Specific Deletions of Chromosomes 3p, 5q, 13q, and 21q among Patients with G2 Grade of Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Histochemical Staining with Hematoxylin and Eosin (H + E)
4.2. Patient Characterization
4.2.1. Patient No. 1
4.2.2. Patient No. 2
4.2.3. Patient No. 3
4.3. DNA Microarray Analysis
4.4. Identification of LOH Lesions
4.5. Functional Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.-X.; Liao, H.-J.; Hu, J.-J.; Xiong, H.; Cai, X.-Y.; Ye, D.-W. Global Burden of Lung Cancer Attributable to Household Fine Particulate Matter Pollution in 204 Countries and Territories, 1990 to 2019. J. Thorac. Oncol. 2024, 19, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Pesch, B.; Kendzia, B.; Gustavsson, P.; Jöckel, K.; Johnen, G.; Pohlabeln, H.; Olsson, A.; Ahrens, W.; Gross, I.M.; Brüske, I.; et al. Cigarette smoking and lung cancer—Relative risk estimates for the major histological types from a pooled analysis of case–control studies. Int. J. Cancer 2012, 131, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Lemjabbar-Alaoui, H.; Hassan, O.U.; Yang, Y.-W.; Buchanan, P. Lung cancer: Biology and treatment options. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2015, 1856, 189–210. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef]
- Kiyohara, C.; Otsu, A.; Shirakawa, T.; Fukuda, S.; Hopkin, J.M. Genetic polymorphisms and lung cancer susceptibility: A review. Lung Cancer 2002, 37, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Khan, S.; Tollefsbol, T.O.; Meeran, S.M. Genetics and Epigenetics of Lung Cancer: Mechanisms and Future Perspectives. Curr. Cancer Ther. Rev. 2013, 9, 97–110. [Google Scholar] [CrossRef]
- Wang, L.-H.; Wu, C.-F.; Rajasekaran, N.; Shin, Y.K. Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell Physiol. Biochem. 2018, 51, 2647–2693. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, F.R.; Franklin, W.A.; Gazdar, A.F.; Bunn, P.A. Early detection of lung cancer: Clinical perspectives of recent advances in biology and radiology. Clin. Cancer Res. 2001, 7, 5–22. [Google Scholar] [PubMed]
- Carper, M.B.; Claudio, P.P. Clinical potential of gene mutations in lung cancer. Clin. Transl. Med. 2015, 4, 33. [Google Scholar] [CrossRef]
- Girard, N.; Deshpande, C.; Lau, C.; Finley, D.; Rusch, V.; Pao, W.; Travis, W.D. Comprehensive histologic assessment helps to differentiate multiple lung primary nonsmall cell carcinomas from metastases. Am. J. Surg. Pathol. 2009, 33, 1752–1764. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012, 489, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, M.; Fujita, T.; Kimura, Y.; Maruyama, M.; Harada, H.; Sudo, Y.; Miyata, T.; Taniguchi, T. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-β gene regulatory elements. Cell 1988, 54, 903–913. [Google Scholar] [CrossRef]
- Willman, C.L.; Sever, C.E.; Pallavicini, M.G.; Harada, H.; Tanaka, N.; Slovak, M.L.; Yamamoto, H.; Harada, K.; Meeker, T.C.; List, A.F.; et al. Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science 1993, 259, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Hatzistergos, K.E.; Williams, A.R.; Dykxhoorn, D.M.; Bellio, M.A.; Yu, W.; Hare, J.M. Tumor Suppressors RB1 and CDKN2a Cooperatively Regulate Cell-Cycle Progression and Differentiation During Cardiomyocyte Development and Repair. Circ. Res. 2019, 124, 1184–1197. [Google Scholar] [CrossRef]
