29) | RS = −0.02 (r = −0.14) | RS = −0.61, p < 0.01 (r = −0.63, p < 0.01) | RS = −0.11 (r = −0.07) |
All Subjects n = 23 | Obese n = 10 | Overweight n = 8 | Normal Weight n = 5 | Obese | ||
---|---|---|---|---|---|---|
Prediabetic n = 6 | Euglycemic n = 4 | |||||
VEGF [ng/mL] | 2.88 ± 0.89 (1.24–4.12) | 2.55 ± 0.90 (1.24–3.93) | 3.06 ± 1.02 (1.85–4.12) | 3.24 ± 0.49 (2.75–4.07) | 2.76 ± 0.61 (2.12–3.78) | 2.22 ± 1.26 (1.24–3.93) |
IGF-1 * [ng/mL] | 1.60 ± 0.48 (0.90–2.43) | 1.75 ± 0.35 1 (1.19–2.11) | 1.67 ± 0.60 (0.90–2.43) | 1.18 ± 0.28 (0.90–1.55) | 1.72 ± 0.35 (1.20–2.11) | 1.80 ± 0.41 (1.19–2.07) |
IL-6 [ng/mL] | 2.09 ± 0.73 (0.34–4.21) | 1.96 ± 0.19 (1.52–2.15) | 1.95 ± 0.99 (0.34–4.21) | 2.60 ± 0.86 (1.92–3.66) | 1.93 ± 0.23 (1.52–2.15) | 1.99 ± 0.10 (1.89–2.11) |
IL-10 [pg/mL] | 1.63 ± 0.64 (0.64–3.28) | 1.56 ± 0.55 (0.88–2.52) | 1.57 ± 0.58 (0.67–2.53) | 1.86 ± 0.94 (0.64–3.28) | 1.73 ± 0.65 (0.88–2.52) | 1.32 ± 0.27 (1.05–1.66) |
Ad-MSC Secretion of: | ||||
---|---|---|---|---|
VEGF | IGF-1 | IL-6 | IL-10 | |
Age | RS = −0.18 (r = −0.13) | RS = 0.15 (r = 0.18) | RS = 0.51, p = 0.01 (r = 0.41, p = 0.06) | RS = −0.22 (r = −0.24) |
Body weight | RS = −0.35 (r = −0.36) | RS = 0.43, p = 0.04 (r = 0.41, p = 0.06) | RS = −0.06 (r = −0.14) | RS = 0.01 (r = 0.09) |
BMI | RS = −0.29 (r = −0.30) | RS = 0.48, p = 0.02 (r = 0.46, p = 0.03) | RS = −0.06 (r = −0.15) | RS = −0.16 (r = −0.04) |
Total fat tissue mass | RS = −0.38 (r = −0.37) | RS = 0.07 (r = 0.42, p = 0.06) | RS = 0.07 (r = −0.28) | RS = 0.12 (r = 0.17) |
Total fat tissue mass/body weight | RS = −0.38 (r = −0.42, p = 0.07) | RS = −0.02 (r = 0.34) | RS = −0.09 (r = −0.31) | RS = 0.11 (r = 0/0.05) |
Visceral fat indicator | RS = −0.30 (r = −0.27) | RS = 0.50, p = 0.02 (r = 0.55, p = 0.01) | RS = 0.18 (r = 0.03) | RS = −0.19 (r = −0.03) |
HOMA-IR | RS = −0.24 (r = −0.26) | RS = 0.18 (r = 0.26) | RS = 0.11 (r = −0.08) | RS = 0.15 (r = 0.13) |
Fasting serum glucose | RS = −0.52, p = 0.01 (r = −0.45, p = 0.04) | RS = 0.21 (r = 0.45, p = 0.04) | RS = 0.02 (r = −0.16) | RS = 0.11 (r = 0.13) |
HbA1c | RS = −0.25 (r = −0.21) | RS = 0.11 (r = 0.20) | RS = 0.21 (r = 0.11) | RS = 0.09 (r = 0.01) |
Serum HDL cholesterol | RS = −0.06 (r = 0.06) | RS = −0.33 (r = −0.38, p = 0.08) | RS = 0.23 (r = 0.33) | RS = 0.25 (r = 0.29) |
Serum LDL cholesterol | RS = −0.05 (r = 0.01) | RS = −0.35 (r = −0.29) | RS = 0.19 (r = 0.33) | RS = −0.09 (r = −0.22) |
Serum triglycerides | RS = −0.25 (r = −0.25) | RS = 0.11 (r = 0.14) | RS = 0.02 (r = −0.02) | RS = 0.20 (r = 0.05) |
eGFR (CKD-EPI) | RS = −0.02 (r = 0.06) | RS = 0.16 (r = 0.11) | RS = −0.55, p < 0.01 (r = −0.45, p = 0.03) | RS = −0.04 (r = −0.06) |
Serum CRP | RS = 0.06 (r = 0.03) | RS = 0.43, p = 0.04 (r = 0.61, p < 0.01) | RS = 0.08 (r = −0.17) | RS = −0.04 (r = −0.28) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wystrychowski, G.; Simka-Lampa, K.; Witkowska, A.; Sobecko, E.; Skubis-Sikora, A.; Sikora, B.; Wojtyna, E.; Golda, A.; Gwizdek, K.; Wróbel, M.; et al. Selected microRNA Expression and Protein Regulator Secretion by Adipose Tissue-Derived Mesenchymal Stem Cells and Metabolic Syndrome. Int. J. Mol. Sci. 2024, 25, 6644. https://doi.org/10.3390/ijms25126644
Wystrychowski G, Simka-Lampa K, Witkowska A, Sobecko E, Skubis-Sikora A, Sikora B, Wojtyna E, Golda A, Gwizdek K, Wróbel M, et al. Selected microRNA Expression and Protein Regulator Secretion by Adipose Tissue-Derived Mesenchymal Stem Cells and Metabolic Syndrome. International Journal of Molecular Sciences. 2024; 25(12):6644. https://doi.org/10.3390/ijms25126644
Chicago/Turabian StyleWystrychowski, Grzegorz, Klaudia Simka-Lampa, Agnieszka Witkowska, Ewelina Sobecko, Aleksandra Skubis-Sikora, Bartosz Sikora, Ewa Wojtyna, Agnieszka Golda, Katarzyna Gwizdek, Marta Wróbel, and et al. 2024. "Selected microRNA Expression and Protein Regulator Secretion by Adipose Tissue-Derived Mesenchymal Stem Cells and Metabolic Syndrome" International Journal of Molecular Sciences 25, no. 12: 6644. https://doi.org/10.3390/ijms25126644
APA StyleWystrychowski, G., Simka-Lampa, K., Witkowska, A., Sobecko, E., Skubis-Sikora, A., Sikora, B., Wojtyna, E., Golda, A., Gwizdek, K., Wróbel, M., Sędek, Ł., Górczyńska-Kosiorz, S., Szweda-Gandor, N., Trautsolt, W., Francuz, T., Kruszniewska-Rajs, C., & Gola, J. (2024). Selected microRNA Expression and Protein Regulator Secretion by Adipose Tissue-Derived Mesenchymal Stem Cells and Metabolic Syndrome. International Journal of Molecular Sciences, 25(12), 6644. https://doi.org/10.3390/ijms25126644