A Review of Probe-Based Enrichment Methods to Inform Plant Virus Diagnostics
Abstract
:1. Introduction
2. Notable Advancements in Target Enrichment
2.1. HTS in Plant Diagnostics
2.2. Sample Enrichment
2.3. Hybridisation Capture
3. Virus Enrichment and Capture
3.1. Library Preparation and Enrichment Types
3.2. Impacts of Panel Design on Vertebrate Virus Capture
3.3. Challenges with Evaluating Enrichment Success
4. Hybrid-Capture in Planta
4.1. HybCap Enrichment of Plant Pathogens
4.2. Challenges Associated with Plant Virus Capture Panels
5. Future Research Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saiki, R.K.; Scharf, S.; Faloona, F.; Mullis, K.B.; Horn, G.T.; Erlich, H.A.; Arnheim, N. Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia. Science 1985, 230, 1350–1354. [Google Scholar] [CrossRef] [PubMed]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.F.; Lister, R.M.; Bar-Joseph, M. ELISA techniques. In Methods in Enzymology; Academic Press (Plant Molecular Biology): Cambridge, MA, USA, 1986; pp. 742–766. [Google Scholar] [CrossRef]
- Davis, R.I.; Jones, L.M.; Pease, B.; Perkins, S.L.; Vala, H.R.; Kokoa, P.; Apa, M.; Dale, C.J. Plant Virus and Viraus-like Disease Threats to Australia’s North Targeted by the Northern Australia Quarantine Strategy. Plants 2021, 10, 2175. [Google Scholar] [CrossRef] [PubMed]
- Udaondo, Z.; Sittikankaew, K.; Uengwetwanit, T.; Wongsurawat, T.; Sonthirod, C.; Jenjaroenpun, P.; Pootakham, W.; Karoonuthaisiri, N.; Nookaew, I. Comparative Analysis of PacBio and Oxford Nanopore Sequencing Technologies for Transcriptomic Landscape Identification of Penaeus monodon. Life 2021, 11, 862. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, M.; Argyropoulos, C. An Introduction to Nanopore Sequencing: Past, Present, and Future Considerations. Micromachines 2023, 14, 459. [Google Scholar] [CrossRef] [PubMed]
- Beaulaurier, J.; Luo, E.; Eppley, J.M.; Den Uyl, P.; Dai, X.; Burger, A.; Turner, D.J.; Pendelton, M.; Juul, S.; Harrington, E.; et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 2020, 30, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, G.V.; Cook, N.M.; Bueno-Sancho, V.; Lewis, C.M.; Persoons, A.; Mitiku, A.D.; Heaton, M.; Davey, P.E.; Abeyo, B.; Alemayehu, Y.; et al. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. BMC Biol. 2019, 17, 65. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Baizan-Edge, A.; MacFarlane, S.; Torrance, L. Viral Diagnostics in Plants Using Next Generation Sequencing: Computational Analysis in Practice. Front. Plant Sci. 2017, 8, 1770. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Liu, Y.; Zhou, X.; Yin, C.; Zhang, P.; Yang, Q.; Mao, L.; Shentu, X.; Yu, X. Nanopore sequencing technology and its application in plant virus diagnostics. Front. Microbiol. 2022, 13, 939666. [Google Scholar] [CrossRef]
- Meyer, M.; Kircher, M. Illumina Sequencing Library Preparation for Highly Multiplexed Target Capture and Sequencing. Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5448. [Google Scholar] [CrossRef]
- Cai, W.; Nunziata, S.; Rascoe, J.; Stulberg, M.J. SureSelect targeted enrichment, a new cost effective method for the whole genome sequencing of Candidatus Liberibacter asiaticus. Sci. Rep. 2019, 9, 18962. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.D.T.; McCormick, W.; Eyres, J.; Eggertson, Q.; Hambleton, S.; Dettman, J.R. Development and evaluation of a target enrichment bait set for phylogenetic analysis of oomycetes. Mycologia 2021, 113, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.-L.; Fulton, J.C.; Hudson, O.H.; Huguet-Tapia, J.C.; Brawner, J.T. Next-generation fungal identification using target enrichment and Nanopore sequencing. BMC Genom. 2023, 24, 581. [Google Scholar] [CrossRef] [PubMed]