- Pacifico, A.; Leone, G. Role of p53 and CDKN2A inactivation in human squamous cell carcinomas. J. Biomed. Biotechnol. 2007, 2007, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Lester, J.F. Tyrosine Kinase Inhibitors for the Treatment of EGFR Mutation-Positive Non–Small-Cell Lung Cancer: A Clash of the Generations. Clin. Lung Cancer 2020, 21, e216–e228. [Google Scholar] [CrossRef]
- Normanno, N.; Gullick, W.J. Epidermal growth factor receptor tyrosine kinase inhibitors and bone metastases: Different mechanisms of action for a novel therapeutic application? Endocrine-Related Cancer 2006, 13, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.; Heo, J.; Han, S.S.; Kim, W.J.; Cheong, H.S.; Hong, Y. Difference of copy number variation in blood of patients with lung cancer. Int. J. Biol. Markers 2021, 36, 3–9. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Lin, X.; Chirieac, L.R.; McGovern, R.; Wain, J.C.; Heist, R.S.; Skaug, V.; Zienolddiny, S.; Haugen, A.; Su, L.; et al. Impact on disease development, genomic location and biological function of copy number alterations in non-small cell lung cancer. PLoS ONE 2011, 6, e22961. [Google Scholar] [CrossRef]
- Li, F.; Sun, L.; Zhang, S. Acquirement of DNA copy number variations in non-small cell lung cancer metastasis to the brain. Oncol. Rep. 2015, 34, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Zhuo, M.; Su, Z.; Duan, J.; Gao, Y.; Wang, Z.; Zong, C.; Bai, H.; Chapman, A.R.; Zhao, J.; et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc. Natl. Acad. Sci. USA 2013, 110, 21083–21088. [Google Scholar] [CrossRef] [PubMed]
- Bowcock, A.M. DNA copy number changes as diagnostic tools for lung cancer. Thorax 2014, 69, 496–497. [Google Scholar] [CrossRef]
- He, H.; Ma, H.; Chen, Z.; Chen, J.; Wu, D.; Lv, X.; Zhu, J. Chromosomal Copy Number Variation Predicts EGFR-TKI Response and Prognosis for Patients with Non-Small Cell Lung Cancer. Pharmacogenomics Pers. Med. 2023, 16, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Ogiwara, H.; Kohno, T.; Nakanishi, H.; Nagayama, K.; Sato, M.; Yokota, J. Unbalanced translocation, a major chromosome alteration causing loss of heterozygosity in human lung cancer. Oncogene 2008, 27, 4788–4797. [Google Scholar] [CrossRef] [PubMed]
- Wistuba, I.I.; Behrens, C.; Milchgrub, S.; Bryant, D.; Hung, J.; Minna, J.D.; Gazdar, A.F. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 1999, 18, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, I.; Osoegawa, A.; Yohena, T.; Kameyama, T.; Oki, E.; Oda, S.; Maehara, Y. Loss of heterozygosity (LOH) in non-small cell lung cancer: Difference between adenocarcinoma and squamous cell carcinoma. Respir. Med. 2005, 99, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Wistuba, I.I.; Maitra, A.; Carrasco, R.; Tang, M.; Troncoso, P.; Minna, J.D.; Gazdar, A.F. High resolution chromosome 3p, 8p, 9q and 22q allelotyping analysis in the pathogenesis of gallbladder carcinoma. Br. J. Cancer 2002, 87, 432–440. [Google Scholar] [CrossRef]
- Zabarovsky, E.R.; Lerman, M.I.; Minna, J.D. Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 2002, 21, 6915–6935. [Google Scholar] [CrossRef]
- Zriwil, A.; Böiers, C.; Kristiansen, T.A.; Wittmann, L.; Yuan, J.; Nerlov, C.; Sitnicka, E.; Jacobsen, S.E.W. Direct role of FLT3 in regulation of early lymphoid progenitors. Br. J. Haematol. 2018, 183, 588–600. [Google Scholar] [CrossRef]
- El Fakih, R.; Rasheed, W.; Hawsawi, Y.; Alsermani, M.; Hassanein, M. Targeting FLT3 mutations in acute myeloid leukemia. cells 2018, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Grafone, T.; Palmisano, M.; Nicci, C.; Storti, S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: Biology and treatment. Oncol. Rev. 2012, 6, e8. [Google Scholar] [CrossRef] [PubMed]
