Clinical Significance of B-Type Natriuretic Peptide and N-Terminal Pro-B-Type Natriuretic Peptide in Pediatric Patients: Insights into Their Utility in the Presence or Absence of Pre-Existing Heart Conditions
Abstract
:1. Introduction
2. Methodology
3. Physiology of BNP and NT-proBNP
3.1. Overview of Physiological Significance, Biosynthesis, and Receptors
3.2. Local, Cardiac Actions of BNP
3.3. Systemic Actions of BNP
4. BNP and NT-proBNP Norms in Children
Physical Exercise and NPs
5. Clinical Applications of BNP and NT-proBNP in Children with Underlying Heart Diseases
6. Clinical Applications of BNP and NT-proBNP in Children without Underlying Heart Diseases
6.1. BNP and NT-proBNP in MIS-C and Kawasaki Disease
6.2. BNP and NT-pro-BNP in Other Acute Conditions in Children without Underlying Heart Disease
6.2.1. Sepsis and NPs
6.2.2. Other Acute Diseases and NPs
7. Summary—Limitations and Challenges of NT-pro-BNP Testing in Children
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.G.F.; Kozhuharov, N.; Coats, A.J.S.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail. 2019, 21, 715–731. [Google Scholar] [CrossRef] [PubMed]
- de Bold, A.J.; Borenstein, H.B.; Veress, A.T.; Sonnenberg, H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981, 28, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Goetze, J.P.; Bruneau, B.G.; Ramos, H.R.; Ogawa, T.; de Bold, M.K.; de Bold, A.J. Cardiac natriuretic peptides. Nat. Rev. Cardiol. 2020, 17, 698–717. [Google Scholar] [CrossRef]
- Sarzani, R.; Allevi, M.; Di Pentima, C.; Schiavi, P.; Spannella, F.; Giulietti, F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int. J. Mol. Sci. 2022, 23, 14415. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Saito, Y. Roles of Natriuretic Peptides and the Significance of Neprilysin in Cardiovascular Diseases. Biology 2022, 11, 1017. [Google Scholar] [CrossRef]
- Cerrudo, C.S.; Cavallero, S.; Rodríguez Fermepín, M.; González, G.E.; Donato, M.; Kouyoumdzian, N.M.; Gelpi, R.J.; Hertig, C.M.; Choi, M.R.; Fernández, B.E. Cardiac Natriuretic Peptide Profiles in Chronic Hypertension by Single or Sequentially Combined Renovascular and DOCA-Salt Treatments. Front. Physiol. 2021, 12, 651246. [Google Scholar] [CrossRef]
- Ogawa, Y.; Nakao, K.; Mukoyama, M.; Hosoda, K.; Shirakami, G.; Arai, H.; Saito, Y.; Suga, S.; Jougasaki, M.; Imura, H. Natriuretic peptides as cardiac hormones in normotensive and spontaneously hypertensive rats. The ventricle is a major site of synthesis and secretion of brain natriuretic peptide. Circ. Res. 1991, 69, 491–500. [Google Scholar] [CrossRef]
- Tamura, N.; Ogawa, Y.; Chusho, H.; Nakamura, K.; Nakao, K.; Suda, M.; Kasahara, M.; Hashimoto, R.; Katsuura, G.; Mukoyama, M.; et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc. Natl. Acad. Sci. USA 2000, 97, 4239–4244. [Google Scholar] [CrossRef]
- John, S.W.M.; Krege, J.H.; Oliver, P.M.; Hagaman, J.R.; Hodgin, J.B.; Pang, S.C.; Flynn, T.G.; Smithies, O. Genetic Decreases in Atrial Natriuretic Peptide and Salt-Sensitive Hypertension. Science 1995, 267, 679–681. [Google Scholar] [CrossRef]
- Melo, L.G.; Veress, A.T.; Chong, C.K.; Pang, S.C.; Flynn, T.G.; Sonnenberg, H. Salt-sensitive hypertension in ANP knockout mice: Potential role of abnormal plasma renin activity. Am. J. Physiol. Integr. Comp. Physiol. 1998, 274, R255–R261. [Google Scholar] [CrossRef]
- Pandey, K.N. Biology of natriuretic peptides and their receptors. Peptides 2005, 26, 901–932. [Google Scholar] [CrossRef] [PubMed]
- Bensimon, M.; Chang, A.I.; de Bold, M.L.K.; Ponce, A.; Carreras, D.; De Bold, A.J. Participation of G Proteins in Natriuretic Peptide Hormone Secretion from Heart Atria. Endocrinology 2004, 145, 5313–5321. [Google Scholar] [CrossRef] [PubMed]