- Faircloth, B.C.; McCormack, J.E.; Crawford, N.G.; Harvey, M.G.; Brumfield, R.T.; Glenn, T.C. Ultraconserved Elements Anchor Thousands of Genetic Markers Spanning Multiple Evolutionary Timescales. Syst. Biol. 2012, 61, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, A.R.; Emme, S.A.; Lemmon, E.M. Anchored Hybrid Enrichment for Massively High-Throughput Phylogenomics. Syst. Biol. 2012, 61, 727–744. [Google Scholar] [CrossRef]
- Thell, A.; Crespo, A.; Divakar, P.K.; Kärnefelt, I.; Leavitt, S.D.; Lumbsch, H.T.; Seaward, M.R. A review of the lichen family Parmeliaceae—History, phylogeny and current taxonomy. Nord. J. Bot. 2012, 30, 641–664. [Google Scholar] [CrossRef]
- Mandel, J.R.; Dikow, R.B.; Funk, V.A.; Masalia, R.R.; Staton, S.E.; Kozik, A.; Michelmore, R.W.; Rieseberg, L.H.; Burke, J.M. A Target Enrichment Method for Gathering Phylogenetic Information from Hundreds of Loci: An Example from the Compositae. Appl. Plant Sci. 2014, 2, 1300085. [Google Scholar] [CrossRef]
- Weitemier, K.; Straub, S.C.; Cronn, R.C.; Fishbein, M.; Schmickl, R.; McDonnell, A.; Liston, A. Hyb-Seq: Combining Target Enrichment and Genome Skimming for Plant Phylogenomics. Appl. Plant Sci. 2014, 2, 1400042. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.G.; Pokorny, L.; Dodsworth, S.; Botigué, L.R.; Cowan, R.S.; Devault, A.; Eiserhardt, W.L.; Epitawalage, N.; Forest, F.; Kim, J.T.; et al. A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Syst. Biol. 2019, 68, 594–606. [Google Scholar] [CrossRef]
- Grewe, F.; Ametrano, C.; Widhelm, T.J.; Leavitt, S.; Distefano, I.; Polyiam, W.; Pizarro, D.; Wedin, M.; Crespo, A.; Divakar, P.K.; et al. Using target enrichment sequencing to study the higher-level phylogeny of the largest lichen-forming fungi family: Parmeliaceae (Ascomycota). IMA Fungus 2020, 11, 27. [Google Scholar] [CrossRef]
- Metsky, H.C.; Welch, N.L.; Pillai, P.P.; Haradhvala, N.J.; Rumker, L.; Mantena, S.; Zhang, Y.B.; Yang, D.K.; Ackerman, C.M.; Weller, J.; et al. Designing sensitive viral diagnostics with machine learning. Nat. Biotechnol. 2022, 40, 1123–1131. [Google Scholar] [CrossRef]
- Dombrovsky, A.; Smith, E. Seed Transmission of Tobamoviruses: Aspects of Global Disease Distribution. In Advances in Seed Biology; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Rojas, M.R.; Macedo, M.A.; Maliano, M.R.; Soto-Aguilar, M.; Souza, J.O.; Briddon, R.W.; Kenyon, L.; Rivera Bustamante, R.F.; Zerbini, F.M.; Adkins, S.; et al. World Management of Geminiviruses. Annu. Rev. Phytopathol. 2018, 56, 637–677. [Google Scholar] [CrossRef]
- Kaur, S.I.; Kashyap, P.L.; Kang, S.S.; Sharma, A. Detection and Diagnosis of Seed-Borne Viruses and Virus-Like Pathogens. In Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management; Kumar, R., Gupta, A., Eds.; Springer: Singapore, 2020; pp. 169–199. [Google Scholar] [CrossRef]
- De Filippis, F.; Laiola, M.; Blaiotta, G.; Ercolini, D. Different Amplicon Targets for Sequencing-Based Studies of Fungal Diversity. Appl. Environ. Microbiol. 2017, 83, e00905-17. [Google Scholar] [CrossRef]
- Kreuze, J.F.; Perez, A.; Untiveros, M.; Quispe, D.; Fuentes, S.; Barker, I.; Simon, R. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 2009, 388, 1–7. [Google Scholar] [CrossRef]
- Benjamini, Y.; Speed, T.P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012, 40, e72. [Google Scholar] [CrossRef]
- Ambardar, S.; Gupta, R.; Trakroo, D.; Lal, R.; Vakhlu, J. High Throughput Sequencing: An Overview of Sequencing Chemistry. Indian J. Microbiol. 2016, 56, 394–404. [Google Scholar] [CrossRef]
