A Comprehensive ddPCR Strategy for Sensitive and Reliable Monitoring of CAR-T Cell Kinetics in Clinical Applications
Abstract
:1. Introduction
2. Results
2.1. Approach and Strategy
2.2. Patient Cohort
2.3. Assay Development and Initial Testing
2.3.1. Tisa-Cel
2.3.2. Axi-Cel/Brexu-Cel
2.3.3. Inter-Laboratory Comparison of ddPCR Assay Performance
2.3.4. Analysis from Other Materials Than Blood Samples
2.3.5. Examples of CAR-T Copy Number Kinetics from Patients
2.3.6. CAR-T mRNA Expression in Comparison to Copy Number Quantification
3. Discussion
4. Material and Methods
4.1. Sample Collection and Preparation
4.2. ddPCR
4.3. Design of CAR-T Product Specific Assay Design and Validation
4.4. Inter-Laboratory Comparison of ddPCR Assay Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forsberg, M.H.; Das, A.; Saha, K.; Capitini, C.M. The Potential of CAR T Therapy for Relapsed or Refractory Pediatric and Young Adult B-Cell ALL. Ther. Clin. Risk Manag. 2018, 14, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Anderson, L.D.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Charrot, S.; Hallam, S. CAR-T Cells: Future Perspectives. HemaSphere 2019, 2, e188. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric Antigen Receptor T-Cell Therapy-Assessment and Management of Toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Axicabtagene Ciloleucel in Relapsed or Refractory Indolent Non-Hodgkin Lymphoma (ZUMA-5): A Single-Arm, Multicentre, Phase 2 Trial. Lancet Oncol. 2022, 23, 91–103. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.-A.; Kersten, M.-J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef]
- San-Miguel, J.; Dhakal, B.; Yong, K.; Spencer, A.; Anguille, S.; Mateos, M.-V.; Fernández de Larrea, C.; Martínez-López, J.; Moreau, P.; Touzeau, C.; et al. Cilta-Cel or Standard Care in Lenalidomide-Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 389, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-Cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef]
- Laetsch, T.W.; Maude, S.L.; Rives, S.; Hiramatsu, H. Three-Year Update of Tisagenlecleucel in Pediatric and Young Adult Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia in the ELIANA Trial Clinical Trial Updates Abstract. J. Clin. Oncol. 2023, 41, 1664–1669. [Google Scholar] [CrossRef]
- Schuster, S.J.; Tam, C.S.; Borchmann, P.; Worel, N.; McGuirk, J.P.; Holte, H.; Waller, E.K.; Jaglowski, S.; Bishop, M.R.; Damon, L.E.; et al. Long-Term Clinical Outcomes of Tisagenlecleucel in Patients with Relapsed or Refractory Aggressive B-Cell Lymphomas (JULIET): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. Lancet Oncol. 2021, 22, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Cappell, K.M.; Kochenderfer, J.N. Long-Term Outcomes Following CAR T Cell Therapy: What We Know so Far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef]
- Sun, D.; Shi, X.; Li, S.; Wang, X.; Yang, X.; Wan, M. CAR-T Cell Therapy: A Breakthrough in Traditional Cancer Treatment Strategies (Review). Mol. Med. Rep. 2024, 29, 47. [Google Scholar] [CrossRef] [PubMed]