- Stasch, J.-P.; Birth-Dietrich, C.; Kazda, S.; Neuser, D. Endothelin stimulates release of atrial natriuretic peptides in vitro and in vivo. Life Sci. 1989, 45, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.K.; Ogawa, T.; de Bold, A.J. Selective upregulation of cardiac brain natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase. J. Mol. Cell. Cardiol. 2004, 36, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Holditch, S.J.; Schreiber, C.A.; Nini, R.; Tonne, J.M.; Peng, K.W.; Geurts, A.; Jacob, H.J.; Burnett, J.C.; Cataliotti, A.; Ikeda, Y. B-Type Natriuretic Peptide Deletion Leads to Progressive Hypertension, Associated Organ Damage, and Reduced Survival. Hypertension 2015, 66, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Huang, L.; Yu, J.; Wu, X.; Zhao, J. An association between N-terminal pro-brain natriuretic protein level and risk of left ventricular hypertrophy in patients without heart failure. Exp. Ther. Med. 2020, 19, 3259–3266. [Google Scholar] [CrossRef] [PubMed]
- Rubattu, S.; Bigatti, G.; Evangelista, A.; Lanzani, C.; Stanzione, R.; Zagato, L.; Manunta, P.; Marchitti, S.; Venturelli, V.; Bianchi, G.; et al. Association of Atrial Natriuretic Peptide and Type A Natriuretic Peptide Receptor Gene Polymorphisms with Left Ventricular Mass in Human Essential Hypertension. J. Am. Coll. Cardiol. 2006, 48, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Tamura, N.; Chusho, H.; Nakao, K. Brain natriuretic peptide appears to act locally as an antifibrotic factor in the heart. Can. J. Physiol. Pharmacol. 2001, 79, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Pye, M.P.; Cobbe, S.M. Mechanisms of ventricular arrhythmias in cardiac failure and hypertrophy. Cardiovasc. Res. 1992, 26, 740–750. [Google Scholar] [CrossRef]
- Glezeva, N.; Collier, P.; Voon, V.; Ledwidge, M.; McDonald, K.; Watson, C.; Baugh, J. Attenuation of Monocyte Chemotaxis—A Novel Anti-inflammatory Mechanism of Action for the Cardio-protective Hormone B-Type Natriuretic Peptide. J. Cardiovasc. Transl. Res. 2013, 6, 545–557. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Levy, D.; Benjamin, E.J.; Leip, E.P.; Omland, T.; Wolf, P.A.; Vasan, R.S. Plasma Natriuretic Peptide Levels and the Risk of Cardiovascular Events and Death. N. Engl. J. Med. 2004, 350, 655–663. [Google Scholar] [CrossRef]
- Patton, K.K.; Ellinor, P.T.; Heckbert, S.R.; Christenson, R.H.; DeFilippi, C.; Gottdiener, J.S.; Kronmal, R.A. N-Terminal Pro-B-Type Natriuretic Peptide Is a Major Predictor of the Development of Atrial Fibrillation. Circulation 2009, 120, 1768–1774. [Google Scholar] [CrossRef]
- Yamauchi, T.; Sakata, Y.; Miura, M.; Onose, T.; Tsuji, K.; Abe, R.; Oikawa, T.; Kasahara, S.; Sato, M.; Nochioka, K.; et al. CHART-2 Investigators Prognostic Impact of Atrial Fibrillation and New Risk Score of Its Onset in Patients at High Risk of Heart Failure—A Report From the CHART-2 Study. Circ. J. 2017, 81, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.A.; Barry, J.; Roberts, P.R.; Morgan, J.M. Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: A meta-analysis. Eur. J. Heart Fail. 2009, 11, 958–966. [Google Scholar] [CrossRef]
- Garg, P.K.; Norby, F.L.; Wang, W.; Krishnappa, D.; Soliman, E.Z.; Lutsey, P.L.; Selvin, E.; Ballantyne, C.M.; Alonso, A.; Chen, L.Y. Association of Longitudinal Changes in Cardiac Biomarkers With Atrial and Ventricular Arrhythmias (from the Atherosclerosis Risk in Communities [ARIC] Study). Am. J. Cardiol. 2021, 158, 45–52. [Google Scholar] [CrossRef]
- McGrath, M.F.; de Bold, M.L.K.; de Bold, A.J. The endocrine function of the heart. Trends Endocrinol. Metab. 2005, 16, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications. In Handbook of Experimental Pharmacology; Schmidt, H.H.H.W., Hofmann, F., Stasch, J.-P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 191, pp. 341–366. [Google Scholar] [CrossRef]
- Okamoto, R.; Ali, Y.; Hashizume, R.; Suzuki, N.; Ito, M. BNP as a Major Player in the Heart-Kidney Connection. Int. J. Mol. Sci. 2019, 20, 3581. [Google Scholar] [CrossRef] [PubMed]
- Maack, T. Role of atrial natriuretic factor in volume control. Kidney Int. 1996, 49, 1732–1737. [Google Scholar] [CrossRef]
- Heinl, E.-S.; Broeker, K.A.; Lehrmann, C.; Heydn, R.; Krieger, K.; Ortmaier, K.; Tauber, P.; Schweda, F. Localization of natriuretic peptide receptors A, B, and C in healthy and diseased mouse kidneys. Pflügers Arch. Eur. J. Physiol. 2022, 475, 343–360. [Google Scholar] [CrossRef]
- Jensen, B.L. Natriuretic peptide receptors in the kidneys are predominantly vascular and not tubular. Pflügers Arch. Eur. J. Physiol. 2022, 475, 289–290. [Google Scholar] [CrossRef]
