Entamoeba histolytica: EhADH, an Alix Protein, Participates in Several Virulence Events through Its Different Domains
Abstract
:1. Introduction
2. Results
2.1. EhADH Interacts with Proteins Involved in Vesicular Trafficking and Endocytosis
Accession Number | Protein Name | Functions | References |
---|---|---|---|
EHI_181220 † | EhADH * | Adhesion | [7,14] |
EHI_181230 | EhCP112 * | Substrate degradation | [7,25] |
EHI_110750 † | Dipeptidyl peptidase III | Substrate degradation | [22] |
EHI_178530 † | EhVps23 * | Vacuolar transport (ESCRT-I) | [17] |
EHI_045320 | EhVps36 * | Vacuolar transport (ESCRT-II) | [26] |
EHI_131120 † | EhVps22 *, ELL complex EAP30 subunit | Vacuolar transport (ESCRT-II) | [26] |
EHI_169820 † | EhVps32 * | Vacuolar transport (ESCRT-III) | |
EHI_194400 † | EhVps2 * | Vacuolar transport (ESCRT-III) | |
EHI_118900 † | EhVps4 * | ATP-binding and vacuolar transport (ESCRT-accessory protein) | [18] |
EHI_080220 † | EhNPC1 * | Cholesterol trafficking | [20] |
EHI_008780 † | Actin * | Cytoskeleton | [27,28,29] |
EHI_164440 † | Actinin-like protein | Cytoskeleton | [30,31] |
EHI_108610 † | Rab * family GTPase | Enzyme (signal transduction, vesicular trafficking, etc.) | [32,33,34,35] |
EHI_167300 † | EhGrainin 1 | Calcium ion binding | [23,24,36] |
EHI_111720 † | EhGrainin 2 | Calcium ion binding | [23,24,36] |
EHI_197510 † | EF-hand calcium-binding domain containing protein | Calcium ion binding | [36] |
EHI_117910 | Zinc-finger protein | Metal ion binding | [30,31] |
2.2. Generation of Trophozoites Overexpressing EhADH Domains
2.3. The Adh Domain Influences Adhesion and Phagocytosis by Trophozoites
2.4. The Bro1 Domain Enhances the Cytopathic and Cytotoxic Effect Produced by Trophozoites
2.5. Bro1 and Adh Domains In Vitro Impair the Epithelial Barrier Functions
2.6. The Bro1 Domain Injures the Mice Colonic Epithelium
2.7. Trophozoites Overexpressing the Adh Domain Produced Larger Liver Abscesses
2.8. The Bro1, Linker and Adh Recombinant Domains Interact with Virulence-Related and Cytoskeleton Proteins
3. Discussion
4. Materials and Methods
4.1. Chemical and Reagents
4.2. Generation of Secondary and Tertiary Structure of EhADH and Its Bro1, Linker and Adh Domains
4.3. Molecular Dynamics Simulations (MDS)
4.4. Production of α-Bro1, α-Linker and α-Adh Antibodies
4.5. Trophozoites and Epithelial Cell Cultures
4.6. Cloning of the EhADH Domains
4.7. Generation of TrophozBro11–400, TrophozLinker246–446 and TrophozAdh444–687 Parasites by Transfection
4.8. Expression and Purification of GST-EhADH, His-Bro1, GST-Linker and GST-Adh Recombinant Proteins
4.9. Western Blot Experiments
4.10. Pull-Down and Mass Spectrometry Analyses
4.11. Immunofluorescence Assays
4.12. In Vitro Virulence of E. histolytica
4.13. Measurement of Transepithelial Electrical Resistance (TEER)
4.14. Paracellular Flux Assays
4.15. Permeability Experiments In Vivo
4.16. ALA Formation
4.17. Statistical Analysis
4.18. Ethics Statement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morán, P.; Serrano-Vázquez, A.; Rojas-Velázquez, L.; González, E.; Pérez-Juárez, H.; Hernández, E.G.; Padilla, M.d.L.A.; Zaragoza, M.E.; Portillo-Bobadilla, T.; Ramiro, M.; et al. Amoebiasis: Advances in Diagnosis, Treatment, Immunology Features and the Interaction with the Intestinal Ecosystem. Int. J. Mol. Sci. 2023, 24, 11755. [Google Scholar] [CrossRef] [PubMed]