- Trottmann, M.; Blozik, E.; Hilbig, M.; LoVerdi, D.; Pedruzzi, M.; Scherer, T.; Weiss, M.; Pletscher, M.; Meier, N. Real-World Expenditures and Survival Time after CAR-T Treatment for Large B-Cell Lymphoma in Switzerland: A Retrospective Study Using Insurance Claims Data. Swiss Med. Wkly. 2023, 153, s3441. [Google Scholar] [CrossRef]
- Porter, D.L.; Hwang, W.T.; Frey, N.V.; Lacey, S.F.; Shaw, P.A.; Loren, A.W.; Bagg, A.; Marcucci, K.T.; Shen, A.; Gonzalez, V.; et al. Chimeric Antigen Receptor T Cells Persist and Induce Sustained Remissions in Relapsed Refractory Chronic Lymphocytic Leukemia. Sci. Transl. Med. 2015, 7, 303ra139. [Google Scholar] [CrossRef]
- Frigault, M.J.; Maus, M.V. State of the Art in CAR T Cell Therapy for CD19+ B Cell Malignancies. J. Clin. Investig. 2020, 130, 1586–1594. [Google Scholar] [CrossRef]
- Wittibschlager, V.; Bacher, U.; Seipel, K.; Porret, N.; Wiedemann, G.; Haslebacher, C.; Hoffmann, M.; Daskalakis, M.; Akhoundova, D.; Pabst, T. CAR T-Cell Persistence Correlates with Improved Outcome in Patients with B-Cell Lymphoma. Int. J. Mol. Sci. 2023, 24, 5688. [Google Scholar] [CrossRef]
- Heini, A.D.; Bacher, U.; Kronig, M.-N.; Wiedemann, G.; Novak, U.; Zeerleder, S.; Mansouri Taleghani, B.; Daskalakis, M.; Pabst, T. Chimeric Antigen Receptor T-Cell Therapy for Relapsed Mantle Cell Lymphoma: Real-World Experience from a Single Tertiary Care Center. Bone Marrow Transplant. 2022, 57, 1010–1012. [Google Scholar] [CrossRef] [PubMed]
- Hays, A.; Durham, J.; Gullick, B.; Rudemiller, N.; Schneider, T. Bioanalytical Assay Strategies and Considerations for Measuring Cellular Kinetics. Int. J. Mol. Sci. 2023, 24, 695. [Google Scholar] [CrossRef] [PubMed]
- DePriest, B.P.; Vieira, N.; Bidgoli, A.; Paczesny, S. An Overview of Multiplexed Analyses of CAR T-Cell Therapies: Insights and Potential. Expert Rev. Proteom. 2021, 18, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.C.; Fehse, B.; Rubio, M.-T. Immune Monitoring. In The EBMT/EHA CAR-T Cell Handbook; Kröger, N., Gribben, J., Chabannon, C., Yakoub-Agha, I., Einsele, H., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 177–182. ISBN 978-3-030-94353-0. [Google Scholar]
- Galli, E.; Viscovo, M.; Fosso, F.; Pansini, I.; Di Cesare, G.; Iacovelli, C.; Maiolo, E.; Sorà, F.; Hohaus, S.; Sica, S.; et al. Unlocking Predictive Power: Quantitative Assessment of CAR-T Expansion with Digital Droplet Polymerase Chain Reaction (DdPCR). Int. J. Mol. Sci. 2024, 25, 2673. [Google Scholar] [CrossRef] [PubMed]
- García-Calderón, C.B.; Sierro-Martínez, B.; García-Guerrero, E.; Sanoja-Flores, L.; Muñoz-García, R.; Ruiz-Maldonado, V.; Jimenez-Leon, M.R.; Delgado-Serrano, J.; Molinos-Quintana, Á.; Guijarro-Albaladejo, B.; et al. Monitoring of Kinetics and Exhaustion Markers of Circulating CAR-T Cells as Early Predictive Factors in Patients with B-Cell Malignancies. Front. Immunol. 2023, 14, 1152498. [Google Scholar] [CrossRef] [PubMed]