- Sutamtewagul, G.; Vigil, C.E. Clinical use of FLT3 inhibitors in acute myeloid leukemia. OncoTargets Ther. 2018, 11, 7041–7052. [Google Scholar] [CrossRef] [PubMed]
- JiaXin, Y.; XiaoFeng, C.; PengFei, C.; Songchen, Z.; Ziling, L. Repeatedly next-generation sequencing during treatment follow-up of patients with small cell lung cancer. Medicine 2023, 102, e34143. [Google Scholar] [CrossRef] [PubMed]
- Pop-Bica, C.; Ciocan, C.A.; Braicu, C.; Haranguș, A.; Simon, M.; Nutu, A.; Pop, L.A.; Slaby, O.; Atanasov, A.G.; Pirlog, R.; et al. Next-Generation Sequencing in Lung Cancer Patients: A Comparative Approach in NSCLC and SCLC Mutational Landscapes. J. Pers. Med. 2022, 12, 453. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, G.; Kantarjian, H.; Ravandi, F.; Zhang, W.; Konopleva, M.; Wright, J.J.; Faderl, S.; Verstovsek, S.; Mathews, S.; Andreeff, M.; et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica 2011, 96, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.M.; DeAngelo, D.J.; Klimek, V.; Galinsky, I.; Estey, E.; Nimer, S.D.; Grandin, W.; Lebwohl, D.; Wang, Y.; Cohen, P.; et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005, 105, 54–60. [Google Scholar] [CrossRef]
- Ryu, H.; Choi, H.-K.; Kim, H.J.; Kim, A.-Y.; Song, J.-Y.; Hwang, S.-G.; Kim, J.-S.; Kim, D.-U.; Kim, E.-H.; Kim, J.; et al. Antitumor Activity of a novel tyrosine kinase inhibitor aiu2001 due to abrogation of the dna damage repair in non-small cell lung cancer cells. Int. J. Mol. Sci. 2019, 20, 4728. [Google Scholar] [CrossRef] [PubMed]
- Abrams, T.J.; Lee, L.B.; Murray, L.J.; Pryer, N.K.; Cherrington, J.M. SU11248 inhibits KIT and platelet-derived growth factor receptor β in preclinical models of human small cell lung cancer. Mol. Cancer Ther. 2003, 2, 471–478. [Google Scholar]
- Hume, D.A.; MacDonald, K.P.A. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 2012, 119, 1810–1820. [Google Scholar] [CrossRef]
- Khaled, Y.S.; Ammori, B.J.; Elkord, E. Myeloid-derived suppressor cells in cancer: Recent progress and prospects. Immunol. Cell Biol. 2013, 91, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Talmadge, J.E.; Gabrilovich, D.I. History of myeloid-derived suppressor cells. Nat. Rev. Cancer 2013, 13, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Larroquette, M.; Guegan, J.-P.; Besse, B.; Cousin, S.; Brunet, M.; Le Moulec, S.; Le Loarer, F.; Rey, C.; Soria, J.-C.; Barlesi, F.; et al. Spatial transcriptomics of macrophage infiltration in non-small cell lung cancer reveals determinants of sensitivity and resistance to anti-PD1/PD-L1 antibodies. J. Immunother. Cancer 2022, 10, e003890. [Google Scholar] [CrossRef]
- Patel, S.; Player, M.R. Colony-Stimulating Factor-1 Receptor Inhibitors for the Treatment of Cancer and Inflammatory Disease. Curr. Top. Med. Chem. 2009, 9, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int. J. Mol. Med. 2016, 38, 3–15. [Google Scholar] [CrossRef]
- Papadopoulos, K.P.; Gluck, L.; Martin, L.P.; Olszanski, A.J.; Tolcher, A.W.; Ngarmchamnanrith, G.; Rasmussen, E.; Amore, B.M.; Nagorsen, D.; Hill, J.S.; et al. First-in-human study of amg 820, a monoclonal anti-colony-stimulating factor 1 receptor antibody, in patients with advanced solid tumors. Clin. Cancer Res. 2017, 23, 5703–5710. [Google Scholar] [CrossRef] [PubMed]