- Shirley, D.-A.T.; Farr, L.; Watanabe, K.; Moonah, S. A review of the global burden, new diagnostics, and current therapeutics for amebiasis. Open Forum Infect. Dis. 2018, 5, ofy161. [Google Scholar] [CrossRef] [PubMed]
- Kantor, M.; Abrantes, A.; Estevez, A.; Schiller, A.; Torrent, J.; Gascon, J.; Hernandez, R.; Ochner, C. Entamoeba Histolytica: Updates in Clinical Manifestation, Pathogenesis, and Vaccine Development. Can. J. Gastroenterol. Hepatol. 2018, 2018, 4601420. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, R.N.; Kumar, R.; Anand, U. Amebic liver abscess: Clinico-radiological findings and interventional management. World J. Radiol. 2022, 14, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Ralston, K.S.; Petri, W.A. Tissue destruction and invasion by Entamoeba histolytica. Trends Parasitol. 2011, 27, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Querol, E.; Rosales, C. Immune response to the enteric parasite Entamoeba histolytica. Physiology 2020, 35, 244–260. [Google Scholar] [CrossRef]
- García-Rivera, G.; Rodríguez, M.A.; Ocádiz, R.; Martínez-López, M.C.; Arroyo, R.; González-Robles, A.; Orozco, E. Entamoeba histolytica: A novel cysteine protease and an adhesin form the 112 kDa surface protein. Mol. Microbiol. 1999, 33, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Betanzos, A.; Javier-Reyna, R.; García-Rivera, G.; Bañuelos, C.; González-Mariscal, L.; Schnoor, M.; Orozco, E. The EhCPADH112 Complex of Entamoeba histolytica Interacts with Tight Junction Proteins Occludin and Claudin-1 to Produce Epithelial Damage. PLoS ONE 2013, 8, e65100. [Google Scholar] [CrossRef]
- Cuellar, P.; Hernández-Nava, E.; García-Rivera, G.; Chávez-Munguía, B.; Schnoor, M.; Betanzos, A.; Orozco, E. Entamoeba histolytica EhCP112 dislocates and degrades claudin-1 and claudin-2 at tight junctions of the intestinal epithelium. Front. Cell. Infect. Microbiol. 2017, 7, 372. [Google Scholar] [CrossRef]
- Cornick, S.; Moreau, F.; Chadee, K. Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via αvβ3 Integrin. PLOS Pathog. 2016, 12, e1005579. [Google Scholar] [CrossRef]
- Lejeune, M.; Moreau, F.; Chadee, K. Prostaglandin E2 produced by Entamoeba histolytica signals via Ep4 receptor and alters claudin-4 to increase ion permeability of tight junctions. Am. J. Pathol. 2011, 179, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.B.; Rodríguez, M.A.; García-Rivera, G.; Sánchez, T.; Hernández-Pando, R.; Aguilar, D.; Orozco, E. A pcDNA-Ehcpadh vaccine against Entamoeba histolytica elicits a protective Th1-like response in hamster liver. Vaccine 2009, 27, 4176–4186. [Google Scholar] [CrossRef] [PubMed]
- Montaño, S.; Orozco, E.; Correa-Basurto, J.; Bello, M.; Chávez-Munguía, B.; Betanzos, A. Heterodimerization of the Entamoeba histolytica EhCPADH virulence complex through molecular dynamics and protein–protein docking. J. Biomol. Struct. Dyn. 2017, 35, 486–503. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, C.; García-Rivera, G.; López-Reyes, I.; Mendoza, L.; González-Robles, A.; Herranz, S.; Vincent, O.; Orozco, E. EhADH112 is a Bro1 domain-containing protein involved in the Entamoeba histolytica multivesicular bodies pathway. J. Biomed. Biotechnol. 2012, 2012, 657942. [Google Scholar] [CrossRef] [PubMed]