- Hay, K.A.; Hanafi, L.A.; Li, D.; Gust, J.; Liles, W.C.; Wurfel, M.M.; López, J.A.; Chen, J.; Chung, D.; Harju-Baker, S.; et al. Kinetics and Biomarkers of Severe Cytokine Release Syndrome after CD19 Chimeric Antigen Receptor–Modified T-Cell Therapy. Blood 2017, 130, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-Term Safety and Activity of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphoma (ZUMA-1): A Single-Arm, Multicentre, Phase 1–2 Trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S. Managing the Toxicities of CAR T-cell Therapy. Hematol. Oncol. 2019, 37, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.M.; Grupp, S.A.; Levine, J.E.; Laetsch, T.W.; Pulsipher, M.A.; Boyer, M.W.; August, K.J.; Levine, B.L.; Tomassian, L.; Shah, S.; et al. Tisagenlecleucel Model-Based Cellular Kinetic Analysis of Chimeric Antigen Receptor–T Cells. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 285–295. [Google Scholar] [CrossRef]
- Pabst, T.; Joncourt, R.; Shumilov, E.; Heini, A.; Wiedemann, G.; Legros, M.; Seipel, K.; Schild, C.; Jalowiec, K.; Mansouri Taleghani, B.; et al. Analysis of IL-6 Serum Levels and CAR T Cell-Specific Digital PCR in the Context of Cytokine Release Syndrome. Exp. Hematol. 2020, 88, 7–14. [Google Scholar] [CrossRef]
- Milone, M.C.; Fish, J.D.; Carpenito, C.; Carroll, R.G.; Binder, G.K.; Teachey, D.; Samanta, M.; Lakhal, M.; Gloss, B.; Danet-Desnoyers, G.; et al. Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy in Vivo. Mol. Ther. 2009, 17, 1453–1464. [Google Scholar] [CrossRef]
- Mika, T.; Maghnouj, A.; Klein-Scory, S.; Ladigan-Badura, S.; Baraniskin, A.; Thomson, J.; Hasenkamp, J.; Hahn, S.A.; Wulf, G.; Schroers, R. Digital-Droplet PCR for Quantification of CD19-Directed CAR T-Cells. Front. Mol. Biosci. 2020, 7, 533540. [Google Scholar] [CrossRef]
- Wang, H.; Du, X.; Chen, W.H.; Lou, J.; Xiao, H.L.; Pan, Y.M.; Chen, H.; An, N.; Zhang, Q.X. Establishment of a Quantitative Polymerase Chain Reaction Assay for Monitoring Chimeric Antigen Receptor T Cells in Peripheral Blood. Transplant. Proc. 2018, 50, 104–109. [Google Scholar] [CrossRef]
- Badbaran, A.; Berger, C.; Riecken, K.; Kruchen, A.; Geffken, M.; Müller, I.; Kröger, N.; Ayuk, F.A.; Fehse, B. Accurate In-Vivo Quantification of Cd19 Car-t Cells after Treatment with Axicabtagene Ciloleucel (Axi-Cel) and Tisagenlecleucel (Tisa-Cel) Using Digital Pcr. Cancers 2020, 12, 1970. [Google Scholar] [CrossRef]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy Bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Fehse, B.; Badbaran, A.; Berger, C.; Sonntag, T.; Riecken, K.; Geffken, M.; Kröger, N.; Ayuk, F.A. Digital PCR Assays for Precise Quantification of CD19-CAR-T Cells after Treatment with Axicabtagene Ciloleucel. Mol. Ther. Methods Clin. Dev. 2020, 16, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci. Transl. Med. 2011, 3. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration U.S. Food and Drug Administration Center for Biologics Evaluation and Research. Long Term Follow-Up after Administration of Human Gene Therapy Products Guidance for Industry; FDA: Silver Spring, MD, USA, 2020. [Google Scholar]
