Associations between Microglia and Astrocytic Proteins and Tau Biomarkers across the Continuum of Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics and Comparison of CSF Concentrations of Tested Proteins Related to Inflammation
2.2. Association between Tested Pro- and Anti-Inflammatory Molecules and Classical Biomarkers
2.3. Diagnostic Usefulness of Candidate Biomarkers
3. Discussion
4. Materials and Methods
4.1. Material
4.2. Biochemical Measurements
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s Disease. Lancet 2021, 397, 1577. [Google Scholar] [CrossRef]
- El Kadmiri, N.; Said, N.; Slassi, I.; El Moutawakil, B.; Nadifi, S. Biomarkers for Alzheimer Disease: Classical and Novel Candidates’ Review. Neuroscience 2018, 370, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau Biomarkers in Alzheimer’s Disease: Towards Implementation in Clinical Practice and Trials. Lancet Neurol. 2022, 21, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.M.; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of Neurodegenerative Diseases. Cell 2023, 186, 693–714. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s Disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef] [PubMed]
- Kanashiro, A.; Hiroki, C.H.; da Fonseca, D.M.; Birbrair, A.; Ferreira, R.G.; Bassi, G.S.; Fonseca, M.D.; Kusuda, R.; Cebinelli, G.C.M.; da Silva, K.P.; et al. The Role of Neutrophils in Neuro-Immune Modulation. Pharmacol. Res. 2020, 151, 104580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of Neuroinflammation in Neurodegeneration Development. Signal Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef] [PubMed]
- Dekens, D.W.; Eisel, U.L.M.; Gouweleeuw, L.; Schoemaker, R.G.; De Deyn, P.P.; Naudé, P.J.W. Lipocalin 2 as a Link between Ageing, Risk Factor Conditions and Age-Related Brain Diseases. Ageing Res. Rev. 2021, 70, 101414. [Google Scholar] [CrossRef]
- Garwood, C.J.; Pooler, A.M.; Atherton, J.; Hanger, D.P.; Noble, W. Astrocytes Are Important Mediators of Aβ-Induced Neurotoxicity and Tau Phosphorylation in Primary Culture. Cell Death Dis. 2011, 2, e167. [Google Scholar] [CrossRef]
- Carrero, I.; Gonzalo, M.R.; Martin, B.; Sanz-Anquela, J.M.; Arévalo-Serrano, J.; Gonzalo-Ruiz, A. Oligomers of β-Amyloid Protein (Aβ1-42) Induce the Activation of Cyclooxygenase-2 in Astrocytes via an Interaction with Interleukin-1β, Tumour Necrosis Factor-α, and a Nuclear Factor κ-B Mechanism in the Rat Brain. Exp. Neurol. 2012, 236, 215–227. [Google Scholar] [CrossRef]
- Venegas, C.; Kumar, S.; Franklin, B.S.; Dierkes, T.; Brinkschulte, R.; Tejera, D.; Vieira-Saecker, A.; Schwartz, S.; Santarelli, F.; Kummer, M.P.; et al. Microglia-Derived ASC Specks Cross-Seed Amyloid-β in Alzheimer’s Disease. Nature 2017, 552, 355–361. [Google Scholar] [CrossRef]
- Frank-Cannon, T.C.; Alto, L.T.; McAlpine, F.E.; Tansey, M.G. Does Neuroinflammation Fan the Flame in Neurodegenerative Diseases? Mol. Neurodegener. 2009, 4, 47. [Google Scholar] [CrossRef]