- Bissig, C.; Gruenberg, J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol. 2014, 24, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Odorizzi, G. The multiple personalities of Alix. J. Cell Sci. 2006, 119, 3025–3032. [Google Scholar] [CrossRef] [PubMed]
- Galindo, A.; Javier-Reyna, R.; García-Rivera, G.; Bañuelos, C.; Montaño, S.; Ortega-Lopez, J.; Chávez-Munguía, B.; Salazar-Villatoro, L.; Orozco, E. EhVps23: A Component of ESCRT-I That Participates in Vesicular Trafficking and Phagocytosis of Entamoeba histolytica. Front. Cell. Infect. Microbiol. 2021, 11, 770759. [Google Scholar] [CrossRef] [PubMed]
- López-Reyes, I.; García-Rivera, G.; Bañuelos, C.; Herranz, S.; Vincent, O.; López-Camarillo, C.; Marchat, L.A.; Orozco, E. Detection of the Endosomal Sorting Complex Required for Transport in Entamoeba histolytica and Characterization of the EhVps4 Protein. J. Biomed. Biotechnol. 2010, 2010, 890674. [Google Scholar] [CrossRef] [PubMed]
- Avalos-Padilla, Y.; Knorr, R.L.; Javier-Reyna, R.; García-Rivera, G.; Lipowsky, R.; Dimova, R.; Orozco, E. The conserved ESCRT-III machinery participates in the phagocytosis of Entamoeba histolytica. Front. Cell. Infect. Microbiol. 2018, 8, 53. [Google Scholar] [CrossRef]
- Bolaños, J.; Betanzos, A.; Javier-Reyna, R.; Rivera, G.G.; Huerta, M.; Pais-Morales, J.; González-Robles, A.; Rodríguez, M.A.; Schnoor, M.; Orozco, E. EhNPC1 and EhNPC2 Proteins Participate in Trafficking of Exogenous Cholesterol in Entamoeba histolytica Trophozoites: Relevance for Phagocytosis. PLOS Pathog. 2016, 12, e1006089. [Google Scholar] [CrossRef]
- Torices, S.; Roberts, S.A.; Park, M.; Malhotra, A.; Toborek, M. Occludin, caveolin-1, and Alix form a multi-protein complex and regulate HIV-1 infection of brain pericytes. FASEB J. 2020, 34, 16319–16332. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, P.; Livstone, M.S.; Lewis, S.E.; Thomas, P.D. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinform. 2011, 12, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Fernández, T.; Rodríguez, M.A.; Monroy, V.S.; García, C.G.; Medel, O.; Ishiwara, D.G.P. A Calpain-Like Protein Is Involved in the Execution Phase of Programmed Cell Death of Entamoeba histolytica. Front. Cell. Infect. Microbiol. 2018, 8, 339. [Google Scholar] [CrossRef] [PubMed]
- Nickel, R.; Jacobs, T.; Urban, B.; Scholze, H.; Bruhn, H.; Leippe, M. Two novel calcium-binding proteins from cytoplasmic granules of the protozoan parasite Entamoeba histolytica. FEBS Lett. 2000, 486, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Ocádiz, R.; Orozco, E.; Carrillo, E.; Quintas, L.I.; Ortega-López, J.; García-Pérez, R.M.; Sánchez, T.; Castillo-Juárez, B.A.; García-Rivera, G.; Rodríguez, M.A. EhCP112 is an Entamoeba histolytica secreted cysteine protease that may be involved in the parasite-virulence. Cell. Microbiol. 2005, 7, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Hernández, M.; Javier-Reyna, R.; Martínez-Valencia, D.; Montaño, S.; Orozco, E. Dynamic Association of ESCRT-II Proteins with ESCRT-I and ESCRT-III Complexes during Phagocytosis of Entamoeba histolytica. Int. J. Mol. Sci. 2023, 24, 5267. [Google Scholar] [CrossRef] [PubMed]