- Lou, Y.; Chen, C.; Long, X.; Gu, J.; Xiao, M.; Wang, D.; Zhou, X.; Li, T.; Hong, Z.; Li, C.; et al. Detection and Quantification of Chimeric Antigen Receptor Transgene Copy Number by Droplet Digital PCR versus Real-Time PCR. J. Mol. Diagn. 2020, 22, 699–707. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Feldman, S.A.; Zhao, Y.; Xu, H.; Black, M.A.; Morgan, R.A.; Wilson, W.H.; Rosenberg, S.A. Construction and Preclinical Evaluation of an Anti-CD19 Chimeric Antigen Receptor. J. Immunother. 2009, 32, 689–702. [Google Scholar] [CrossRef]
- Heini, A.D.; Bacher, U.; Porret, N.; Wiedemann, G.; Legros, M.; Stalder Zeerleder, D.; Seipel, K.; Novak, U.; Daskalakis, M.; Pabst, T. Experiences with Glofitamab Administration Following CAR T Therapy in Patients with Relapsed Mantle Cell Lymphoma. Cells 2022, 11, 2747. [Google Scholar] [CrossRef]
- Messerli, C.; Wiedemann, G.; Porret, N.; Nagler, M.; Seipel, K.; Jeker, B.; Novak, U.; Zeerleder, S.; Bacher, U.; Pabst, T. Correlation of Peripheral Chimeric Antigen Receptor T-Cell (CAR-T Cell) MRNA Expression Levels with Toxicities and Outcomes in Patients with Diffuse Large B-Cell Lymphoma. Turk. J. Hematol. 2023, 40, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, H.; Chen, S.; Minembe, J.P.; Chouitar, J.; He, X.; Wang, H.; Fang, X.; Qian, M.G. Insights on Droplet Digital PCR–Based Cellular Kinetics and Biodistribution Assay Support for CAR-T Cell Therapy. AAPS J. 2021, 23, 36. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Qin, H.; Yates, B.; Su, L.; Shalabi, H.; Raffeld, M.; Ahlman, M.A.; Stetler-Stevenson, M.; Yuan, C.; Guo, S.; et al. Clonal Expansion of CAR T Cells Harboring Lentivector Integration in the CBL Gene Following Anti-CD22 CAR T-Cell Therapy. Blood Adv. 2019, 3, 2317–2322. [Google Scholar] [CrossRef] [PubMed]
- Nobles, C.L.; Sherrill-Mix, S.; Everett, J.K.; Reddy, S.; Fraietta, J.A.; Porter, D.L.; Frey, N.; Gill, S.I.; Grupp, S.A.; Maude, S.L.; et al. CD19-Targeting CAR T Cell Immunotherapy Outcomes Correlate with Genomic Modification by Vector Integration. J. Clin. Investig. 2020, 130, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Sheih, A.; Voillet, V.; Hanafi, L.A.; DeBerg, H.A.; Yajima, M.; Hawkins, R.; Gersuk, V.; Riddell, S.R.; Maloney, D.G.; Wohlfahrt, M.E.; et al. Clonal Kinetics and Single-Cell Transcriptional Profiling of CAR-T Cells in Patients Undergoing CD19 CAR-T Immunotherapy. Nat. Commun. 2020, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Fraietta, J.A.; Nobles, C.L.; Sammons, M.A.; Lundh, S.; Carty, S.A.; Reich, T.J.; Cogdill, A.P.; Morrissette, J.J.D.; DeNizio, J.E.; Reddy, S.; et al. Disruption of TET2 Promotes the Therapeutic Efficacy of CD19-Targeted T Cells. Nature 2018, 558, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; ichi Matsumoto, S.; Goto, A.; Ugajin, M.; Nakayama, M.; Moriya, Y.; Hirabayashi, H. Quantitative PCR Methodology with a Volume-Based Unit for the Sophisticated Cellular Kinetic Evaluation of Chimeric Antigen Receptor T Cells. Sci. Rep. 2020, 10, 17884. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, R.; Pacaud, L.; Waldron, E.; Tam, C.S.; Jäger, U.; Borchmann, P.; Jaglowski, S.; Foley, S.R.; Van Besien, K.; Wagner-Johnston, N.D.; et al. Tisagenlecleucel Cellular Kinetics, Dose, and Immunogenicity in Relation to Clinical Factors in Relapsed/Refractory DLBCL. Blood Adv. 2020, 4, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Locke, F.L.; Neelapu, S.S.; Bartlett, N.L.; Siddiqi, T.; Chavez, J.C.; Hosing, C.M.; Ghobadi, A.; Budde, L.E.; Bot, A.; Rossi, J.M.; et al. Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma. Mol. Ther. 2017, 25, 285–295. [Google Scholar] [CrossRef]