- Fitzpatrick, A.H.; Rupnik, A.; O’Shea, H.; Crispie, F.; Keaveney, S.; Cotter, P. High throughput sequencing for the detection and characterization of RNA viruses. Front. Microbiol. 2021, 12, 621719. [Google Scholar] [CrossRef]
- Mamanova, L.; Coffey, A.J.; Scott, C.E.; Kozarewa, I.; Turner, E.H.; Kumar, A.; Howard, E.; Shendure, J.; Turner, D.J. Target-enrichment strategies for next-generation sequencing. Nat. Methods 2010, 7, 111–118. [Google Scholar] [CrossRef]
- Wylie, T.N.; Wylie, K.M.; Herter, B.N.; Storch, G.A. Enhanced virome sequencing using targeted sequence capture. Genome Res. 2015, 25, 1910–1920. [Google Scholar] [CrossRef]
- Tewhey, R.; Warner, J.B.; Nakano, M.; Libby, B.; Medkova, M.; David, P.H.; Kotsopoulos, S.K.; Samuels, M.L.; Hutchison, J.B.; Larson, J.W.; et al. Microdroplet-based PCR amplification for large scale targeted sequencing. Nat. Biotechnol. 2009, 27, 1025–1031. [Google Scholar] [CrossRef]
- Martin, S.; Heavens, D.; Lan, Y.; Horsfield, S.; Clark, M.D.; Leggett, R.M. Nanopore adaptive sampling: A tool for enrichment of low abundance species in metagenomic samples. Genome Biol. 2022, 23, 11. [Google Scholar] [CrossRef]
- Schultzhaus, Z.; Wang, Z.; Stenger, D. CRISPR-based enrichment strategies for targeted sequencing. Biotechnol. Adv. 2021, 46, 107672. [Google Scholar] [CrossRef] [PubMed]
- Gaudin, M.; Desnues, C. Hybrid Capture-Based Next Generation Sequencing and Its Application to Human Infectious Diseases. Front. Microbiol. 2018, 9, 2924. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2018.02924 (accessed on 27 April 2023). [CrossRef] [PubMed]
- Cheng, D.T.; Mitchell, T.N.; Zehir, A.; Shah, R.H.; Benayed, R.; Syed, A.; Chandramohan, R.; Liu, Z.Y.; Won, H.H.; Scott, S.N.; et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. J. Mol. Diagn. 2015, 17, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Hodges, E.; Xuan, Z.; Balija, V.; Kramer, M.; Molla, M.N.; Smith, S.W.; Middle, C.M.; Rodesch, M.J.; Albert, T.J.; Hannon, G.J.; et al. Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 2007, 39, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hofreiter, M.; Straube, N.; Corrigan, S.; Naylor, G.J. Capturing protein-coding genes across highly divergent species. BioTechniques 2013, 54, 321–326. [Google Scholar] [CrossRef]
- Gnirke, A.; Melnikov, A.; Maguire, J.; Rogov, P.; LeProust, E.M.; Brockman, W.; Fennell, T.; Giannoukos, G.; Fisher, S.; Russ, C.; et al. Solution Hybrid Selection with Ultra-long Oligonucleotides for Massively Parallel Targeted Sequencing. Nat. Biotechnol. 2009, 27, 182–189. [Google Scholar] [CrossRef]
- Melnikov, A.; Galinsky, K.; Rogov, P.; Fennell, T.; Van Tyne, D.; Russ, C.; Daniels, R.; Barnes, K.G.; Bochicchio, J.; Ndiaye, D.; et al. Hybrid selection for sequencing pathogen genomes from clinical samples. Genome Biol. 2011, 12, R73. [Google Scholar] [CrossRef] [PubMed]
- Carpi, G.; Walter, K.S.; Bent, S.J.; Hoen, A.G.; Diuk-Wasser, M.; Caccone, A. Whole genome capture of vector-borne pathogens from mixed DNA samples: A case study of Borrelia burgdorferi. BMC Genom. 2015, 16, 434. [Google Scholar] [CrossRef]
- Li, B.; Si, H.R.; Zhu, Y.; Yang, X.L.; Anderson, D.E.; Shi, Z.L.; Wang, L.F.; Zhou, P. Discovery of Bat Coronaviruses through Surveillance and Probe Capture-Based Next-Generation Sequencing. mSphere 2020, 5, e00807-19. [Google Scholar] [CrossRef]
- Depledge, D.P.; Palser, A.L.; Watson, S.J.; Lai, I.Y.C.; Gray, E.R.; Grant, P.; Kanda, R.K.; Leproust, E.; Kellam, P.; Breuer, J. Specific Capture and Whole-Genome Sequencing of Viruses from Clinical Samples. PLoS ONE 2011, 6, e27805. [Google Scholar] [CrossRef] [PubMed]
