Genome-Wide Identification, Expression, and Protein Analysis of CKX and IPT Gene Families in Radish (Raphanus sativus L.) Reveal Their Involvement in Clubroot Resistance
Abstract
:1. Introduction
2. Results
2.1. Genome-Wide Identification and Distribution of CKX and IPT Genes in Radish
2.2. Phylogenetic Analysis of RsIPT and RsCKX Gene Families
2.3. Gene Structure and Conserved Motif Analysis of the RsIPT and RsCKX Genes
2.4. Cis-Acting Elements in the Promoters of RsIPT and RsCKX Genes
2.5. Gene Duplication and Divergence of the RsIPT and RsCKX Genes
2.6. Expression Profiles of RsIPT and RsCKX Genes in Tissues and Growth Stages of Radish Root
2.7. Expression Divergences of RsIPT and RsCKX Genes after Infection with P. brassicae
2.8. Predicted Secondary Structure and 3D Structure of RsCKX Proteins
2.9. Analysis of the Interaction Networks of RsCKX Proteins
3. Discussion
4. Materials and Methods
4.1. Identifying IPT Genes and CKX Genes
4.2. Mapping IPT and CKX Genes to Chromosomes
4.3. Phylogenetic Tree Construction of RsIPT and RsCKX Gene Families
4.4. Analysis of Gene Structure and Conserved Motif
4.5. Analysis of the Promoters of RsIPT and RsCKX Genes
4.6. Analysis of Segmental Duplication, Tandem Duplication, and Collinearity between Raphanus and Arabidopsis or B. rapa
4.7. Plant Materials, Cultivation, and Treatment with P. brassicae
4.8. RNA Extraction, cDNA Synthesis, qRT-PCR, and Statistical Analysis
4.9. Expression Profile Analysis of the RsIPT and RsCKX Genes
4.10. Prediction and Analysis of Secondary Structure and 3D Structure of Proteins
4.11. Interaction Network Analysis of RsCKX Proteins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirai, M. Genetic analysis of clubroot resistance in brassica crops. Bred. Sci. 2006, 56, 223–229. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.L.; Li, X.L.; Li, H.Z. Research progress in clubroot of crucifers. Plant Prot. 2011, 37, 153–158. [Google Scholar]
- Yang, H.; Yuan, Y.; Wei, X.; Zhang, X.; Wang, H.; Song, J.; Li, X. A new identification method reveals the resistance of an extensive-source radish collection to Plasmodiophora brassicae race 4. Agronomy 2021, 11, 792. [Google Scholar] [CrossRef]
- Ingram, D.S.; Tommerup, I.C.; Ingram, D.S.; Brian, P.W. The life history of Plasmodiophora bracssicae Woron. Proc. B Soc. Lond. B 1972, 180, 103–112. [Google Scholar]
- Wallenhammar, A.C. Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central sweden and factors influencing soil infestation levels. Plant Pathol. 2010, 45, 710–719. [Google Scholar] [CrossRef]
- Chai, A.L.; Xie, X.W.; Shi, Y.X.; Li, B.J. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Can. J. Plant Pathol. Rev. Can. Phytopathol. 2014, 36, 142–153. [Google Scholar] [CrossRef]
- Mok, M.C. Cytokinins and plant development—An overview. In Cytokinins—Chemistry, Activity, and Function; Mok, D.W.S., Mokeds, M.C., Eds.; CRC Press: Boca Raton, FL, USA, 1994; Volume 1, pp. 155–166. Available online: https://www.researchgate.net/publication/312888917_Cytokinins_and_Plant_Development_Cytokinins_Chemistry_Activity_and_Function (accessed on 1 August 2024).