- Ayuk, F.A.; Berger, C.; Badbaran, A.; Zabelina, T.; Sonntag, T.; Riecken, K.; Geffken, M.; Wichmann, D.; Frenzel, C.; Thayssen, G.; et al. Axicabtagene Ciloleucel in Vivo Expansion and Treatment Outcome in Aggressive B-Cell Lymphoma in a Real-World Setting. Blood Adv. 2021, 5, 2523–2527. [Google Scholar] [CrossRef]
- Monfrini, C.; Stella, F.; Aragona, V.; Magni, M.; Ljevar, S.; Vella, C.; Fardella, E.; Chiappella, A.; Nanetti, F.; Pennisi, M.; et al. Phenotypic Composition of Commercial Anti-CD19 CAR T Cells Affects In Vivo Expansion and Disease Response in Patients with Large B-Cell Lymphoma. Clin. Cancer Res. 2022, 28, 3378–3386. [Google Scholar] [CrossRef] [PubMed]
- Gagelmann, N.; Bishop, M.; Ayuk, F.; Bethge, W.; Glass, B.; Sureda, A.; Pasquini, M.C.; Kröger, N. Axicabtagene Ciloleucel versus Tisagenlecleucel for Relapsed or Refractory Large B Cell Lymphoma: A Systematic Review and Meta-Analysis. Transplant. Cell. Ther. 2024, 30, 584.e1–584.e13. [Google Scholar] [CrossRef] [PubMed]
- Fürst, D.; Neuchel, C.; Neagoie, A.; Amann, E.; Rode, I.; Krauss, A.; Schrezenmeier, H.; Wais, V.; Döhner, H.; Viardot, A.; et al. Monitoring the In-Vivo Expansion and Persistence of CAR-T Cells as a Tool to Help Decision Making in Patients with Aggressive B-Cell Lymphoma. Blood 2022, 140, 7527–7528. [Google Scholar] [CrossRef]
- Bachy, E.; Le Gouill, S.; Di Blasi, R.; Sesques, P.; Manson, G.; Cartron, G.; Beauvais, D.; Roulin, L.; Gros, F.X.; Rubio, M.T.; et al. A Real-World Comparison of Tisagenlecleucel and Axicabtagene Ciloleucel CAR T Cells in Relapsed or Refractory Diffuse Large B Cell Lymphoma. Nat. Med. 2022, 28, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- He, H.J.; Stein, E.V.; DeRose, P.; Cole, K.D. Limitations of Methods for Measuring the Concentration of Human Genomic DNA and Oligonucleotide Samples. Biotechniques 2018, 64, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Härmälä, S.K.; Butcher, R.; Roberts, C.H. Copy Number Variation Analysis by Droplet Digital PCR. Methods Mol. Biol. 2017, 1654, 135–149. [Google Scholar] [CrossRef]
- Beillard, E.; Pallisgaard, N.; van der Velden, V.H.J.; Bi, W.; Dee, R.; van der Schoot, E.; Delabesse, E.; Macintyre, E.; Gottardi, E.; Saglio, G.; et al. Evaluation of Candidate Control Genes for Diagnosis and Residual Disease Detection in Leukemic Patients Using “real-Time” Quantitative Reverse-Transcriptase Polymerase Chain Reaction (RQ-PCR)—A Europe against Cancer Program. Leukemia 2003, 17, 2474–2486. [Google Scholar] [CrossRef]
Tisa-Cel | Axi-Cel | Brexu-Cel | |
---|---|---|---|
no. of patients | 73 (32 , 41 ) | 50 (22 , 28 ) | 18 (7 , 11 ) |
peak CAR-T expansion | |||
day | 12 (2–84) | 11 (5–26) | 17 (5–61) |