- Briese, T.; Kapoor, A.; Mishra, N.; Jain, K.; Kumar, A.; Jabado, O.J.; Lipkin, W.I. Virome Capture Sequencing Enables Sensitive Viral Diagnosis and Comprehensive Virome Analysis. mBio 2015, 6, e01491-15. [Google Scholar] [CrossRef]
- O’Flaherty, B.M.; Li, Y.; Tao, Y.; Paden, C.R.; Queen, K.; Zhang, J.; Dinwiddie, D.L.; Gross, S.M.; Schroth, G.P.; Tong, S. Comprehensive viral enrichment enables sensitive respiratory virus genomic identification and analysis by next generation sequencing. Genome Res. 2018, 28, 869–877. [Google Scholar] [CrossRef]
- Singh, R.R. Target Enrichment Approaches for Next-Generation Sequencing Applications in Oncology. Diagnostics 2022, 12, 1539. [Google Scholar] [CrossRef]
- Caruccio, N. Preparation of next-generation sequencing libraries using NexteraTM technology: Simultaneous DNA fragmentation and adaptor tagging by in vitro transposition. Methods Mol. Biol. 2011, 733, 241–255. [Google Scholar] [CrossRef]
- Lagström, S.; Umu, S.U.; Lepistö, M.; Ellonen, P.; Meisal, R.; Christiansen, I.K.; Ambur, O.H.; Rounge, T.B. TaME-seq: An efficient sequencing approach for characterisation of HPV genomic variability and chromosomal integration. Sci. Rep. 2019, 9, 524. [Google Scholar] [CrossRef]
- Hesselberg Løvestad, A.; Stosic, M.S.; Costanzi, J.M.; Christiansen, I.K.; Aamot, H.V.; Ambur, O.H.; Rounge, T.B. TaME-seq2: Tagmentation-assisted multiplex PCR enrichment sequencing for viral genomic profiling. Virol. J. 2023, 20, 44. [Google Scholar] [CrossRef]
- Hiatt, J.B.; Pritchard, C.C.; Salipante, S.J.; O’Roak, B.J.; Shendure, J. Single Molecule Molecular Inversion Probes for Targeted, High-Accuracy Detection of Low-Frequency Variation. Genome Res. 2013, 23, 843–854. [Google Scholar] [CrossRef]
- Berglund, E.C.; Lindqvist, C.M.; Hayat, S.; Övernäs, E.; Henriksson, N.; Nordlund, J.; Wahlberg, P.; Forestier, E.; Lönnerholm, G.; Syvänen, A.C. Accurate detection of subclonal single nucleotide variants in whole genome amplified and pooled cancer samples using HaloPlex target enrichment. BMC Genom. 2013, 14, 856. [Google Scholar] [CrossRef] [PubMed]
- Moens, L.N.J.; Falk-Sörqvist, E.; Ljungström, V.; Mattsson, J.; Sundström, M.; La Fleur, L.; Mathot, L.; Micke, P.; Nilsson, M.; Botling, J. HaloPlex Targeted Resequencing for Mutation Detection in Clinical Formalin-Fixed, Paraffin-Embedded Tumor Samples. J. Mol. Diagn. 2015, 17, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Xi, Y.; Li, Z.; Zhang, D.; Huang, F.; Fang, X.; Zhao, X.; Zhang, X.; Chen, A.; Chen, T.; et al. Novel target capture DNA library preparation method using CircLigase-mediated hook ligation. New Biotechnol. 2020, 59, 44–50. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, S.W.; Zhang, Y.; Zhu, S. Identification of Viruses and Viroids by Next-Generation Sequencing and Homology-Dependent and Homology-Independent Algorithms. Annu. Rev. Phytopathol. 2015, 53, 425–444. [Google Scholar] [CrossRef]
- Pecman, A.; Kutnjak, D.; Gutiérrez-Aguirre, I.; Adams, I.; Fox, A.; Boonham, N.; Ravnikar, M. Next Generation Sequencing for Detection and Discovery of Plant Viruses and Viroids: Comparison of Two Approaches. Front. Microbiol. 2017, 8, 1998. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2017.01998 (accessed on 27 April 2023). [CrossRef]
- Gardner, S.N.; Jaing, C.J.; Elsheikh, M.M.; Peña, J.; Hysom, D.A.; Borucki, M.K. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes. Adv. Bioinform. 2014, 2014, e101894. [Google Scholar] [CrossRef] [PubMed]
- Adams, I.; Fox, A. Diagnosis of Plant Viruses Using Next-Generation Sequencing and Metagenomic Analysis. In Current Research Topics in Plant Virology; Wang, A., Zhou, X., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 323–335. [Google Scholar] [CrossRef]