- Leng, F.; Edison, P. Neuroinflammation and Microglial Activation in Alzheimer Disease: Where Do We Go from Here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef]
- Barron, M.; Gartlon, J.; Dawson, L.A.; Atkinson, P.J.; Pardon, M.C. A State of Delirium: Deciphering the Effect of Inflammation on Tau Pathology in Alzheimer’s Disease. Exp. Gerontol. 2017, 94, 103–107. [Google Scholar] [CrossRef]
- Mander, B.A.; Dave, A.; Lui, K.K.; Sprecher, K.E.; Berisha, D.; Chappel-Farley, M.G.; Chen, I.Y.; Riedner, B.A.; Heston, M.; Suridjan, I.; et al. Inflammation, Tau Pathology, and Synaptic Integrity Associated with Sleep Spindles and Memory Prior to β-Amyloid Positivity. Sleep 2022, 45, zsac135. [Google Scholar] [CrossRef]
- Goetz, D.H.; Holmes, M.A.; Borregaard, N.; Bluhm, M.E.; Raymond, K.N.; Strong, R.K. The Neutrophil Lipocalin NGAL Is a Bacteriostatic Agent That Interferes with Siderophore-Mediated Iron Acquisition. Mol. Cell 2002, 10, 1033–1043. [Google Scholar] [CrossRef]
- Romejko, K.; Markowska, M.; Niemczyk, S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int. J. Mol. Sci. 2023, 24, 10470. [Google Scholar] [CrossRef]
- Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A. Genomic Analysis of Reactive Astrogliosis. J. Neurosci. 2012, 32, 6391. [Google Scholar] [CrossRef]
- Tong, J.; Huang, C.; Bi, F.; Wu, Q.; Huang, B.; Liu, X.; Li, F.; Zhou, H.; Xia, X.G. Expression of ALS-Linked TDP-43 Mutant in Astrocytes Causes Non-Cell-Autonomous Motor Neuron Death in Rats. EMBO J. 2013, 32, 1917. [Google Scholar] [CrossRef]
- Law, I.K.M.; Xu, A.; Lam, K.S.L.; Berger, T.; Mak, T.W.; Vanhoutte, P.M.; Liu, J.T.C.; Sweeney, G.; Zhou, M.; Yang, B.; et al. Lipocalin-2 Deficiency Attenuates Insulin Resistance Associated With Aging and Obesity. Diabetes 2010, 59, 872. [Google Scholar] [CrossRef]
- Behrens, V.; Voelz, C.; Müller, N.; Zhao, W.; Gasterich, N.; Clarner, T.; Beyer, C.; Zendedel, A. Lipocalin 2 as a Putative Modulator of Local Inflammatory Processes in the Spinal Cord and Component of Organ Cross Talk After Spinal Cord Injury. Mol. Neurobiol. 2021, 58, 5907–5919. [Google Scholar] [CrossRef]
- Dekens, D.W.; Naudé, P.J.W.; Engelborghs, S.; Vermeiren, Y.; Van Dam, D.; Oude Voshaar, R.C.; Eisel, U.L.M.; De Deyn, P.P. Neutrophil Gelatinase-Associated Lipocalin and Its Receptors in Alzheimer’s Disease (AD) Brain Regions: Differential Findings in AD with and without Depression. J. Alzheimer’s Dis. 2017, 55, 763–776. [Google Scholar] [CrossRef]
- Llorens, F.; Hermann, P.; Villar-Piqué, A.; Diaz-Lucena, D.; Nägga, K.; Hansson, O.; Santana, I.; Schmitz, M.; Schmidt, C.; Varges, D.; et al. Cerebrospinal Fluid Lipocalin 2 as a Novel Biomarker for the Differential Diagnosis of Vascular Dementia. Nat. Commun. 2020, 11, 619. [Google Scholar] [CrossRef]
- Li, H.; Gang, Z.; Yuling, H.; Luokun, X.; Jie, X.; Hao, L.; Li, W.; Chunsong, H.; Junyan, L.; Mingshen, J.; et al. Different Neurotropic Pathogens Elicit Neurotoxic CCR9- or Neurosupportive CXCR3-Expressing Microglia. J. Immunol. 2006, 177, 3644–3656. [Google Scholar] [CrossRef]