- Inamura, K.; Shigematsu, Y.; Ninomiya, H.; Nakashima, Y.; Kobayashi, M.; Saito, H.; Takahashi, K.; Futaya, E.; Okumura, S.; Ishikawa, Y.; et al. CSF1R-expressing tumor-associated macrophages, smoking and survival in lung adenocarcinoma: Analyses using quantitative phosphor-integrated dot staining. Cancers 2018, 10, 252. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lyu, Z.; Qin, Y.; Wang, X.; Sun, L.; Zhang, Y.; Gong, L.; Wu, S.; Han, S.; Tang, Y.; et al. FOXO1 promotes tumor progression by increased M2 macrophage infiltration in esophageal squamous cell carcinoma. Theranostics 2020, 10, 11535–11548. [Google Scholar] [CrossRef]
- Furtado, G.V.; Yang, J.; Wu, D.; Papagiannopoulos, C.I.; Terpstra, H.M.; Kuiper, E.F.E.; Krauss, S.; Zhu, W.-G.; Kampinga, H.H.; Bergink, S. FOXO1 controls protein synthesis and transcript abundance of mutant polyglutamine proteins, preventing protein aggregation. Hum. Mol. Genet. 2021, 30, 996–1005. [Google Scholar] [CrossRef]
- Ebrahimnezhad, M.; Natami, M.; Bakhtiari, G.H.; Tabnak, P.; Ebrahimnezhad, N.; Yousefi, B.; Majidinia, M. FOXO1, a tiny protein with intricate interactions: Promising therapeutic candidate in lung cancer. Biomed. Pharmacother. 2023, 169, 115900. [Google Scholar] [CrossRef]
- Xing, Y.-Q.; Li, A.; Yang, Y.; Li, X.-X.; Zhang, L.-N.; Guo, H.-C. The regulation of FOXO1 and its role in disease progression. Life Sci. 2018, 193, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Link, W.; Fernandez-Marcos, P.J. FOXO transcription factors at the interface of metabolism and cancer. Int. J. Cancer 2017, 141, 2379–2391. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.; Liu, B.; Zhang, J. Hypoxia and hypoxia-inducible factor 1 repress SEMA4B expression to promote non-small cell lung cancer invasion. Tumor Biol. 2014, 35, 4949–4955. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cheng, M.; Zhang, W.; He, R.; Yang, H. New Insights into the Mechanisms of Polyphenol from Plum Fruit Inducing Apoptosis in Human Lung Cancer A549 Cells Via PI3K/AKT/FOXO1 Pathway. Plant Foods Hum. Nutr. 2021, 76, 125–132. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, X.-W.; Li, L.; Hu, M.-N.; Hu, W.-Q.; Zhang, J.-Y.; Miao, X.-K.; Yang, W.-L.; Mou, L.-Y. Inhibition of autophagy by YC-1 promotes gefitinib induced apoptosis by targeting FOXO1 in gefitinib-resistant NSCLC cells. Eur. J. Pharmacol. 2021, 908, 174346. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, J.; Deng, B.; Fan, X.; Long, T.; Jin, H.; Tao, S.; Kang, P.; Tan, Q. FOXO1 and FOXO3a sensitize non-small-cell lung cancer cells to cisplatin-induced apoptosis independent of Bim. Acta Biochim. Biophys. Sin. 2020, 52, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.; Butnor, K.; Peng, Z.; Leclair, T.; van der Velden, J.; Stein, G.; Lian, J.; Kinsey, C.M. Loss of RUNX1 is associated with aggressive lung adenocarcinomas. J. Cell. Physiol. 2018, 233, 3487–3497. [Google Scholar] [CrossRef]
- Yan, J.; Liu, Y.; Lukasik, S.M.; Speck, N.A.; Bushweller, J.H. CBFβ allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nat. Struct. Mol. Biol. 2004, 11, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Bin Lee, B.; Kim, D.; Um, S.; Cho, E.Y.; Han, J.; Shim, Y.M.; Kim, D.-H. Clinicopathological significance of runx1 in non-small cell lung cancer. J. Clin. Med. 2020, 9, 1694. [Google Scholar] [CrossRef]
- Ma, H.; Jiang, S.; Yuan, Y.; Li, J.; Li, Y.; Lv, Y.; Du, T.; Guan, J.; Jiang, X.; Tian, L.; et al. RUNX1 promotes proliferation and migration in non-small cell lung cancer cell lines via the mTOR pathway. FASEB J. 2023, 37, e23195. [Google Scholar] [CrossRef]