- Luchner, A. Interactions between the sympathetic nervous system and the cardiac natriuretic peptide system. Cardiovasc. Res. 2004, 63, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Charles, C.J.; Jardine, D.L.; Rademaker, M.T.; Richards, A.M. Low-dose B-type natriuretic peptide raises cardiac sympathetic nerve activity in sheep. Am. J. Physiol. Integr. Comp. Physiol. 2014, 307, R206–R211. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.J.; Schultz, H.D. Sympathoinhibitory effects of atrial natriuretic peptide in rats with heart failure. J. Card. Fail. 1999, 5, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, T.; Takeshita, A.; Higashi, H.; Nakamura, M. alpha-ANP alters reflex control of lumbar and renal sympathetic nerve activity and heart rate. Am. J. Physiol. Circ. Physiol. 1987, 253, H1136–H1140. [Google Scholar] [CrossRef]
- Oparil, S.; Chen, Y.F.; Wang, R.P. Atrial natriuretic peptide inhibits sympathetic outflow in NaCl-sensitive spontaneously hypertensive rats. J. Hypertens. 1991, 9, 1177–1185. [Google Scholar] [PubMed]
- Thoren, P.; Mark, A.L.; Morgan, D.A.; O’Neill, T.P.; Needleman, P.; Brody, M.J. Activation of vagal depressor reflexes by atriopeptins inhibits renal sympathetic nerve activity. Am. J. Physiol. Circ. Physiol. 1986, 251, H1252–H1259. [Google Scholar] [CrossRef]
- La Rocca, H.P.B.; Kaye, D.M.; Woods, R.L.; Hastings, J.; Esler, M.D. Effects of intravenous brain natriuretic peptide on regional sympathetic activity in patients with chronic heart failure as compared with healthy control subjects. J. Am. Coll. Cardiol. 2001, 37, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Akabane, S.; Matsushima, Y.; Matsuo, H.; Kawamura, M.; Imanishi, M.; Omae, T. Effects of brain natriuretic peptide on renin secretion in normal and hypertonic saline-infused kidney. Eur. J. Pharmacol. 1991, 198, 143–148. [Google Scholar] [CrossRef]
- Ito, T.; Yoshimura, M.; Nakamura, S.; Nakayama, M.; Shimasaki, Y.; Harada, E.; Mizuno, Y.; Yamamuro, M.; Harada, M.; Saito, Y.; et al. Inhibitory effect of natriuretic peptides on aldosterone synthase gene expression in cultured neonatal rat cardiocytes. Circulation 2003, 107, 807–810. [Google Scholar] [CrossRef]
- Liang, F.; Kapoun, A.M.; Lam, A.; Damm, D.L.; Quan, D.; O’Connell, M.; Protter, A.A. B-Type Natriuretic Peptide Inhibited Angiotensin II-Stimulated Cholesterol Biosynthesis, Cholesterol Transfer, and Steroidogenesis in Primary Human Adrenocortical Cells. Endocrinology 2007, 148, 3722–3729. [Google Scholar] [CrossRef]
- Koch, A.; Singer, H. Normal values of B type natriuretic peptide in infants, children, and adolescents. Heart 2003, 89, 875–878. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Choi, H.J. N-terminal pro-B-type natriuretic peptide levels in children: Comparison in cardiac and non-cardiac diseases. Cardiol. Young 2020, 30, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Nir, A. NT-Pro-B-type Natriuretic Peptide in Infants and Children: Reference Values Based on Combined Data from Four Studies. Pediatr. Cardiol. 2008, 30, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Kiess, A.; Green, J.; Willenberg, A.; Ceglarek, U.; Dähnert, I.; Jurkutat, A.; Körner, A.; Hiemisch, A.; Kiess, W.; Vogel, M. Age-Dependent Reference Values for hs-Troponin T and NT-proBNP and Determining Factors in a Cohort of Healthy Children (The LIFE Child Study). Pediatr. Cardiol. 2022, 43, 1071–1083. [Google Scholar] [CrossRef]
- Cirer-Sastre, R.; Legaz-Arrese, A.; Corbi, F.; George, K.; Nie, J.; Carranza-García, L.E.; Reverter-Masià, J. Cardiac Biomarker Release After Exercise in Healthy Children and Adolescents: A Systematic Review and Meta-Analysis. Pediatr. Exerc. Sci. 2019, 31, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Neumayr, G.; Pfister, R.; Mitterbauer, G.; Eibl, G.; Hoertnagl, H. Effect of Competitive Marathon Cycling on Plasma N-Terminal Pro-Brain Natriuretic Peptide and Cardiac Troponin T in Healthy Recreational Cyclists. Am. J. Cardiol. 2005, 96, 732–735. [Google Scholar] [CrossRef]
- Ohba, H.; Takada, H.; Musha, H.; Nagashima, J.; Mori, N.; Awaya, T.; Omiya, K.; Murayama, M. Effects of prolonged strenuous exercise on plasma levels of atrial natriuretic peptide and brain natriuretic peptide in healthy men. Am. Heart J. 2001, 141, 751–758. [Google Scholar] [CrossRef]