- Cole, K.E.; Strick, C.A.; Paradis, T.J.; Ogborne, K.T.; Loetscher, M.; Gladue, R.P.; Lin, W.; Boyd, J.G.; Moser, B.; Wood, D.E.; et al. Interferon–Inducible T Cell Alpha Chemoattractant (I-TAC): A Novel Non-ELR CXC Chemokine with Potent Activity on Activated T Cells through Selective High Affinity Binding to CXCR3. J. Exp. Med. 1998, 187, 2009. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Lomash, V.; Rao, P.V.L. Expression Profile of Japanese Encephalitis Virus Induced Neuroinflammation and Its Implication in Disease Severity. J. Clin. Virol. 2010, 49, 4–10. [Google Scholar] [CrossRef]
- Lepennetier, G.; Hracsko, Z.; Unger, M.; Van Griensven, M.; Grummel, V.; Krumbholz, M.; Berthele, A.; Hemmer, B.; Kowarik, M.C. Cytokine and Immune Cell Profiling in the Cerebrospinal Fluid of Patients with Neuro-Inflammatory Diseases. J. Neuroinflamm. 2019, 16, 219. [Google Scholar] [CrossRef]
- Fu, A.; Qiao, F.; Feng, H.; Luo, Q. Inhibition of TREM-1 Ameliorates Lipopolysaccharide-Induced Depressive-like Behaviors by Alleviating Neuroinflammation in the PFC via PI3K/Akt Signaling Pathway. Behav. Brain Res. 2023, 449, 114464. [Google Scholar] [CrossRef]
- de Oliveira Matos, A.; dos Santos Dantas, P.H.; Figueira Marques Silva-Sales, M.; Sales-Campos, H. The Role of the Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) in Non-Bacterial Infections. Crit. Rev. Microbiol. 2020, 46, 237–252. [Google Scholar] [CrossRef]
- Zhang, C.; Kan, X.; Zhang, B.; Ni, H.; Shao, J. The Role of Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) in Central Nervous System Diseases. Molecular Brain 2022, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Bekris, L.M.; Khrestian, M.; Dyne, E.; Shao, Y.; Pillai, J.; Rao, S.; Bemiller, S.M.; Lamb, B.; Fernandez, H.H.; Leverenz, J.B. Soluble TREM2 and Biomarkers of Central and Peripheral Inflammation in Neurodegenerative Disease. J. Neuroimmunol. 2018, 319, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Kulczyńska-Przybik, A.; Dulewicz, M.; Doroszkiewicz, J.; Borawska, R.; Słowik, A.; Zetterberg, H.; Hanrieder, J.; Blennow, K.; Mroczko, B. The Relationships between Cerebrospinal Fluid Glial (CXCL12, CX3CL, YKL-40) and Synaptic Biomarkers (Ng, NPTXR) in Early Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 13166. [Google Scholar] [CrossRef] [PubMed]
- Doroszkiewicz, J.; Kulczyńska-Przybik, A.; Dulewicz, M.; Borawska, R.; Zajkowska, M.; Słowik, A.; Mroczko, B. Potential Utility of Cerebrospinal Fluid Glycoprotein Nonmetastatic Melanoma Protein B as a Neuroinflammatory Diagnostic Biomarker in Mild Cognitive Impairment and Alzheimer’s Disease. J. Clin. Med. 2023, 12, 4689. [Google Scholar] [CrossRef] [PubMed]