- Tang, P.C.; Chan, M.K.; Chung, J.Y.; Chan, A.S.; Zhang, D.; Li, C.; Leung, K.; Ng, C.S.; Wu, Y.; To, K.; et al. Hematopoietic Transcription Factor RUNX1 is Essential for Promoting Macrophage–Myofibroblast Transition in Non-Small-Cell Lung Carcinoma. Adv. Sci. 2024, 11, e2302203. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Bai, X.; Li, Y.; Sun, H.; Kong, X.; Fu, B.; Chen, L.; Zhu, K.; Li, P.; Xu, S. Runt-related transcription factor 1 contributes to lung cancer development by binding to tartrate-resistant acid phosphatase 5. Cell Cycle 2019, 18, 3404–3419. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Roman, J. Peroxisome proliferator-activated receptor γ: A novel target for cancer therapeutics? Anti-Cancer Drugs 2007, 18, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Janani, C.; Kumari, B.R. PPAR gamma gene—A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Giaginis, C.; Politi, E.; Alexandrou, P.; Sfiniadakis, J.; Kouraklis, G.; Theocharis, S. Expression of peroxisome proliferator activated receptor-gamma (ppar-γ) in human non-small cell lung carcinoma: Correlation with clinicopathological parameters, proliferation and apoptosis related molecules and patients’ survival. Pathol. Oncol. Res. 2012, 18, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Keshamouni, V.G.; Arenberg, D.A.; Reddy, R.C.; Newstead, M.J.; Anthwal, S.; Standiford, T.J. PPAR-γ activation inhibits angiogenesis by blocking elr+cxc chemokine production in non-small cell lung cancer. Neoplasia 2005, 7, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.T.; Lakshmi, S.P.; Reddy, R.C. PPARγ as a Novel Therapeutic Target in Lung Cancer. PPAR Res. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Chang, T.H.; Szabo, E. Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor γ in non-small cell lung cancer. Cancer Res. 2000, 4, 1129–1138. [Google Scholar]
- Maeda, A.; Horikoshi, S.; Gohda, T.; Tsuge, T.; Maeda, K.; Tomino, Y. Pioglitazone attenuates TGF-β-induction of fibronectin synthesis and its splicing variant in human mesangial cells via activation of peroxisome proliferator-activated receptor (PPAR)γ. Cell Biol. Int. 2005, 29, 422–428. [Google Scholar] [CrossRef]
- Milam, J.E.; Keshamouni, V.G.; Phan, S.H.; Hu, B.; Gangireddy, S.R.; Hogaboam, C.M.; Standiford, T.J.; Thannickal, V.J.; Reddy, R.C. PPAR-γ agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Cell. Mol. Physiol. 2008, 294, L891–L901. [Google Scholar] [CrossRef]
- Panigrahy, D.; Singer, S.; Shen, L.Q.; Butterfield, C.E.; Freedman, D.A.; Chen, E.J.; Moses, M.A.; Kilroy, S.; Duensing, S.; Fletcher, C.; et al. PPARγ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J. Clin. Investig. 2002, 110, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Reka, A.K.; Kurapati, H.; Narala, V.R.; Bommer, G.; Chen, J.; Standiford, T.J.; Keshamouni, V.G. Peroxisome proliferator-activated receptor-γ activation inhibits tumor metastasis by antagonizing smad3-mediated epithelial-mesenchymal transition. Mol. Cancer Ther. 2010, 9, 3221–3232. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, G.; Yang, Z.; Wang, L.; Zhang, L.; Wang, T.; Zhang, Y.; Zhang, S.; Han, Y.; Jia, L. Uncoupling protein 2 downregulation by hypoxia through repression of peroxisome proliferator-activated receptor γ promotes chemoresistance of non-small cell lung cancer. Oncotarget 2017, 8, 8083–8094. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.B.; Wakefield, L.M. The two faces of transforming growth factor β in carcinogenesis. Proc. Natl. Acad. Sci.USA 2003, 100, 8621–8623. [Google Scholar] [CrossRef] [PubMed]