- Meza, I.; Sabanero, M.; Cazares, F.; Bryan, J. Isolation and characterization of actin from Entamoeba histolytica. J. Biol. Chem. 1983, 258, 3936–3941. [Google Scholar] [CrossRef] [PubMed]
- Manich, M.; Hernandez-Cuevas, N.; Ospina-Villa, J.D.; Syan, S.; Marchat, L.A.; Olivo-Marin, J.C.; Guillén, N. Morphodynamics of the actin-rich cytoskeleton in Entamoeba histolytica. Front. Cell. Infect. Microbiol. 2018, 8, 179. [Google Scholar] [CrossRef] [PubMed]
- Rath, P.P.; Gourinath, S. The actin cytoskeleton orchestra in Entamoeba histolytica. Proteins Struct. Funct. Bioinform. 2020, 88, 1361–1375. [Google Scholar] [CrossRef]
- Amos, B.; Aurrecoechea, C.; Barba, M.; Barreto, A.; Basenko, E.Y.; Bażant, W.; Belnap, R.; Blevins, A.S.; Böhme, U.; Brestelli, J.; et al. VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 2022, 50, D898–D911. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Bosch, D.E.; Siderovski, D.P. G protein signaling in the parasite Entamoeba histolytica. Exp. Mol. Med. 2013, 45, e15. [Google Scholar] [CrossRef] [PubMed]
- Saito-Nakano, Y.; Loftus, B.J.; Hall, N.; Nozaki, T. The diversity of Rab GTPases in Entamoeba histolytica. Exp. Parasitol. 2005, 110, 244–252. [Google Scholar] [CrossRef]
- Saito-Nakano, Y.; Wahyuni, R.; Nakada-Tsukui, K.; Tomii, K.; Nozaki, T. Rab7D small GTPase is involved in phago-, trogocytosis and cytoskeletal reorganization in the enteric protozoan Entamoeba histolytica. Cell. Microbiol. 2021, 23, e13267. [Google Scholar] [CrossRef]
- Welter, B.H.; Laughlin, R.C.; Temesvari, L.A. Characterization of a Rab7-like GTPase, EhRab7: A marker for the early stages of endocytosis in Entamoeba histolytica. Mol. Biochem. Parasitol. 2002, 121, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Babuta, M.; Bhattacharya, S.; Bhattacharya, A. Entamoeba histolytica and pathogenesis: A calcium connection. PLOS Pathog. 2020, 16, e1008214. [Google Scholar] [CrossRef]
- Ballard, S.T.; Hunter, J.H.; Taylor, A.E. Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium. Annu. Rev. Nutr. 1995, 15, 35–55. [Google Scholar] [CrossRef]
- Bazzoni, G.; Dejana, E. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiol. Rev. 2004, 84, 869–901. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Van Itallie, C.M. Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol. Liver Physiol. 1995, 269, G467–G475. [Google Scholar] [CrossRef]
- Gonzalez-Mariscal, L.; de Ramírez, B.C.; Cereijido, M. Tight junction formation in cultured epithelial cells (MDCK). J. Membr. Biol. 1985, 86, 113–125. [Google Scholar] [CrossRef]
- Matter, K.; Balda, M.S. Functional analysis of tight junctions. Methods 2003, 30, 228–234. [Google Scholar] [CrossRef]
- Kissoon-Singh, V.; Moreau, F.; Trusevych, E.; Chadee, K. Entamoeba histolytica exacerbates epithelial tight junction permeability and proinflammatory responses in Muc2−/− mice. Am. J. Pathol. 2013, 182, 852–865. [Google Scholar] [CrossRef]
- Lange, S.; Delbro, D.S.; Jennische, E. Evans blue permeation of intestinal mucosa in the rat. Scand. J. Gastroenterol. 1994, 29, 38–46. [Google Scholar] [CrossRef]
- Shibayama-Salas, M.; Tsutsumi, V.; Campos-Rodríguez, R.; Pacheco-Yépez, J.; Martínez-Palomo, A. Passive immunization during experimental amebic liver-abscess development. Parasitol. Res. 1995, 81, 86–88. [Google Scholar] [CrossRef]