- Raivich, G.; Bohatschek, M.; Kloss, C.U.A.; Werner, A.; Jones, L.L.; Kreutzberg, G.W. Neuroglial Activation Repertoire in the Injured Brain: Graded Response, Molecular Mechanisms and Cues to Physiological Function. Brain Res. Rev. 1999, 30, 77–105. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, H.W.; Suk, K. Increased Plasma Levels of Lipocalin 2 in Mild Cognitive Impairment. J. Neurol. Sci. 2011, 305, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, T.; Jiang, Z.; Gai, C.; Yu, S.; Xin, D.; Li, T.; Liu, D.; Wang, Z. The MiR-9-5p/CXCL11 Pathway Is a Key Target of Hydrogen Sulfide-Mediated Inhibition of Neuroinflammation in Hypoxic Ischemic Brain Injury. Neural Regen. Res. 2024, 19, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- das Neves, S.P.; Taipa, R.; Marques, F.; Soares Costa, P.; Monárrez-Espino, J.; Palha, J.A.; Kivipelto, M. Association Between Iron-Related Protein Lipocalin 2 and Cognitive Impairment in Cerebrospinal Fluid and Serum. Front. Aging Neurosci. 2021, 13, 663837. [Google Scholar] [CrossRef] [PubMed]
- Naudé, P.J.W.; Nyakas, C.; Eiden, L.E.; Ait-Ali, D.; van der Heide, R.; Engelborghs, S.; Luiten, P.G.M.; De Deyn, P.P.; den Boer, J.A.; Eisel, U.L.M. Lipocalin 2: Novel Component of Proinflammatory Signaling in Alzheimer’s Disease. FASEB J. 2012, 26, 2811. [Google Scholar] [CrossRef]
- Rosén, C.; Mattsson, N.; Johansson, P.M.; Andreasson, U.; Wallin, A.; Hansson, O.; Johansson, J.O.; Lamont, J.; Svensson, J.; Blennow, K.; et al. Discriminatory Analysis of Biochip-Derived Protein Patterns in CSF and Plasma in Neurodegenerative Diseases. Front. Aging Neurosci. 2011, 3, 8473. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Guo, L.; Wu, K.; Wang, L.; Rao, L.; Liu, X.; Kang, C.; Jiang, B.; Li, Q.; et al. Association between Lipocalin-2 and Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis of Population-Based Evidence. Ageing Res. Rev. 2023, 89, 101984. [Google Scholar] [CrossRef] [PubMed]
- Bi, F.; Huang, C.; Tong, J.; Qiu, G.; Huang, B.; Wu, Q.; Li, F.; Xu, Z.; Bowser, R.; Xia, X.G.; et al. Reactive Astrocytes Secrete Lcn2 to Promote Neuron Death. Proc. Natl. Acad. Sci. USA 2013, 110, 4069–4074. [Google Scholar] [CrossRef] [PubMed]
- Marques, F.; Mesquita, S.D.; Sousa, J.C.; Coppola, G.; Gao, F.; Geschwind, D.H.; Columba-Cabezas, S.; Aloisi, F.; Degn, M.; Cerqueira, J.J.; et al. Lipocalin 2 Is Present in the EAE Brain and Is Modulated by Natalizumab. Front. Cell Neurosci. 2012, 6, 29637. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.C.; Dá Mesquita, S.; Sousa, J.C.; Correia-Neves, M.; Sousa, N.; Palha, J.A.; Marques, F. From the Periphery to the Brain: Lipocalin-2, a Friend or Foe? Prog. Neurobiol. 2015, 131, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.; Kim, J.-H.; Lee, S.; Kim, J.-H.; Seo, J.-W.; Jin, M.; Lee, M.-G.; Jang, I.-S.; Lee, W.-H.; Suk, K. Phenotypic Polarization of Activated Astrocytes: The Critical Role of Lipocalin-2 in the Classical Inflammatory Activation of Astrocytes. J. Immunol. 2013, 191, 5204–5219. [Google Scholar] [CrossRef]
- Mesquita, S.D.; Ferreira, A.C.; Falcao, A.M.; Sousa, J.C.; Oliveira, T.G.; Correia-Neves, M.; Sousa, N.; Marques, F.; Palha, J.A. Lipocalin 2 Modulates the Cellular Response to Amyloid Beta. Cell Death Differ. 2014, 21, 1588–1599. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, L.; Johnsen, A.H.; Sengeløv, H.; Borregaard, N. Isolation and Primary Structure of NGAL, a Novel Protein Associated with Human Neutrophil Gelatinase. J. Biol. Chem. 1993, 268, 10425–10432. [Google Scholar] [CrossRef] [PubMed]