- Legaz-Arrese, A.; Carranza-García, L.; Navarro-Orocio, R.; Valadez-Lira, J.; Mayolas-Pi, C.; Munguía-Izquierdo, D.; Reverter-Masia, J.; George, K. Cardiac Biomarker Release after Endurance Exercise in Male and Female Adults and Adolescents. J. Pediatr. 2017, 191, 96–102. [Google Scholar] [CrossRef]
- Koch, A.; Zink, S.; Singer, H. B-type natriuretic peptide in paediatric patients with congenital heart disease. Eur. Heart J. 2006, 27, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, D.; Westerlind, A.; Lundberg, P.; Wåhlander, H. Increased plasma levels of natriuretic peptide type B and A in children with congenital heart defects with left compared with right ventricular volume overload or pressure overload. Clin. Physiol. Funct. Imaging 2005, 25, 263–269. [Google Scholar] [CrossRef]
- Tosse, V.; Pillekamp, F.; Verde, P.; Hadzik, B.; Sabir, H.; Mayatepek, E.; Hoehn, T. Urinary NT-proBNP, NGAL, and H-FABP May Predict Hemodynamic Relevance of Patent Ductus Arteriosus in Very Low Birth Weight Infants. Neonatology 2012, 101, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-H.; Keller, R.L.; Chikovani, O.; Cheng, H.; Hollander, S.A.; Karl, T.R.; Azakie, A.; Adatia, I.; Oishi, P.; Fineman, J.R. B-type natriuretic peptide levels predict outcome after neonatal cardiac surgery. J. Thorac. Cardiovasc. Surg. 2007, 134, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Said, F.; Haarman, M.G.; Roofthooft, M.T.R.; Hillege, H.L.; Ploegstra, M.-J.; Berger, R.M.F. Serial Measurements of N-Terminal Pro-B-Type Natriuretic Peptide Serum Level for Monitoring Pulmonary Arterial Hypertension in Children. J. Pediatr. 2020, 220, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Akgül, F.; Er, A.; Ulusoy, E.; Çağlar, A.; Vuran, G.; Seven, P.; Yılmazer, M.M.; Ağın, H.; Apa, H. Are clinical features and cardiac biomarkers at admission related to severity in pediatric acute myocarditis? Arch. De Pediatr. 2022, 29, 376–380. [Google Scholar] [CrossRef] [PubMed]
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals from the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef] [PubMed]
- Belhadjer, Z.; Méot, M.; Bajolle, F.; Khraiche, D.; Legendre, A.; Abakka, S.; Auriau, J.; Grimaud, M.; Oualha, M.; Beghetti, M.; et al. Acute Heart Failure in Multisystem Inflammatory Syndrome in Children in the Context of Global SARS-CoV-2 Pandemic. Circulation 2020, 142, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Diorio, C.; Shraim, R.; Vella, L.A.; Giles, J.R.; Baxter, A.E.; Oldridge, D.A.; Canna, S.W.; Henrickson, S.E.; McNerney, K.O.; Balamuth, F.; et al. Proteomic profiling of MIS-C patients indicates heterogeneity relating to interferon gamma dysregulation and vascular endothelial dysfunction. Nat. Commun. 2021, 12, 7222. [Google Scholar] [CrossRef]
- Esslami, G.G.; Mamishi, S.; Pourakbari, B.; Mahmoudi, S. Systematic review and meta-analysis on the serological, immunological, and cardiac parameters of the multisystem inflammatory syndrome (MIS-C) associated with SARS-CoV-2 infection. J. Med. Virol. 2023, 95, e28927. [Google Scholar] [CrossRef]
- Bichali, S.; Ouldali, N.; Godart, F.; Maboudou, P.; Houeijeh, A.; Leteurtre, S. NT-proBNP course during MIS-C post-COVID-19: An observational study. Eur. J. Pediatr. 2024, 183, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Ludwikowska, K.M.; Moksud, N.; Tracewski, P.; Sokolski, M.; Szenborn, L. Cardiac Involvement in Patients with Multisystem Inflammatory Syndrome in Children (MIS-C) in Poland. Biomedicines 2023, 11, 1251. [Google Scholar] [CrossRef]
- Harahsheh, A.S.; Shah, S.; Dallaire, F.; Manlhiot, C.; Khoury, M.; Lee, S.; Fabi, M.; Mauriello, D.; Tierney, E.S.S.; Sabati, A.A.; et al. Kawasaki Disease in the Time of COVID-19 and MIS-C: The International Kawasaki Disease Registry. Can. J. Cardiol. 2024, 40, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, L.; Zhang, H.-J.; Gao, X.-J.; Pan, X.-T.; Wang, X.-R.; Ye, H.; Liu, G.-H. Expression levels of plasma miRNA-21 and NT-proBNP in children with Kawasaki disease and their clinical significance. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 12757–12762. [Google Scholar] [PubMed]