- Dasrathy, S.; Sharma, M.P. Amebic liver abscess: A diagnostic challenge. Trop. Gastroenterol. 1995, 16, 1–2. [Google Scholar] [PubMed]
- Gilchrist, C.A.; Petri, W.A. Virulence factors of Entamoeba histolytica. Curr. Opin. Microbiol. 1999, 2, 433–437. [Google Scholar] [CrossRef]
- Belloso, S.P.; Saloma, P.O.; Benitez, I.; Soldevila, G.; Olivos, A.; García-Zepeda, E. Entamoeba histolytica cysteine protease 2 (EhCP2) modulates leucocyte migration by proteolytic cleavage of chemokines. Parasite Immunol. 2004, 26, 237–241. [Google Scholar] [CrossRef]
- Irmer, H.; Tillack, M.; Biller, L.; Handal, G.; Leippe, M.; Roeder, T.; Tannich, E.; Bruchhaus, I. Major cysteine peptidases of Entamoeba histolytica are required for aggregation and digestion of erythrocytes but are dispensable for phagocytosis and cytopathogenicity. Mol. Microbiol. 2009, 72, 658–667. [Google Scholar] [CrossRef]
- Serrano-Luna, J.; Piña-Vázquez, C.; Reyes-López, M.; Ortiz-Estrada, G.; de la Garza, M. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. J. Trop. Med. 2013, 2013, 890603. [Google Scholar] [CrossRef]
- Nakada-Tsukui, K.; Saito-Nakano, Y.; Ali, V.; Nozaki, T. A retromerlike complex is a novel Rab7 effector that is involved in the transport of the virulence factor cysteine protease in the enteric protozoan parasite Entamoeba histolytica. Mol. Biol. Cell 2005, 16, 5294–5303. [Google Scholar] [CrossRef]
- Sánchez, M.A.; Peattie, D.A.; Wirth, D.; Orozco, E. Cloning, genomic organization and transcription of the Entamoeba histolytica α-tubulin-encodmg gene. Gene 1994, 146, 239–244. [Google Scholar] [CrossRef]
- Verma, K.; Srivastava, V.K.; Datta, S. Rab GTPases take centre stage in understanding Entamoeba histolytica biology. Small GTPases 2020, 11, 320–333. [Google Scholar] [CrossRef]
- Ramakrishnan, G.; Gilchrist, C.A.; Musa, H.; Torok, M.S.; Grant, P.A.; Mann, B.J.; Petri, W.A. Histone acetyltransferases and deacetylase in Entamoeba histolytica. Mol. Biochem. Parasitol. 2004, 138, 205–216. [Google Scholar] [CrossRef]
- González-Vázquez, M.C.; Carabarin-Lima, A.; Baylón-Pacheco, L.; Talamás-Rohana, P.; Rosales-Encina, J.L. Obtaining of three recombinant antigens of Entamoeba histolytica and evaluation of their immunogenic ability without adjuvant in a hamster model of immunoprotection. Acta Trop. 2012, 122, 169–176. [Google Scholar] [CrossRef]
- Jiménez-Delgadillo, B.; Chaudhuri, P.P.; Baylón-Pacheco, L.; López-Monteon, A.; Talamás-Rohana, P.; Rosales-Encina, J.L. Entamoeba histolytica: cDNAs cloned as 30kDa collagen-binding proteins (CBP) belong to an antioxidant molecule family: Protection of hamsters from amoebic liver abscess by immunization with recombinant CBP. Exp. Parasitol. 2004, 108, 7–17. [Google Scholar] [CrossRef]
- Rodríguez, M.A.; García-Pérez, R.M.; Mendoza, L.; Sánchez, T.; Guillen, N.; Orozco, E. The pyruvate:ferredoxin oxidoreductase enzyme is located in the plasma membrane and in a cytoplasmic structure in Entamoeba. Microb. Pathog. 1998, 25, 1–10. [Google Scholar] [CrossRef]
- Pineda, E.; Encalada, R.; Olivos-García, A.; Néquiz, M.; Moreno-Sánchez, R.; Saavedra, E. The bifunctional aldehyde-alcohol dehydrogenase controls ethanol and acetate production in Entamoeba histolytica under aerobic conditions. FEBS Lett. 2013, 587, 178–184. [Google Scholar] [CrossRef]
