Research on Bone Cells in Health and Disease
Funding
Conflicts of Interest
References
- Lin:, J.T.; Lane, J.M. Osteoporosis: A review. Clin. Orthop. Relat. Res. 2004, 425, 126–134. [Google Scholar] [CrossRef]
- Eastell, R.; O’Neill, T.W.; Hofbauer, L.C.; Langdahl, B.; Reid, I.R.; Gold, D.T.; Cummings, S.R. Postmenopausal osteoporosis. Nat. Rev. Dis. Prim. 2016, 2, 16069. [Google Scholar] [CrossRef] [PubMed]
- Sobacchi, C.; Schulz, A.; Coxon, F.P.; Villa, A.; Helfrich, M.H. Osteopetrosis: Genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 2013, 9, 522–536. [Google Scholar] [CrossRef] [PubMed]
- Győri, D.S.; Mócsai, A. Osteoclast Signal Transduction During Bone Metastasis Formation. Front. Cell Dev. Biol. 2020, 8, 507. [Google Scholar] [CrossRef] [PubMed]
- Győri, D.S.; Mócsai, A. Osteoclasts in Inflammation. In Compendium of Inflammatory Diseases; Springer: Cham, Switzerland, 2016; pp. 1–7. [Google Scholar]
- Dirckx, N.; Moorer, M.C.; Clemens, T.L.; Riddle, R.C. The role of osteoblasts in energy homeostasis. Nat. Rev. Endocrinol. 2019, 15, 651–665. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, T.; Hayashi, M.; Fukunaga, T.; Kurata, K.; Oh-Hora, M.; Feng, J.Q.; Bonewald, L.F.; Kodama, T.; Wutz, A.; Wagner, E.F.; et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 2011, 17, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Teitelbaum, S.L. Osteoclasts: New Insights. Bone Res. 2013, 1, 11–26. [Google Scholar]
- Jacome-Galarza, C.E.; Percin, G.I.; Muller, J.T.; Mass, E.; Lazarov, T.; Eitler, J.; Rauner, M.; Yadav, V.K.; Crozet, L.; Bohm, M.; et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 2019, 568, 541–545. [Google Scholar] [CrossRef]
- Győri, D.; Csete, D.; Benkő, S.; Kulkarni, S.; Mandl, P.; Dobó-Nagy, C.; Vanhaesebroeck, B.; Stephens, L.; Hawkins, P.T.; Mócsai, A. The phosphoinositide 3-kinase isoform PI3Kβ regulates osteoclast-mediated bone resorption in humans and mice. Arthritis Rheumatol. 2014, 66, 2210–2221. [Google Scholar] [CrossRef] [PubMed]
- Kertész, Z.; Gyori, D.; Körmendi, S.; Fekete, T.; Kis-Tóth, K.; Jakus, Z.; Schett, G.; Rajnavölgyi, E.; Dobó-Nagy, C.; Mócsai, A. Phospholipase Cγ2 is required for basal but not oestrogen deficiency-induced bone resorption. Eur. J. Clin. Investig. 2012, 42, 49–60. [Google Scholar] [CrossRef]
- Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef] [PubMed]
- Mourão, C.F.; Dohle, E.; Bayrak, B.; Winter, A.; Sader, R.; Ghanaati, S. Leukocytes within Autologous Blood Concentrates Have No Impact on the Growth and Proliferation of Human Primary Osteoblasts: An In Vitro Study. Int. J. Mol. Sci. 2024, 25, 4542. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Yamamoto, T.; Hongo, H.; Yamamoto, T.; Haraguchi-Kitakamae, M.; Ishizu, H.; Shimizu, T.; Saito, H.; Sakai, S.; Yogo, K.; et al. Eldecalcitol Induces Minimodeling-Based Bone Formation and Inhibits Sclerostin Synthesis Preferentially in the Epiphyses Rather than the Metaphyses of the Long Bones in Rats. Int. J. Mol. Sci. 2024, 25, 4257. [Google Scholar] [CrossRef]
- Lee, S.J.; Yang, H.; Kim, S.C.; Gu, D.R.; Ryuk, J.A.; Jang, S.A.; Ha, H. Ethanol Extract of Radix Asteris Suppresses Osteoclast Differentiation and Alleviates Osteoporosis. Int. J. Mol. Sci. 2023, 24, 16526. [Google Scholar] [CrossRef] [PubMed]
- Kim, C. Extracellular Signal-Regulated Kinases Play Essential but Contrasting Roles in Osteoclast Differentiation. Int. J. Mol. Sci. 2023, 24, 15342. [Google Scholar] [CrossRef] [PubMed]
- Sandor, L.F.; Ragacs, R.; Gyori, D.S. Local Effects of Steroid Hormones within the Bone Microenvironment. Int. J. Mol. Sci. 2023, 24, 17482. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Pramanik, J.; Mahata, B. Revisiting steroidogenesis and its role in immune regulation with the advanced tools and technologies. Genes. Immun. 2021, 22, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Mahata, B.; Raman, C.; Bereshchenko, O. Editorial: Steroids and Secosteroids in the Modulation of Inflammation and Immunity. Front. Immunol. 2021, 12, 825577. [Google Scholar] [CrossRef] [PubMed]
- Sandor, L.F.; Huh, J.B.; Benko, P.; Hiraga, T.; Poliska, S.; Dobo-Nagy, C.; Simpson, J.P.; Homer, N.Z.M.; Mahata, B.; Gyori, D.S. De novo steroidogenesis in tumor cells drives bone metastasis and osteoclastogenesis. Cell Rep. 2024, 43, 113936. [Google Scholar] [CrossRef] [PubMed]
- Seeman, E.; Martin, T.J. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat. Rev. Rheumatol. 2019, 15, 225–236. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Győri, D.S. Research on Bone Cells in Health and Disease. Int. J. Mol. Sci. 2024, 25, 8758. https://doi.org/10.3390/ijms25168758
Győri DS. Research on Bone Cells in Health and Disease. International Journal of Molecular Sciences. 2024; 25(16):8758. https://doi.org/10.3390/ijms25168758
Chicago/Turabian StyleGyőri, Dávid S. 2024. "Research on Bone Cells in Health and Disease" International Journal of Molecular Sciences 25, no. 16: 8758. https://doi.org/10.3390/ijms25168758