- Ganguly, M.; Nandi, A.; Banerjee, P.; Gupta, P.; Sarkar, S.D.; Basu, S.; Pal, P. A comparative study of IL-6, CRP and NT-proBNP levels in post-COVID multisystem inflammatory syndrome in children (MISC) and Kawasaki disease patients. Int. J. Rheum. Dis. 2021, 25, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-B.; Zhang, Y.-D.; Dong, Q.-W.; Han, L.-P.; Qi, R.-F.; Bi, B.-B.; Ma, L.; Zhang, H. Significance of Serum NT-proBNP and Endogenous H2S for Predicting Coronary Artery Lesions in Pediatric Kawasaki Disease. J. Coll. Physicians Surg. Pak. 2020, 30, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.-J.; Ding, S.-G. Retrospective analysis of clinical characteristics and related influencing factors of Kawasaki disease. Medicine 2022, 101, e32430. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, L.; Dionne, A.; Meloche-Dumas, L.; Fournier, A.; Dahdah, N. Echocardiographic Parameters During and Beyond Onset of Kawasaki Disease Correlate with Onset Serum N-Terminal pro-Brain Natriuretic Peptide (NT-proBNP). Pediatr. Cardiol. 2020, 41, 947–954. [Google Scholar] [CrossRef]
- Banerjee, P.; Pal, P.; Chakravarti, S.; Basu, S.; Ahmed, N. N-Terminal Pro-Brain Natriuretic Peptide Levels in Kawasaki Disease, Sepsis and Other Febrile Illnesses. Indian Pediatr. 2023, 60, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Joung, J.; Oh, J.S.; Yoon, J.M.; Ko, K.O.; Yoo, G.H.; Cheon, E.J. A decision tree model for predicting intravenous immunoglobulin resistance and coronary artery involvement in Kawasaki disease. BMC Pediatr. 2022, 22, 474. [Google Scholar] [CrossRef]
- Bilal, M.; Haseeb, A.; Saeed, A.; Khan, M.A.S. The Importance of Serum N-Terminal Pro-Brain Natriuretic Peptide and Endogenous Hydrogen Sulfide for Predicting Coronary Artery Lesions in Pediatric Kawasaki Disease Patients: Findings From a Tertiary Care Hospital in Karachi, Pakistan. Cureus 2020, 12, e9016. [Google Scholar] [CrossRef]
- Jung, J.H.; Hwang, S.; Jung, J.Y.; Park, J.W.; Lee, E.J.; Ni Lee, H.; Kim, J.H.; Kim, D.K.; Kwak, Y.H. Brain natriuretic peptide as a clinical screening tool for the diagnosis of Kawasaki disease. Medicine 2023, 102, e34319. [Google Scholar] [CrossRef]
- Otar Yener, G.; Kısaarslan, A.P.; Ulu, K.; Atalay, E.; Haşlak, F.; Özdel, S.; Yücel, B.B.; Yıldırım, D.G.; Çakmak, F.; Öztürk, K.; et al. Differences and similarities of multisystem inflammatory syndrome in children, Kawasaki disease and macrophage activating syndrome due to systemic juvenile idiopathic arthritis: A comparative study. Rheumatol. Int. 2021, 42, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, E.; Bamford, A.; Kenny, J.; Kaforou, M.; Jones, C.E.; Shah, P.; Ramnarayan, P.; Fraisse, A.; Miller, O.; Davies, P.; et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA 2020, 324, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Bichali, S.; Bonnet, M.; Lampin, M.-E.; Baudelet, J.-B.; Reumaux, H.; Domanski, O.; Rakza, T.; Delarue, A.; Recher, M.; Soquet, J.; et al. Impact of time to diagnosis on the occurrence of cardiogenic shock in MIS-C post-COVID-19 infection. World J. Pediatr. 2023, 19, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Valverde, I.; Singh, Y.; Sanchez-De-Toledo, J.; Theocharis, P.; Chikermane, A.; Di Filippo, S.; Kucinska, B.; Mannarino, S.; Tamariz-Martel, A.; Gutierrez-Larraya, F.; et al. Acute Cardiovascular Manifestations in 286 Children With Multisystem Inflammatory Syndrome Associated With COVID-19 Infection in Europe. Circulation 2021, 143, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chen, Y.; Zhong, S.; Li, Y.; Dai, X.; Di, Y. Blood N-terminal Pro-brain Natriuretic Peptide and Interleukin-17 for Distinguishing Incomplete Kawasaki Disease from Infectious Diseases. Indian Pediatr. 2015, 52, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Suchitra, V.S.; Shaini, J.; Rahul, K.G.; Smita, D.M.; Deepak, N.M. A systematic review on Multisystem Inflammatory Syndrome in Children (MIS-C) with COVID-19: Development of a scoring system for clinical diagnosis. medRxiv 2021. [Google Scholar] [CrossRef]
- Tong, T.; Yao, X.; Lin, Z.; Tao, Y.; Xu, J.; Xu, X.; Fang, Z.; Geng, Z.; Fu, S.; Wang, W.; et al. Similarities and differences between MIS-C and KD: A systematic review and meta-analysis. Pediatr. Rheumatol. 2022, 20, 112. [Google Scholar] [CrossRef] [PubMed]