- Mattei, S.; Klein, G.; Satre, M.; Aubry, L. Trafficking and developmental signaling: Alix at the crossroads. Eur. J. Cell Biol. 2006, 85, 925–936. [Google Scholar] [CrossRef]
- Liu, C.; Cao, J.; Zhang, H.; Field, M.C.; Yin, J. Extracellular vesicles secreted by Echinococcus multilocularis: Important players in angiogenesis promotion. Microbes Infect. 2023, 25, 105147. [Google Scholar] [CrossRef]
- Ravdin, J.I. Entamoeba histolytica: From Adherence to Enteropathy. J. Infect. Dis. 1989, 159, 420–429. [Google Scholar] [CrossRef]
- Christy, N.C.; Petri, W.A. Mechanisms of adherence, cytotoxicity and phagocytosis modulate the pathogenesis of Entamoeba histolytica. Futur. Microbiol. 2011, 6, 1501–1519. [Google Scholar] [CrossRef]
- Vanegas-Villa, S.C.; Torres-Cifuentes, D.M.; Baylon-Pacheco, L.; Espíritu-Gordillo, P.; Durán-Díaz, Á.; Rosales-Encina, J.L.; Omaña-Molina, M. External pH Variations Modify Proliferation, Erythrophagocytosis, Cytoskeleton Remodeling, and Cell Morphology of Entamoeba histolytica Trophozoites. Protist 2022, 173, 125857. [Google Scholar] [CrossRef] [PubMed]
- Tavares, P.; Sansonetti, P.; Guillén, N. The Interplay Between Receptor Capping and Cytoskeleton Remodeling in Entamoeba histolytica. Arch. Med. Res. 2000, 31, S140–S142. [Google Scholar] [CrossRef]
- Ramos, E.; Olivos-García, A.; Nequiz, M.; Saavedra, E.; Tello, E.; Saralegui, A.; Montfort, I.; Tamayo, R.P. Entamoeba histolytica: Apoptosis induced in vitro by nitric oxide species. Exp. Parasitol. 2007, 116, 257–265. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Ghosh, S.K. Apoptosis-inducing factor-like protein-mediated stress and metronidazole-responsive programmed cell death pathway in Entamoeba histolytica. Mol. Microbiol. 2023, 119, 640–658. [Google Scholar] [CrossRef]
- Ghosh, A.S.; Dutta, S.; Raha, S. Hydrogen peroxide-induced apoptosis-like cell death in Entamoeba histolytica. Parasitol. Int. 2010, 59, 166–172. [Google Scholar] [CrossRef]
- Odorizzi, G.; Katzmann, D.J.; Babst, M.; Audhya, A.; Emr, S.D. Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J. Cell Sci. 2003, 116, 1893–1903. [Google Scholar] [CrossRef] [PubMed]
- Mercier, V.; Laporte, M.H.; Destaing, O.; Blot, B.; Blouin, C.M.; Pernet-Gallay, K.; Chatellard, C.; Saoudi, Y.; Albiges-Rizo, C.; Lamaze, C.; et al. ALG-2 interacting protein-X (Alix) is essential for clathrin-independent endocytosis and signaling. Sci. Rep. 2016, 6, 26986. [Google Scholar] [CrossRef] [PubMed]
- Pires, R.; Hartlieb, B.; Signor, L.; Schoehn, G.; Lata, S.; Roessle, M.; Moriscot, C.; Popov, S.; Hinz, A.; Jamin, M.; et al. A Crescent-Shaped ALIX Dimer Targets ESCRT-III CHMP4 Filaments. Structure 2009, 17, 843–856. [Google Scholar] [CrossRef]
- Bissig, C.; Lenoir, M.; Velluz, M.-C.; Kufareva, I.; Abagyan, R.; Overduin, M.; Gruenberg, J. Viral Infection Controlled by a Calcium-Dependent Lipid-Binding Module in ALIX. Dev. Cell 2013, 25, 364–373. [Google Scholar] [CrossRef]
- Dores, M.R.; Lin, H.; Grimsey, N.J.; Mendez, F.; Trejo, J. The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein–coupled receptor lysosomal sorting. Mol. Biol. Cell 2015, 26, 4660–4673. [Google Scholar] [CrossRef]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Diamond, L.S.; Harlow, D.R.; Cunnick, C.C. A new medium for the axenic cultivation of entamoeba histolytica and other entamoeba. Trans. R. Soc. Trop. Med. Hyg. 1978, 72, 431–432. [Google Scholar] [CrossRef]