- Ikushima, H.; Miyazono, K. TGFβ signalling: A complex web in cancer progression. Nat. Rev. Cancer 2010, 10, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, Y.; Dai, S.; Zhou, P.; Luo, W.; Wang, Z.; Chen, X.; Cheng, P.; Zheng, G.; Ren, J.; et al. Molecular characteristics of primary pulmonary lymphoepithelioma-like carcinoma based on integrated genomic analyses. Signal Transduct. Target. Ther. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Li, T.; Wang, H.; Xu, J.; Li, C.; Zhang, Y.; Wang, G.; Liu, Y.; Cai, S.; Fang, W.; Li, J.; et al. TGFBR2 mutation predicts resistance to immune checkpoint inhibitors in patients with non-small cell lung cancer. Ther. Adv. Med. Oncol. 2021, 13, 17588359211038477. [Google Scholar] [CrossRef]
- Ganesh, K.; Massagué, J. TGF-beta Inhibition and Immunotherapy: Checkmate. Immunity 2018, 48, 626–628. [Google Scholar] [CrossRef]
- Golkar-Narenji, A.; Antosik, P.; Nolin, S.; Rucinski, M.; Jopek, K.; Zok, A.; Sobolewski, J.; Jankowski, M.; Zdun, M.; Bukowska, D.; et al. Gene Ontology Groups and Signaling Pathways Regulating the Process of Avian Satellite Cell Differentiation. Genes 2022, 13, 242. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009, 4, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
Type | CN | Chromosome | Locus | Start (nt) | End (nt) | Size (kb) | Gene Count, Total |
---|---|---|---|---|---|---|---|
Gain | 2.32 | 2 | p25.3 | 12,770 | 71,741,865 | 71,729.095 | 434 |
Gain | 2.22 | 8 | q23.1 | 107,766,798 | 127,017,270 | 19,250.472 | 73 |
Gain | 2.33 | 9 | p22.3 | 16,129,629 | 80,872,801 | 64,743.172 | 277 |
Gain | 2.46 | 9 | p24.3 | 208,454 | 3,571,087 | 3362.633 | 12 |
Gain | 2.34 | 11 | q13.2 | 67,021,050 | 108,714,926 | 41,693.876 | 317 |
Gain | 2.68 | 12 | p13.33 | 173,786 | 11,813,033 | 11,639.247 | 203 |
Gain | 2.41 | 14 | q32.2 | 96,975,842 | 107,284,437 | 10,308.595 | 188 |
Gain | 2.85 | 15 | q26.1 | 91,665,391 | 102,429,040 | 10,763.649 | 51 |
Gain | 2.53 | X | q22.3 | 107,900,776 | 155,233,098 | 47,332.322 | 386 |
Gain | 1.04 | Y | p11.31 | 2,650,424 | 28,799,654 | 26,149.23 | 102 |
Loss | 1.64 | 1 | p21.3 | 99,380,695 | 150,966,503 | 51,585.808 | 304 |
Loss | 1.50 | 3 | p26.3 | 61,891 | 94,775,034 | 94,713.143 | 599 |
Loss | 1.49 | 4 | q34.1 | 175,499,137 | 190,957,460 | 15,458.323 | 66 |
Loss | 1.50 | 5 | q11.2 | 56,978,186 | 180,715,096 | 123,736.91 | 807 |
Loss | 1.66 | 6 | q11.1 | 62,094,327 | 95,241,423 | 33,147.096 | 109 |
Loss | 1.68 | 7 | p14.1 | 37,590,599 | 70,784,719 | 33,194.12 | 168 |
Loss | 1.67 | 8 | q24.22 | 133,534,264 | 146,295,771 | 12,761.507 | 132 |
Loss | 1.56 | 9 | q21.11 | 71,249,423 | 98,423,588 | 27,174.165 | 159 |
Loss | 1.50 | 10 | q21.1 | 53,123,032 | 95,409,107 | 42,286.075 | 258 |
Loss | 1.53 | 13 | q11 | 19,436,286 | 115,107,733 | 95,671.447 | 459 |
Loss | 1.48 | 14 | q12 | 31,988,029 | 92,706,803 | 60,718.774 | 369 |
Loss | 1.34 | 18 | q21.33 | 59,806,229 | 78,013,728 | 18,207.499 | 72 |
Loss | 1.53 | 21 | q11.2 | 15,016,486 | 48,093,361 | 33,076.875 | 292 |
Type | CN | Chromosome | Locus | Start (nt) | End (nt) | Size (kbp) | Gene Count, Total |
---|---|---|---|---|---|---|---|
Gain | 2.33 | 1 | p13.1 | 117,476,258 | 165,134,313 | 47,658.055 | 492 |
Gain | 2.56 | 1 | q41 | 218,274,740 | 249,224,684 | 30,949.944 | 262 |