- Marques, F.; Rodrigues, A.J.; Sousa, J.C.; Coppola, G.; Geschwind, D.H.; Sousa, N.; Correia-Neves, M.; Palha, J.A. Lipocalin 2 Is a Choroid Plexus Acute-Phase Protein. J. Cereb. Blood Flow Metab. 2008, 28, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Naudé, P.J.W.; Mommersteeg, P.M.C.; Zijlstra, W.P.; Gouweleeuw, L.; Kupper, N.; Eisel, U.L.M.; Kop, W.J.; Schoemaker, R.G. Neutrophil Gelatinase-Associated Lipocalin and Depression in Patients with Chronic Heart Failure. Brain Behav. Immun. 2014, 38, 59–65. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Pinto, V.; Dá Mesquita, S.; Novais, A.; Sousa, J.C.; Correia-Neves, M.; Sousa, N.; Palha, J.A.; Marques, F. Lipocalin-2 Is Involved in Emotional Behaviors and Cognitive Function. Front. Cell Neurosci. 2013, 7, 122. [Google Scholar] [CrossRef]
- Flo, T.H.; Smith, K.D.; Sato, S.; Rodriguez, D.J.; Holmes, M.A.; Strong, R.K.; Akira, S.; Aderem, A. Lipocalin 2 Mediates an Innate Immune Response to Bacterial Infection by Sequestrating Iron. Nature 2004, 432, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Naudé, P.J.W.; Ramakers, I.H.G.B.; van der Flier, W.M.; Jiskoot, L.C.; Reesink, F.E.; Claassen, J.A.H.R.; Koek, H.L.; Eisel, U.L.M.; De Deyn, P.P. Serum and Cerebrospinal Fluid Neutrophil Gelatinase-Associated Lipocalin (NGAL) Levels as Biomarkers for the Conversion from Mild Cognitive Impairment to Alzheimer’s Disease Dementia. Neurobiol. Aging 2021, 107, 1–10. [Google Scholar] [CrossRef]
- Balusu, S.; Brkic, M.; Libert, C.; Vandenbroucke, R.E. The Choroid Plexus-Cerebrospinal Fluid Interface in Alzheimer’s Disease: More than Just a Barrier. Neural Regen. Res. 2016, 11, 534. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Calvet, M.; Caballero, M.Á.A.; Kleinberger, G.; Bateman, R.J.; Fagan, A.M.; Morris, J.C.; Levin, J.; Danek, A.; Ewers, M.; Haass, C. Early Changes in CSF STREM2 in Dominantly Inherited Alzheimer’s Disease Occur after Amyloid Deposition and Neuronal Injury. Sci. Transl. Med. 2016, 8, 369ra178. [Google Scholar] [CrossRef] [PubMed]
- Bemiller, S.M.; McCray, T.J.; Allan, K.; Formica, S.V.; Xu, G.; Wilson, G.; Kokiko-Cochran, O.N.; Crish, S.D.; Lasagna-Reeves, C.A.; Ransohoff, R.M.; et al. TREM2 Deficiency Exacerbates Tau Pathology through Dysregulated Kinase Signaling in a Mouse Model of Tauopathy. Mol. Neurodegener. 2017, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Piccio, L.; Deming, Y.; Del-Águila, J.L.; Ghezzi, L.; Holtzman, D.M.; Fagan, A.M.; Fenoglio, C.; Galimberti, D.; Borroni, B.; Cruchaga, C. Cerebrospinal Fluid Soluble TREM2 Is Higher in Alzheimer Disease and Associated with Mutation Status. Acta Neuropathol. 2016, 131, 925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, L.; Yang, J.; Meng, L.; Chen, J.; Zhou, L.; Wang, J.; Xiong, M.; Zhang, Z. Soluble TREM2 Ameliorates Tau Phosphorylation and Cognitive Deficits through Activating Transgelin-2 in Alzheimer’s Disease. Nat. Commun. 2023, 14, 6670. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 263. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 270. [Google Scholar] [CrossRef]