average copies/µg DNA | 9733(265–127,942; n = 72 *) | 12,375(37–91,575; n = 50) | 7396(14–92,887; n = 17 **) |
survival | |||
at 6 months | 66% (48 of 73) | 84% (42 of 50) | 78% (14 of 18) |
at 1 year | 59% (43 of 73) | 78% (39 of 50) | 72% (13 of 18) |
persistence | |||
average [days] | 303 (n = 72) | 187 (n = 50) | 90 (n = 18) |
>1 year | 97% (33 of 34) | 48% (10 of 21) | 83% (5 of 6) |
ddPCR Assays: Primers and Probes | ||
tisa-cel (assay 1 own design [31]) | CTL019 4-1BB F1 | 5′-GAAGATGGCTGTAGCTGCC-3′ |
CTL019 CD3z R1 | 5′-GCTCCTGCTGAACTTCACTC-3′ | |
CTL019 4-1BBz probe | 5′-FAM-GAAGAAGAAGAAGGAGGATGTGAACTG-BHQ1-3′ | |
tisa-cel (assay 2, Milone et al. [32]) | CTL019 4-1BB F2 | 5′-TGCCGATTTCCAGAAGAAGAAGAAG-3′ |
CTL019 CD3z R3 | 5′-GCGCTCCTGCTGAACTTC-3′ | |
CTL019 4-1BBCD3z probe | 5′-FAM-ACTCTCAGTTCACATCCTC-MGB-3′ | |
liso-cel [31] | CTL019 4-1BB F1 | 5′-GAAGATGGCTGTAGCTGCC-3′ |
CTL019 CD3z R4 | 5′-GCTTCTGCTGAACTTCACCC-3′ | |
CTL019 4-1BBz probe | 5′-FAM-GAAGAAGAAGAAGGAGGATGTGAACTG -BHQ1-3′ | |
RPP30 [58] | RPP30 F | 5′-AGATTTGGACCTGCGAGCG-3′ |
RPP30 R | 5′-GAGCGGCTGTCTCCACAAGT-3′ | |
RPP30 probe | 5′-HEX-TTCTGACCTGAAGGCTCTGCGCG-BHQ1-3′ | |
ABL1 | ENF1003 short | 5′-GAGATAACACTCTAAGCATAACTAAAG-3′ |
ENR1063 short | 5′-GTAGTTGCTTGGGACCCA-3′ | |
EnPr1043 | 5′-HEX-CCATTTTTGGTTTGGGCTTCACACCATT-BHQ1-3′ | |
Oligonucleotides for PCR and Sanger Sequencing | ||
tisa-cel | CTL019 4-1BB SeqF | 5′-ACGGGGCAGAAAGAAACTCC-3′ |
CTL019 CD3z SeqR | 5′-CTGTAGGCCTCCGCCATC-3′ | |
axi-cel | Yescarta CD28 SeqF | 5′-GGTGAGGAGTAAGAGGAGC-3′ |
CTL019 CD3z SeqR | 5′-CTGTAGGCCTCCGCCATC-3′ | |
liso-cel | CTL019 4-1BB SeqF | 5′-ACGGGGCAGAAAGAAACTCC-3′ |
CTL019 CD3z SeqR2 | 5′-GATTCTGGCCCTGCTGGTAG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiedemann, G.; Bacher, U.; Joncourt, R.; Solly, F.; Widmer, C.C.; Zeerleder, S.; Novak, U.; Pabst, T.; Porret, N.A. A Comprehensive ddPCR Strategy for Sensitive and Reliable Monitoring of CAR-T Cell Kinetics in Clinical Applications. Int. J. Mol. Sci. 2024, 25, 8556. https://doi.org/10.3390/ijms25168556
Wiedemann G, Bacher U, Joncourt R, Solly F, Widmer CC, Zeerleder S, Novak U, Pabst T, Porret NA. A Comprehensive ddPCR Strategy for Sensitive and Reliable Monitoring of CAR-T Cell Kinetics in Clinical Applications. International Journal of Molecular Sciences. 2024; 25(16):8556. https://doi.org/10.3390/ijms25168556
Chicago/Turabian StyleWiedemann, Gertrud, Ulrike Bacher, Raphael Joncourt, Françoise Solly, Corinne C. Widmer, Sacha Zeerleder, Urban Novak, Thomas Pabst, and Naomi A. Porret. 2024. "A Comprehensive ddPCR Strategy for Sensitive and Reliable Monitoring of CAR-T Cell Kinetics in Clinical Applications" International Journal of Molecular Sciences 25, no. 16: 8556. https://doi.org/10.3390/ijms25168556
APA StyleWiedemann, G., Bacher, U., Joncourt, R., Solly, F., Widmer, C. C., Zeerleder, S., Novak, U., Pabst, T., & Porret, N. A. (2024). A Comprehensive ddPCR Strategy for Sensitive and Reliable Monitoring of CAR-T Cell Kinetics in Clinical Applications. International Journal of Molecular Sciences, 25(16), 8556. https://doi.org/10.3390/ijms25168556