Gain | 2.89 | 2 | p25.3 | 12,770 | 102,380,127 | 102,367.357 | 648 |
Gain | 2.22 | 2 | q11.2 | 100,346,874 | 120,068,585 | 19,721.711 | 131 |
Gain | 2.36 | 6 | p12.1 | 54,557,513 | 99,206,915 | 44,649.402 | 134 |
Gain | 2.51 | 6 | q25.2 | 154,755,476 | 170,914,297 | 16,158.821 | 100 |
Gain | 2.22 | 7 | q21.11 | 80,254,491 | 96,327,224 | 16,072.733 | 74 |
Gain | 2.24 | 7 | q34 | 140,961,678 | 159,119,707 | 18,158.029 | 180 |
Gain | 2.73 | 9 | p13.2 | 36,366,584 | 141,018,648 | 104,652.064 | 749 |
Gain | 2.25 | 10 | p14 | 10,274,286 | 37,497,811 | 27,223.525 | 144 |
Gain | 2.34 | 10 | q25.3 | 118,838,312 | 135,426,386 | 16,588.074 | 133 |
Gain | 2.68 | 11 | p14.3 | 22,621,011 | 45,987,869 | 23,366.858 | 102 |
Gain | 2.66 | 12 | p13.33 | 173,786 | 133,777,562 | 133,603.776 | 1184 |
Gain | 2.45 | 16 | q21 | 60,600,185 | 80,068,006 | 19,467.821 | 181 |
Gain | 2.29 | 17 | q12 | 32,417,015 | 54,939,625 | 22,522.61 | 465 |
Gain | 2.67 | 18 | p11.32 | 136,227 | 8,877,061 | 8740.834 | 46 |
Gain | 2.57 | 19 | p13.3 | 260,911 | 58,956,816 | 58,695.905 | 1621 |
Gain | 2.61 | 22 | q11.21 | 19,709,385 | 41,851,930 | 22,142.545 | 358 |
Gain | 2.21 | 22 | q12.3 | 35,493,366 | 50,899,310 | 15,405.944 | 246 |
Loss | 1.53 | 1 | p36.33 | 854,277 | 120,118,291 | 119,264.014 | 1215 |
Loss | 1.60 | 2 | q22.1 | 141,698,982 | 242,782,258 | 101,083.276 | 629 |
Loss | 1.56 | 3 | p26.3 | 61,891 | 84,844,800 | 84,782.909 | 580 |
Loss | 1.51 | 4 | p16.3 | 68,345 | 164,845,295 | 164,776.95 | 786 |
Loss | 1.54 | 5 | q11.2 | 50,942,623 | 180,715,096 | 129,772.473 | 844 |
Loss | 1.60 | 6 | p25.3 | 302,260 | 56,509,337 | 56,207.077 | 701 |
Loss | 1.73 | 7 | p22.3 | 43,376 | 7,872,835 | 7829.459 | 91 |
Loss | 1.65 | 9 | p24.3 | 208,454 | 25,954,669 | 25,746.215 | 107 |
Loss | 1.19 | 10 | q21.1 | 53,733,770 | 73,299,253 | 19,565.483 | 85 |
Loss | 1.68 | 11 | p15.5 | 230,680 | 13,741,855 | 13,511.175 | 283 |
Loss | 1.63 | 11 | q11 | 55,590,295 | 97,097,033 | 41,506.738 | 622 |
Loss | 1.21 | 13 | q13.1 | 32,239,432 | 115,107,733 | 82,868.301 | 362 |
Loss | 1.27 | 15 | q11.2 | 22,770,421 | 78,426,298 | 55,655.877 | 606 |
Loss | 1.75 | 15 | q25.1 | 79,047,350 | 92,596,186 | 13,548.836 | 140 |
Loss | 1.58 | 16 | p13.3 | 6,123,936 | 52,234,735 | 46,110.799 | 347 |
Loss | 1.57 | 17 | q21.33 | 49,307,721 | 81,041,823 | 31,734.102 | 410 |
Loss | 1.57 | 18 | q11.2 | 19,471,272 | 72,422,615 | 52,951.343 | 220 |
Loss | 1.65 | 20 | q11.23 | 34,459,007 | 57,404,888 | 22,945.881 | 230 |
Loss | 1.67 | 21 | q11.2 | 15,016,486 | 44,847,203 | 29,830.717 | 220 |
Loss | 1.26 | X | p22.33 | 168,551 | 155,233,098 | 155,064.547 | 1020 |
Type | CN | Chromosome | Cytoband Start | Start (nt) | End (nt) | Size (kbp) | Gene Count, Total |
---|---|---|---|---|---|---|---|
Gain | 2.3453367 | 1 | p36.21 | 14,927,444 | 112,538,743 | 97,611.299 | 936 |
Gain | 2.8998601 | 2 | q11.2 | 100,146,735 | 220,003,241 | 119,856.506 | 648 |
Gain | 2.8915234 | 6 | p25.3 | 156,974 | 75,934,361 | 75,777.387 | 744 |
Gain | 2.419764 | 6 | q14.1 | 80,753,066 | 170,914,297 | 90,161.231 | 458 |
Gain | 2.2164984 | 7 | q35 | 146,158,986 | 159,119,707 | 12,960.721 | 111 |
Gain | 2.6335676 | 7 | q36.2 | 154,894,170 | 159,119,707 | 4225.537 | 26 |
Gain | 2.5188828 | 8 | q21.13 | 80,890,358 | 146,295,771 | 65,405.413 | 368 |
Gain | 2.904787 | 9 | p24.3 | 208,454 | 36,614,229 | 36,405.775 | 214 |
Gain | 2.369618 | 12 | p13.33 | 173,786 | 29,825,544 | 29,651.758 | 313 |
Gain | 2.2530286 | 12 | q13.3 | 57,858,615 | 88,360,183 | 30,501.568 | 142 |