Tested Variables | Median (Interquartile Range) | p (Kruskal–Wallis Test) | ||
---|---|---|---|---|
AD | MCI | Controls | ||
Group size (F/M) | 42 (33/9) | 18 (11/7) | 20 (12/8) | |
Age | 75.5 (64–80) | 75.5 (70.3–78) | 68 (63.3–76.8) | |
MMSE | 22 (19–24) | 27.5 (26–29) | 28.1 (27–30) | |
Aβ1-42 (pg/mL) | 502.7 (381–666) | 802 (475–1045) | 895 (792–1000) | <0.001 |
Aβ1-42/1-40 ratio | 0.033 (0.029–0.04) | 0.045 (0.0365–0.058) | 0.066 (0.055–0.076) | <0.001 |
tau (pg/mL) | 669 (576–897) | 389 (327–495) | 223 (192–273) | <0.001 |
pTau181 (pg/mL) | 83.2 (72.7–109) | 57.2 (46.9–68.41) | 37.5 (33.4–42.2) | <0.001 |
Tested Variables | Median (Interquartile Range) | p (Kruskal–Wallis Test) | p (Dwass–Steele–Critchlow–Flinger Test) | ||||
---|---|---|---|---|---|---|---|
AD | MCI | Controls | AD vs. CTRL | AD vs. MCI | MCI vs. CTRL | ||
NGAL (pg/mL) | 0.907 (0.739–1.13) | 0.945 (0.841–1.01) | 0.629 (0.538–0.822) | <0.001 | <0.01 | 0.908 | <0.001 |
CXCL11 (pg/mL) | 154 (124–163) | 166 (160–168) | 111 (107–120) | <0.001 | <0.001 | 0.002 | <0.001 |
sTREM1 (pg/mL) | 66 (49.5–85.2) | 50 (45.2–53.3) | 67 (63.2–71.4) | 0.001 | 0.989 | 0.008 | <0.001 |
sTREM2 (pg/mL) | 3805 (2968–4732) | 3376 (3081–4279) | 2835 (2124–3516) | 0.037 | 0.037 | 0.699 | 0.179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doroszkiewicz, J.; Kulczyńska-Przybik, A.; Dulewicz, M.; Mroczko, J.; Borawska, R.; Słowik, A.; Zetterberg, H.; Hanrieder, J.; Blennow, K.; Mroczko, B. Associations between Microglia and Astrocytic Proteins and Tau Biomarkers across the Continuum of Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 7543. https://doi.org/10.3390/ijms25147543
Doroszkiewicz J, Kulczyńska-Przybik A, Dulewicz M, Mroczko J, Borawska R, Słowik A, Zetterberg H, Hanrieder J, Blennow K, Mroczko B. Associations between Microglia and Astrocytic Proteins and Tau Biomarkers across the Continuum of Alzheimer’s Disease. International Journal of Molecular Sciences. 2024; 25(14):7543. https://doi.org/10.3390/ijms25147543
Chicago/Turabian StyleDoroszkiewicz, Julia, Agnieszka Kulczyńska-Przybik, Maciej Dulewicz, Jan Mroczko, Renata Borawska, Agnieszka Słowik, Henrik Zetterberg, Jörg Hanrieder, Kaj Blennow, and Barbara Mroczko. 2024. "Associations between Microglia and Astrocytic Proteins and Tau Biomarkers across the Continuum of Alzheimer’s Disease" International Journal of Molecular Sciences 25, no. 14: 7543. https://doi.org/10.3390/ijms25147543
APA StyleDoroszkiewicz, J., Kulczyńska-Przybik, A., Dulewicz, M., Mroczko, J., Borawska, R., Słowik, A., Zetterberg, H., Hanrieder, J., Blennow, K., & Mroczko, B. (2024). Associations between Microglia and Astrocytic Proteins and Tau Biomarkers across the Continuum of Alzheimer’s Disease. International Journal of Molecular Sciences, 25(14), 7543. https://doi.org/10.3390/ijms25147543