- Muto, T.; Masuda, Y.; Nakamura, N.; Numoto, S.; Kodama, S.; Miyamoto, R.; Miyata, K.; Hayakawa, T.; Mori, H.; Kuroyanagi, Y.; et al. Usefulness of brain natriuretic peptide to distinguish Kawasaki disease from cervical lymphadenitis. Pediatr. Int. 2021, 64, e15050. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Chai, H.; Li, D.; Shi, C.; Xu, Y.; Liu, Y. Expression of PCT, BNP and Inflammatory Factors in Children with Kawasaki Disease and Their Correlation with Coronary Artery Lesions. Altern. Ther. Health Med. 2024, 30, 302–306. [Google Scholar]
- Bing, B. Analysis of Risk Factors for Coronary Artery Lesion in Children with Kawasaki Disease. J. Coll. Physicians Surg. Pak. 2022, 32, 1037–1041. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Tang, Y.; Ding, Y.; Xu, Q.; Sun, L.; Qian, W.; Qian, G.; Qin, L.; Lv, H. Predictors of intravenous immunoglobulin-resistant Kawasaki disease in children: A meta-analysis of 4442 cases. Eur. J. Pediatr. 2018, 177, 1279–1292. [Google Scholar] [CrossRef]
- Baek, J.-Y.; Song, M.S. Meta-analysis of factors predicting resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. Korean J. Pediatr. 2016, 59, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Iwashima, S.; Ishikawa, T. B-type natriuretic peptide and N-terminal pro-BNP in the acute phase of Kawasaki disease. World J. Pediatr. 2013, 9, 239–244. [Google Scholar] [CrossRef]
- Schmitz, A.; Wood, K.E.; Badheka, A.; Burghardt, E.; Wendt, L.; Sharathkumar, A.; Koestner, B. NT-proBNP Levels Following IVIG Treatment of Multisystem Inflammatory Syndrome in Children. Hosp. Pediatr. 2022, 12, e261–e265. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Tang, W.; Wen, F.; Chen, J.; Zeng, X.; Chen, Z. Diagnostic Accuracy of NT-ProBNP for Heart Failure with Sepsis in Patients Younger than 18 Years. PLoS ONE 2016, 11, e0147930. [Google Scholar] [CrossRef] [PubMed]
- Fried, I.; Bar-Oz, B.; Algur, N.; Fried, E.; Gavri, S.; Yatsiv, I.; Perles, Z.; Rein, A.J.; Zonis, Z.; Bass, R.; et al. Comparison of N-terminal Pro-B-Type Natriuretic Peptide Levels in Critically Ill Children with Sepsis Versus Acute Left Ventricular Dysfunction. Pediatr. Rheumatol. 2006, 118, e1165–e1168. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Y.; Nijiatijiang, G.; Balati, K.; Tuerdi, Y.; Liu, L. Correlations of Changes in Brain Natriuretic Peptide (BNP) and Cardiac Troponin I (cTnI) with Levels of C-Reactive Protein (CRP) and TNF-α in Pediatric Patients with Sepsis. Med. Sci. Monit. 2019, 25, 2561–2566. [Google Scholar] [CrossRef]
- Koç, B.Ş. Brain natriuretic peptide: Can be used as prognostic marker in children with sepsis. Ümraniye Pediatri Derg. J. Umra. Pediatr. 2021, 1, 49. [Google Scholar] [CrossRef]
- Li, J.; Ning, B.; Wang, Y.; Li, B.; Qian, J.; Ren, H.; Zhang, J.; Hu, X. The prognostic value of left ventricular systolic function and cardiac biomarkers in pediatric severe sepsis. Medicine 2019, 98, e15070. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, C.; Tang, W.; Zhang, J. Age-Stratified Cut-Off Values for Serum Levels of N-Terminal ProB-Type Natriuretic Peptide and Mortality from Sepsis in Children under Age 18 Years: A Retrospective Study from a Single Center. Med. Sci. Monit. 2021, 27, e933400-1–e933400-8. [Google Scholar] [CrossRef]
- Komiya, K.; Akaba, T.; Kozaki, Y.; Kadota, J.; Rubin, B.K. A systematic review of diagnostic methods to differentiate acute lung injury/acute respiratory distress syndrome from cardiogenic pulmonary edema. Crit. Care 2017, 21, 228. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.D.; Tighe, M.P. How to use N-terminal pro-brain natriuretic peptide (NT-proBNP) in assessing disease severity in bronchiolitis. Arch. Dis. Child. Educ. Pract. Ed. 2020, 105, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Sahingozlu, T.; Karadas, U.; Eliacik, K.; Bakiler, A.R.; Ozdemir Karadas, N.; Kanik, M.A.; Baran, M. Brain natriuretic peptide: The reason of respiratory distress is heart disease or lung disease? Am. J. Emerg. Med. 2015, 33, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, K.; Zaritsky, A.; Lamb, M.; LeVine, A.; Theriaque, D.; Sanders, R. Plasma concentration of N-terminal pro-atrial and N-terminal pro-brain natriuretic peptides and fluid balance in children with bronchiolitis. J. Pediatr. Intensiv. Care 2015, 1, 143–151. [Google Scholar] [CrossRef]