- Cereijido, M.; Robbins, E.; Dolan, W.; Rotunno, C.; Sabatini, D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 1978, 77, 853–880. [Google Scholar] [CrossRef]
- Hamann, L.; Buß, H.; Tannich, E. Tetracycline-controlled gene expression in Entamoeba histolytica. Mol. Biochem. Parasitol. 1997, 84, 83–91. [Google Scholar] [CrossRef]
- Hamann, L.; Nickel, R.; Tannich, E. Transfection and continuous expression of heterologous genes in the protozoan parasite Entamoeba histolytica. Proc. Natl. Acad. Sci. USA 1995, 92, 8975–8979. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.; Marcial-Quino, J.; Gómez-Manzo, S.; Enríquez-Flores, S.; Nequiz-Avendaño, M.; Cortes, A.; León-Avila, G.D.l.L.; Saavedra, E.; Pérez-Tamayo, R.; Olivos-García, A. Functional characterization and subcellular distribution of two recombinant cytosolic HSP70 isoforms from Entamoeba histolytica under normal and stress conditions. Parasitol. Res. 2020, 119, 1337–1351. [Google Scholar] [CrossRef]
- Talamás-Lara, D.; Chávez-Munguía, B.; González-Robles, A.; Talamás-Rohana, P.; Salazar-Villatoro, L.; Durán-Díaz, Á.; Martínez-Palomo, A. Erythrophagocytosis in Entamoeba histolytica and Entamoeba dispar: A Comparative Study. BioMed Res. Int. 2014, 2014, 626259. [Google Scholar] [CrossRef] [PubMed]
- Novikoff, A.B.; Novikoff, P.M.; Davis, C.; Quintana, N. Studies on microperoxisomes II. A cytochemical method for light and electron microscopy. J. Histochem. Cytochem. 1972, 20, 1006–1023. [Google Scholar] [CrossRef] [PubMed]
Accession Number | Protein Name | Functions | References | |
---|---|---|---|---|
His-Bro1 | GST-EhADH | |||
EHI_012270 † | Gal/GalNAc lectin heavy subunit * | ✗ | Adhesion, virulence factor | [46] |
EHI_006980 † | Gal/GalNAc lectin Igl1 subunit * | ✗ | Adhesion, virulence factor | [46] |
EHI_181230 | EhCP112 * | EhCP112 * | Substrate degradation | [7,25] |
EHI_033710 † | EhCP2 * | ✗ | Substrate degradation | [47,48] |
EHI_168240 † | CP * | ✗ | Substrate degradation | [49] |
EHI_178530 † | EhVps23 * | EhVps23 * | Vacuolar transport (ESCRT-I) | [17] |
EHI_169820 † | EhVps32 * | EhVps32 * | Vacuolar transport (ESCRT-III) | [19] |
EHI_114790 | EhVps20 * | ✗ | Vacuolar transport (ESCRT-III) | [19] |
EHI_194400 † | EhVps2 * | EhVps2 * | Vacuolar transport (ESCRT-III) | [19] |
EHI_062490 † | EhVps26 * | ✗ | Retrograde transport (retromer complex) | [50] |
EHI_182900 † | Actin * | ✗ | Cytoskeleton | [27,29] |
EHI_008780 † | Actin * | Actin * | Cytoskeleton | [27,29] |
EHI_198930 † | Actin * | ✗ | Cytoskeleton | [27,29] |
EHI_049920 † | Tubulin * family protein | ✗ | Cytoskeleton | [46,51] |
EHI_119930 † | Protein kinase domain | ✗ | Enzyme, phosphate transfer | [22] |
EHI_121880 † | Protein kinase domain | ✗ | Enzyme, phosphate transfer | [22] |
EHI_197350 | Protein with tyrosine kinase domain | ✗ | Enzyme, phosphate transfer | [30,31] |
EHI_010600 † | BAR/SH3 domain protein | ✗ | Signaling pathways | [30,31] |
Accession Number | Protein Name | Functions | References | |
---|---|---|---|---|
His-Bro1 | GST-EhADH | |||
EHI_181220 † | EhADH * | EhADH * | Adhesion | [7,14] |
EHI_181230 | EhCP112 * | EhCP112 * | Substrate degradation | [7,25] |
EHI_166800 † | Ubiquitin * | ✗ | Protein tag | [22] |