Gain | 2.3361242 | 12 | q21.33 | 90,629,021 | 133,777,562 | 43,148.541 | 382 |
Gain | 2.5275028 | 15 | q24.3 | 78,130,041 | 102,429,040 | 24,298.999 | 207 |
Gain | 2.319723 | 16 | p13.3 | 85,880 | 18,990,301 | 18,904.421 | 298 |
Gain | 2.3445287 | 17 | p13.3 | 525 | 49,233,446 | 49,232.921 | 964 |
Gain | 2.4188483 | 18 | p11.32 | 136,227 | 78,013,728 | 77,877.501 | 342 |
Gain | 2.455756 | 20 | q11.23 | 36,467,743 | 62,913,645 | 26,445.902 | 310 |
Loss | 1.6451818 | 2 | p25.2 | 5,860,401 | 82,122,733 | 76,262.332 | 480 |
Loss | 1.7397279 | 2 | q36.3 | 228,226,071 | 242,782,258 | 14,556.187 | 161 |
Loss | 1.6913146 | 3 | p26.3 | 61,891 | 64,958,024 | 64,896.133 | 538 |
Loss | 1.6292121 | 4 | p15.33 | 11,628,372 | 190,957,460 | 179,329.088 | 745 |
Loss | 1.640046 | 5 | q12.3 | 65,095,664 | 180,715,096 | 115,619.432 | 778 |
Loss | 1.6604121 | 7 | p22.3 | 43,376 | 149,397,765 | 149,354.389 | 1050 |
Loss | 1.1793071 | 8 | p23.3 | 158,048 | 64,152,758 | 63,994.71 | 387 |
Loss | 1.6649909 | 9 | q21.13 | 74,208,998 | 130,535,660 | 56,326.662 | 403 |
Loss | 1.6489277 | 10 | p15.3 | 100,047 | 64,303,578 | 64,203.531 | 343 |
Loss | 1.6821278 | 10 | q23.1 | 84,735,681 | 119,789,550 | 35,053.869 | 313 |
Loss | 1.6813701 | 11 | p15.5 | 230,750 | 123,097,931 | 122,867.181 | 1355 |
Loss | 1.6759429 | 12 | p11.21 | 31,356,130 | 55,346,490 | 23,990.36 | 243 |
Loss | 1.55947 | 13 | q11 | 19,436,286 | 114,003,154 | 94,566.868 | 443 |
Loss | 1.6753877 | 15 | q11.2 | 22,770,421 | 69,986,486 | 47,216.065 | 502 |
Loss | 1.7330544 | 16 | p12.2 | 23,237,480 | 54,395,215 | 31,157.735 | 222 |
Loss | 1.7394392 | 16 | q12.2 | 55,169,214 | 81,505,954 | 26,336.74 | 269 |
Loss | 1.7052059 | 19 | p13.3 | 260,911 | 58,956,816 | 58,695.905 | 1621 |
Loss | 1.6436315 | 21 | q11.2 | 15,016,486 | 40,428,341 | 25,411.855 | 169 |
Loss | 1.6629032 | 22 | q11.1 | 16,888,899 | 51,197,766 | 34,308.867 | 544 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolecka-Bednarczyk, A.; Frydrychowicz, M.; Budny, B.; Ruciński, M.; Dompe, C.; Gabryel, P.; Płachno, B.J.; Ruchała, M.; Ziemnicka, K.; Zieliński, P.; et al. Specific Deletions of Chromosomes 3p, 5q, 13q, and 21q among Patients with G2 Grade of Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2024, 25, 8642. https://doi.org/10.3390/ijms25168642
Kolecka-Bednarczyk A, Frydrychowicz M, Budny B, Ruciński M, Dompe C, Gabryel P, Płachno BJ, Ruchała M, Ziemnicka K, Zieliński P, et al. Specific Deletions of Chromosomes 3p, 5q, 13q, and 21q among Patients with G2 Grade of Non-Small Cell Lung Cancer. International Journal of Molecular Sciences. 2024; 25(16):8642. https://doi.org/10.3390/ijms25168642
Chicago/Turabian StyleKolecka-Bednarczyk, Agata, Magdalena Frydrychowicz, Bartłomiej Budny, Marcin Ruciński, Claudia Dompe, Piotr Gabryel, Bartosz J. Płachno, Marek Ruchała, Katarzyna Ziemnicka, Paweł Zieliński, and et al. 2024. "Specific Deletions of Chromosomes 3p, 5q, 13q, and 21q among Patients with G2 Grade of Non-Small Cell Lung Cancer" International Journal of Molecular Sciences 25, no. 16: 8642. https://doi.org/10.3390/ijms25168642
APA StyleKolecka-Bednarczyk, A., Frydrychowicz, M., Budny, B., Ruciński, M., Dompe, C., Gabryel, P., Płachno, B. J., Ruchała, M., Ziemnicka, K., Zieliński, P., & Budna-Tukan, J. (2024). Specific Deletions of Chromosomes 3p, 5q, 13q, and 21q among Patients with G2 Grade of Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 25(16), 8642. https://doi.org/10.3390/ijms25168642