- Bent, Z.W.; Tran-Gyamfi, M.B.; Langevin, S.A.; Brazel, D.M.; Hamblin, R.Y.; Branda, S.S.; Patel, K.D.; Lane, T.W.; VanderNoot, V.A. Enriching pathogen transcripts from infected samples: A capture-based approach to enhanced host–pathogen RNA sequencing. Anal. Biochem. 2013, 438, 90–96. [Google Scholar] [CrossRef]
- Mate, S.E.; Kugelman, J.R.; Nyenswah, T.G.; Ladner, J.T.; Wiley, M.R.; Cordier-Lassalle, T.; Christie, A.; Schroth, G.P.; Gross, S.M.; Davies-Wayne, G.J.; et al. Molecular Evidence of Sexual Transmission of Ebola Virus. N. Engl. J. Med. 2015, 373, 2448–2454. [Google Scholar] [CrossRef] [PubMed]
- Olp, L.; Jeanniard, A.; Marimo, C.; West, J.T.; Wood, C. Whole-genome sequencing of KSHV from Zambian Kaposi’s sarcoma biopsies reveals unique viral diversity. Virology 2015. Available online: https://digitalcommons.unl.edu/virologypub/278 (accessed on 24 March 2023). [CrossRef] [PubMed]
- Bello, J.C.; Hausbeck, M.K.; Sakalidis, M.L. Application of Target Enrichment Sequencing for Population Genetic Analyses of the Obligate Plant Pathogens Pseudoperonospora cubensis and P. humuli in Michigan. Mol. Plant-Microbe Interact. 2021, 34, 1103–1118. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.R.; Vossen, J.; Lim, T.Y.; Hutten, R.C.; Xu, J.; Strachan, S.M.; Harrower, B.; Champouret, N.; Gilroy, E.M.; Hein, I. Tracking disease resistance deployment in potato breeding by enrichment sequencing. Plant Biotechnol. J. 2019, 17, 540–549. [Google Scholar] [CrossRef]
- Zheng, Z.; Liebers, M.; Zhelyazkova, B.; Cao, Y.; Panditi, D.; Lynch, K.D.; Chen, J.; Robinson, H.E.; Shim, H.S.; Chmielecki, J.; et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat. Med. 2014, 20, 1479–1484. [Google Scholar] [CrossRef]
- García-Arenal, F.; Fraile, A.; Malpica, J.M. Variation and evolution of plant virus populations. Int. Microbiol. 2003, 6, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Roossinck, M.J. Plants, viruses and the environment: Ecology and mutualism. Virology 2015, 479–480, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S. Why are RNA virus mutation rates so damn high? PLoS Biol. 2018, 16, e3000003. [Google Scholar] [CrossRef] [PubMed]
Enrichment Category | Enrichment Type | Example Method/Platform |
---|---|---|
Hybridisation capture | Array capture | Nimblegen capture array |
In-solution capture | Twist Bioscience capture, VirCapSeq-VERT, SureSelect | |
Molecular inversion probes | smMIP | |
Tagmentation method | TaME-seq, TaME-Seq2 | |
‘Hook’ capture | CircLigase enzyme | |
Subtractive hybridisation/background depletion | rRNA depletion | PolyA Enrichment, RiboZero |
Adaptive sampling | ONT adaptive sequencing | |
Amplicon-based enrichment | Multiplex PCR | Anchored multiplex PCR |
Rolling circle amplification | ||
CRISPR-based enrichment | CRISPR enrichment | CRISPR-Cap |
Paper | Study | Novel Platform | Library Preparation | Sequencing Platform | Probe Design | Targets | Enrichment of Target Reads |
---|---|---|---|---|---|---|---|
O’Flaherty et al. 2018 [46] | Virus characterisation using virus-specific probes and conserved probes | n/a | Tru-Seq RNA library | Illumina MiSeq | Custom panel, whole genome and protein coding sequence tiling for virus-specific probes. Conserved panel designed on viral groupings, consensus and degenerate sequences generated from algorithms | 34 respiratory viruses (7 virus families) Conserved probes target 50 respiratory viruses (9 virus families) | 7285-fold median increase (virus-specific probes) 8990-fold median increase (conserved probes) |