EHI_031410 † | GTP-binding protein * | ✗ | Enzyme (signal transduction, vesicular trafficking, etc.) | [22] |
EHI_108610 † | Rab * GTPase | Rab* GTPase | Enzyme (signal transduction, vesicular trafficking, etc.) | [32,34,35] |
EHI_164900 † | Rab * GTPase | ✗ | Enzyme (signal transduction, vesicular trafficking, etc.) | [32,34,35] |
EHI_005900 | Small Rab7 * GTPase | ✗ | Enzyme (signal transduction, vesicular trafficking, etc.) | [35,52] |
EHI_041950 † | EhVps35 * | ✗ | Retrograde transport (retromer complex) | [22] |
EHI_080220 † | EhNPC1 * | EhNPC1 * | Cholesterol trafficking | [20] |
EHI_105240 † | BAR/SH3 domain protein | ✗ | Signaling pathways | [30,31] |
EHI_127700 | EhHSP70 * | ✗ | Chaperone | [46] |
EHI_004760 † | Proteosome alpha subunit | ✗ | Proteosomal | [22] |
EHI_152570 † | Ribosomal protein 60S L26 | ✗ | Ribosomal | [22] |
EHI_139360 | Acetyltransferase, GNAT family | ✗ | Enzyme | [22,53] |
EHI_176700 † | AIG1 family protein | ✗ | Unknown | [30,31] |
EHI_170330 | RIO1 family protein | ✗ | Unknown | [22] |
Accession Number | Protein Name | Functions | References | |
---|---|---|---|---|
His-Bro1 | GST-EhADH | |||
EHI_181220 † | EhADH * | EhADH * | Adhesion | [7,14] |
EHI_061640 † | EhHSP70 * | ✗ | Chaperone | [46] |
EHI_001420 † | EhPeroxiredoxin (EhPrx) | ✗ | Enzyme | [54,55] |
EHI_051060 † | Pyruvate:ferredoxin oxidoreductase | ✗ | Enzyme | [22,56] |
EHI_098570 † | Fructose-1,6-bisphosphate aldolase | ✗ | Enzyme | [30,31] |
EHI_011210 † | Elongation factor 1-Alpha 1 | ✗ | Enzyme | [30,31] |
EHI_024240 | Aldehyde-alcohol dehydrogenase 2 | ✗ | Enzyme | [22,57] |
EHI_051940 † | Poly (ADP-ribose) glucohydrolase | ✗ | Enzyme | [30,31] |
EHI_152650 † | Flavoprotein type A | ✗ | Enzyme | [30,31] |
EHI_044970 † | Malic enzyme | ✗ | Enzyme | [30,31] |
EHI_068660 † | 60S ribosomal protein L5 | ✗ | Ribosomal | [22] |
EHI_050130 † | 60S ribosomal protein L14 | ✗ | Ribosomal | [22] |
EHI_035600 † | Ribosomal protein L18a | ✗ | Ribosomal | [22] |
EHI_057670 † | 20 kDa antigen | ✗ | Antigen | [30,31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanatta, D.; Betanzos, A.; Azuara-Liceaga, E.; Montaño, S.; Orozco, E. Entamoeba histolytica: EhADH, an Alix Protein, Participates in Several Virulence Events through Its Different Domains. Int. J. Mol. Sci. 2024, 25, 7609. https://doi.org/10.3390/ijms25147609
Zanatta D, Betanzos A, Azuara-Liceaga E, Montaño S, Orozco E. Entamoeba histolytica: EhADH, an Alix Protein, Participates in Several Virulence Events through Its Different Domains. International Journal of Molecular Sciences. 2024; 25(14):7609. https://doi.org/10.3390/ijms25147609
Chicago/Turabian StyleZanatta, Dxinegueela, Abigail Betanzos, Elisa Azuara-Liceaga, Sarita Montaño, and Esther Orozco. 2024. "Entamoeba histolytica: EhADH, an Alix Protein, Participates in Several Virulence Events through Its Different Domains" International Journal of Molecular Sciences 25, no. 14: 7609. https://doi.org/10.3390/ijms25147609
APA StyleZanatta, D., Betanzos, A., Azuara-Liceaga, E., Montaño, S., & Orozco, E. (2024). Entamoeba histolytica: EhADH, an Alix Protein, Participates in Several Virulence Events through Its Different Domains. International Journal of Molecular Sciences, 25(14), 7609. https://doi.org/10.3390/ijms25147609