- Anıl, M.; Göç, Z.; Avcı, R.; Gökalp, G.; Bıcılıoğlu, Y.; Kamıt-Can, F.; Durak, F.; Bal, A.; Zengin, N.; Anıl, A.B. B-type natriuretic peptide is a useful biomarker predicting disease severity in children with isolated bronchiolitis in the emergency department. Turk. J. Pediatr. 2017, 59, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Borensztajn, D.M.; Tan, C.D.; de Rijke, Y.; Hagedoorn, N.N.; Verbruggen, S.C.; Moll, H.A.; Vermont, C.L. Elevated High-Sensitivity Troponin and NT-proBNP Values in Febrile Children. Pediatr. Emerg. Care 2023, 40, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Nalcacioglu, H.; Ozkaya, O.; Kafali, H.C.; Tekcan, D.; Avci, B.; Baysal, K. Is N-terminal pro-brain natriuretic peptide a reliable marker for body fluid status in children with chronic kidney disease? Arch. Med. Sci. 2020, 16, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Drożdż, T.; Kwinta, P.; Kordon, Z.; Sztefko, K.; Rudziński, A.; Zachwieja, K.; Miklaszewska, M.; Czarnecka, D.; Drożdż, D. B-type natriuretic peptide as a marker of cardiac dysfunction in children with chronic kidney disease. Pol. Merkur. Lekarski 2018, 44, 171–176. [Google Scholar]
- Rinat, C.; Becker-Cohen, R.; Nir, A.; Feinstein, S.; Algur, N.; Ben-Shalom, E.; Farber, B.; Frishberg, Y. B-type natriuretic peptides are reliable markers of cardiac strain in CKD pediatric patients. Pediatr. Nephrol. 2011, 27, 617–625. [Google Scholar] [CrossRef]
- Pang, L.; Wang, Z.; Zhao, Z.L.; Guo, Q.; Huang, C.W.; Du, J.L.; Yang, H.Y.; Li, H.X. Associations between estimated glomerular filtration rate and cardiac biomarkers. J. Clin. Lab. Anal. 2020, 34, e23336. [Google Scholar] [CrossRef]
- Maher, K.O.; Reed, H.; Cuadrado, A.; Simsic, J.; Mahle, W.T.; Deguzman, M.; Leong, T.; Bandyopadhyay, S. B-Type Natriuretic Peptide in the Emergency Diagnosis of Critical Heart Disease in Children. Pediatrics 2008, 121, e1484–e1488. [Google Scholar] [CrossRef] [PubMed]
Authors | Year of Publication | Age Group | BNP (pg/mL) * | NT-proBNP (pg/mL) * | Link |
---|---|---|---|---|---|
A Koch, H Singer Heart [42] | 2003 | 0–1 day | 231.6 | https://pubmed.ncbi.nlm.nih.gov/12860862/ (URL accessed on 9 June 2024) | |
A Koch, H Singer Heart [42] | 2003 | 4–6 days | 48.4 | https://pubmed.ncbi.nlm.nih.gov/12860862/ (URL accessed on 9 June 2024) | |
Hyun Su Kim and Hee Joung Choi [43] | 2020 | 0 to 17.5 years | 280 | https://pubmed.ncbi.nlm.nih.gov/32102709/ (URL accessed on 9 June 2024) | |
Amiram Nir et al. [44] | 2008 | 0–2 days | 3183 | https://pubmed.ncbi.nlm.nih.gov/18600369/ (URL accessed on 9 June 2024) | |
Amiram Nir et al. [44] | 2008 | 3–11 days | 2210 | https://pubmed.ncbi.nlm.nih.gov/18600369/ (URL accessed on 9 June 2024) | |
Amiram Nir et al. [44] | 2008 | >1 mo to 1 yr | 141 | https://pubmed.ncbi.nlm.nih.gov/18600369/ (URL accessed on 9 June 2024) | |
Amiram Nir et al. [44] | 2008 | 1 yr to 2 yr | 129 | https://pubmed.ncbi.nlm.nih.gov/18600369/ (URL accessed on 9 June 2024) | |
Amiram Nir et al. [44] | 2008 | 2 yr to 6 yr | 70 | https://pubmed.ncbi.nlm.nih.gov/18600369/ (URL accessed on 9 June 2024) | |
Amiram Nir et al. [44] | 2008 | 6 yr to 14 yr | 52 | https://pubmed.ncbi.nlm.nih.gov/18600369/ (URL accessed on 9 June 2024) | |
Amiram Nir et al. [44] | 2008 | 14 yr to 18 yr | 34 | https://pubmed.ncbi.nlm.nih.gov/18600369/ (URL accessed on 9 June 2024) |
Authors | Year of Publication | Number of Participants | Medical Condition | NT-proBNP (pg/mL) | BNP (pg/mL) | Comments | Link |
---|---|---|---|---|---|---|---|
Zhang R et al. * [63] | 2020 | 100 | KD | 350 | differentiating from (higher than in) other febrile illness | https://pubmed.ncbi.nlm.nih.gov/33378024/ (URL accessed on 11 June 2024) | |
Ganguly et al. [64] | 2022 | 72 | KD | 914.91 | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652561/ (URL accessed on 12 June 2024) | ||
Ganguly et al. [64] | 2022 | 71 | MIS-C | 9141.16 | good in predicting MIS-C | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652561/ (URL accessed on 12 June 2024) | |