Wylie et al. 2015 [32] | Virus characterisation using HybCap probes | ViroCap (probe design) | KAPA low throughput library construction kit on sonicated and pre-amplified libraries | Illumina HiSeq (2000 and 2500) | ViroCap, NimbleGen capture design | 34 vertebrate virus families | 296–674-fold median increase |
Briese et al. 2015 [45] | Virus characterisation using HybCap probes. | VirCapSeq-VERT (Library prep) | VirCapSeq-VERT and conventional Illumina HTS | Illumina HiSeq (2500) | Vertebrate viruses clustered at 96% similarity, 100-mer oligos spaced by 25–50bp along sequences. Mutant sequences varying by 90% similarity kept | 6 vertebrate virus families | 100–10,000-fold increase |
Li et al. 2020 [43] | Use of enrichment for cheaper and sensitive sequencing of Coronavirus genomes in bats | n/a | TruSeq stranded mRNA library preparation kit, Enrichment performed using xGen baits and modified NimbleGen workflow | Illumina HiSeq and Sanger sequencing | Custom panel synthesised using xGen lockdown baits | Coronavirus genomes (Bat) | 10–1000-fold increase |
Depledge et al. 2011 [44] | Virus characterisation using CBPH (custom panel) followed by Illumina sequencing | n/a | SureSelect target enrichment system | Illumina Genome Analyser IIx | 120-mer RNA probes designed using custom Perl scripts and Agilent eArray software (https://earray.chem.agilent.com/earray/, accessed on 27 April 2023). Synthesised by Agilent | Herpesvirus | exceeded 100-fold read depth |
Pecman et al. 2017 [56] | rRNA enrichment to assess subtractive hybridisation for Illumina sequencing of plant viruses | n/a | TailorMix miRNA Sample preparation kit v2 and Illumina HiSeq. Qiagen RNeasy Mini Kit and ScriptSeq complete kit (plant leaf) followed by MiSeq | Illumina HiSeq (2500), MiSeq | n/a | ssRNA virus and dsDNA virus | n/a |
Cai et al. 2019 [12] | Enrichment for capture and characterisation of Clavibacter liberibacter strains | n/a | SureSelect target enrichment system, TruSeq PCR free DNA library preparation kit | Illumina MiSeq | 120-mer RNA probes designed and synthesised by Agilent | Candidatus Liberibacter asiaticus | 500–45,000-fold increase |
Nguyen et al. 2021 [13] | Enrichment of Oomycete orthologues | n/a | Modified KAPA HyperPrep kit | Illumina MiSeq | Custom filtering of Oomycete sequences, 70-mer probes synthesised by myBaits | 426 Oomycete orthologues | 18-fold median increase |
Yu et al. 2023 [14] | Fungal enrichment using HybCap enrichment and nanopore sequencing | n/a | TwistBioscience enrichment, ligation sequencing library preparation | Nanopore sequencing (MinION) | Twist custom panel | 114 fungal genes spanning 6 phyla | 200–300-fold increase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrall, T.; Brawner, J.; Dinsdale, A.; Kehoe, M. A Review of Probe-Based Enrichment Methods to Inform Plant Virus Diagnostics. Int. J. Mol. Sci. 2024, 25, 8348. https://doi.org/10.3390/ijms25158348
Farrall T, Brawner J, Dinsdale A, Kehoe M. A Review of Probe-Based Enrichment Methods to Inform Plant Virus Diagnostics. International Journal of Molecular Sciences. 2024; 25(15):8348. https://doi.org/10.3390/ijms25158348
Chicago/Turabian StyleFarrall, Thomas, Jeremy Brawner, Adrian Dinsdale, and Monica Kehoe. 2024. "A Review of Probe-Based Enrichment Methods to Inform Plant Virus Diagnostics" International Journal of Molecular Sciences 25, no. 15: 8348. https://doi.org/10.3390/ijms25158348
APA StyleFarrall, T., Brawner, J., Dinsdale, A., & Kehoe, M. (2024). A Review of Probe-Based Enrichment Methods to Inform Plant Virus Diagnostics. International Journal of Molecular Sciences, 25(15), 8348. https://doi.org/10.3390/ijms25158348