Song HB et al. * [65] | 2020 | 95 | KD | 1310 | higher in patients with CAL | https://pubmed.ncbi.nlm.nih.gov/31931930/ (URL accessed on 11 June 2024) | |
Cai WJ et al. * [66] | 2022 | 139 | KD | 506.31 | higher in patients with CAL | https://pubmed.ncbi.nlm.nih.gov/36596080/ (URL accessed on 12 June 2024) | |
Desjardins et al. [67] | 2020 | 127 | KD | 2029 | higher in children with systolic disfunction | https://pubmed.ncbi.nlm.nih.gov/32172336/ (URL accessed on 12 June 2024) | |
Banerjee P et al. [68] | 2023 | 40 | KD | 914.91 | higher than in other febrile illness | https://pubmed.ncbi.nlm.nih.gov/37551875/ (URL accessed on 12 June 2024) | |
Joung J et al. * [69] | 2022 | 896 | KD | 1828 | higher in IVIG non-responders with cut-off value 1561 pg/mL and higher in patients with CAL with cut-off value 789.0 pg/mL | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354345/ (URL accessed on 13 June 2024) | |
Bilal M et al. * [70] | 2020 | 500 | KD | higher in patients with CAL | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405981/ (URL accessed on 13 June 2024) | ||
Jung JH et al. [71] | 2023 | 378 | KD | 59 | higher than in other febrile illness, with BNP > 270 pg/mL higher risk of CAL in KD | https://pubmed.ncbi.nlm.nih.gov/37478221/ (URL accessed on 14 June 2024) | |
Otar Yener G et al. [72] | 2022 | 154 | MIS-C | 1108 | higher than in KD | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421714/ (URL accessed on 14 June 2024) | |
Otar Yener G et al. [72] | 2022 | 59 | KD | 55 | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421714/ (URL accessed on 14 June 2024) | ||
Belhadjer et al. [57] | 2020 | 35 | MIS-C | 4256 | https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.120.048360 (URL accessed on 14 June 2024) | ||
Whittaker et al. [73] | 2020 | 58 | MIS-C | 788 | NT-proBNP levels may be helpful in predicting progression of disease | https://jamanetwork.com/journals/jama/fullarticle/2767209 (URL accessed on 15 June 2024) | |
Bichali et al. [74] | 2023 | 31 | MIS-C | 32,933 | measured at 6 days from first symptoms | https://doi.org/10.1007/s12519-022-00681-8 (URL accessed on 11 June 2024) | |
Ludwikowska et al. [61] | 2023 | 498 | MIS-C | different values across age groups for BNP but not for NT-proBNP | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215748/ (URL accessed on 10 June 2024) | ||
Valverde et al. [75] | 2021 | 286 | MIS-C | https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.120.050065 (URL accessed on 15 June 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludwikowska, K.M.; Tokarczyk, M.; Paleczny, B.; Tracewski, P.; Szenborn, L.; Kusa, J. Clinical Significance of B-Type Natriuretic Peptide and N-Terminal Pro-B-Type Natriuretic Peptide in Pediatric Patients: Insights into Their Utility in the Presence or Absence of Pre-Existing Heart Conditions. Int. J. Mol. Sci. 2024, 25, 8781. https://doi.org/10.3390/ijms25168781
Ludwikowska KM, Tokarczyk M, Paleczny B, Tracewski P, Szenborn L, Kusa J. Clinical Significance of B-Type Natriuretic Peptide and N-Terminal Pro-B-Type Natriuretic Peptide in Pediatric Patients: Insights into Their Utility in the Presence or Absence of Pre-Existing Heart Conditions. International Journal of Molecular Sciences. 2024; 25(16):8781. https://doi.org/10.3390/ijms25168781
Chicago/Turabian StyleLudwikowska, Kamila Maria, Monika Tokarczyk, Bartłomiej Paleczny, Paweł Tracewski, Leszek Szenborn, and Jacek Kusa. 2024. "Clinical Significance of B-Type Natriuretic Peptide and N-Terminal Pro-B-Type Natriuretic Peptide in Pediatric Patients: Insights into Their Utility in the Presence or Absence of Pre-Existing Heart Conditions" International Journal of Molecular Sciences 25, no. 16: 8781. https://doi.org/10.3390/ijms25168781
APA StyleLudwikowska, K. M., Tokarczyk, M., Paleczny, B., Tracewski, P., Szenborn, L., & Kusa, J. (2024). Clinical Significance of B-Type Natriuretic Peptide and N-Terminal Pro-B-Type Natriuretic Peptide in Pediatric Patients: Insights into Their Utility in the Presence or Absence of Pre-Existing Heart Conditions. International Journal of Molecular Sciences, 25(16), 8781. https://doi.org/10.3390/ijms25168781