- Sakakibara, H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006, 57, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Werner, T.; Schmülling, T. Cytokinin action in plant development. Curr. Opin. Plant Biol. 2009, 12, 527–538. [Google Scholar] [CrossRef]
- Dervinis, C.; Frost, C.J.; Lawrence, S.D.; Novak, N.G.; Davis, J.M. Cytokinin primes plant responses to wounding and reduces insect performance. J. Plant Growth Regul. 2010, 29, 289–296. [Google Scholar] [CrossRef]
- Choi, J.; Choi, D.; Lee, S.; Ryu, C.-M.; Hwang, I. Cytokinins and plant immunity: Old foes or new friends? Trends Plant Sci. 2011, 16, 388–394. [Google Scholar] [CrossRef]
- Denancé, N.; Sánchez-Vallet, A.; Goffner, D.; Molina, A. Disease resistance or growth: The role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 2013, 4, 155. [Google Scholar] [CrossRef]
- Grant, M.R.; Jones, J.D.G. Hormone (dis)harmony moulds plant health and disease. Science 2009, 324, 750–752. [Google Scholar] [CrossRef] [PubMed]
- De Vleesschauwer, D.; Xu, J.; Höfte, M. Making sense of hormone-mediated defense networking: From rice to arabidopsis. Front. Plant Sci. 2014, 5, 611. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Efetova, M.; Engelmann, J.C.; Kramell, R.; Wasternack, C.; Ludwig-Müller, J.; Hedrich, R.; Deeken, R. Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 2009, 21, 2948–2962. [Google Scholar] [CrossRef]
- Sardesai, N.; Lee, L.-Y.; Chen, H.; Yi, H.; Olbricht, G.R.; Stirnberg, A.; Jeffries, J.; Xiong, K.; Doerge, R.W.; Gelvin, S.B. Cytokinins secreted by agrobacterium promote transformation by repressing a plant MYB transcription factor. Sci. Signal. 2013, 19, 100. [Google Scholar]
- Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M. Cytokinins as key regulators in plant-microbe-insect interactions: Connecting plant growth and defence. Funct. Ecol. 2013, 27, 599–609. [Google Scholar] [CrossRef]
- Naseem, M.; Wölfling, M.; Dandekar, T. Cytokinins for immunity beyond growth, galls and green islands. Trends Plant Sci. 2014, 19, 481–484. [Google Scholar] [CrossRef]
- Walters, D.R.; McRoberts, N. Plants and biotrophs: A pivotal role for cytokinins? Trends Plant Sci. 2006, 11, 581–586. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Schuller, A. What can we learn from clubroots: Alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. Eur. J. Plant Pathol. 2008, 121, 291–302. [Google Scholar] [CrossRef]
- Siemens, J.; Keller, I.; Sarx, J.; Kunz, S.; Schuller, A.; Nagel, W.; Schmülling, T.; Parniske, M.; Ludwig-Müller, J. Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol. Plant-Microbe Interact. 2006, 19, 480–494. [Google Scholar] [CrossRef]
- Malinowski, R.; Novák, O.; Borhan, M.H.; Spíchal, L.; Strnad, M.; Rolfe, S.A. The role of cytokinins in clubroot disease. Eur. J. Plant Pathol. 2016, 145, 543–557. [Google Scholar] [CrossRef]
- Prerostova, S.; Dobrev, P.I.; Konradyova, V.; Knirsch, V.; Gaudinova, A.; Kramna, B.; Kazda, J.; Ludwig-Müller, J.; Vankova, R. Hormonal responses to Plasmodiophora brassicae infection in brassica napus cultivars differing in their pathogen resistance. Int. J. Mol. Sci. 2018, 19, 4024. [Google Scholar] [CrossRef]
- Malinowski, R.; Smith, J.A.; Fleming, A.J.; Scholes, J.D.; Rolfe, S.A. Gall formation in clubroot-infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle. Plant J. 2012, 71, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Boivin, S.; Fonouni-Farde, C.; Frugier, F. How auxin and cytokinin phytohormones modulate root microbe interactions. Front. Plant Sci. 2016, 7, 1240. [Google Scholar] [CrossRef]
- Robin, A.H.K.; Hossain, M.R.; Kim, H.T.; Nou, I.S.; Park, J.I. Role of cytokinins in clubroot disease development. Plant Breed. Biotechnol. 2019, 7, 73–82. [Google Scholar] [CrossRef]
- Grsic-Rausch, S.; Kobelt, P.; Siemens, J.M.; Bischoff, M.; Ludwig-Müller, J. Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis. Plant Physiol. 2000, 122, 369–378. [Google Scholar] [CrossRef]
- Miiller, P.; Muller, W.H.; Hiigenberg, P.; Muller, P.; Hiigenberg, W. Isomers of zeatin and zeatin riboside in clubroot tissue: Evidence for trans-zeatin biosynthesis by Plasmodiophora brassicae. Physiol. Plant. 1986, 66, 245–250. [Google Scholar] [CrossRef]
- Siemens, J.; González, M.C.; Wolf, S.; Hofmann, C.; Greiner, S.; Du, Y.; Rausch, T.; Roitsch, T.; Ludwig-Müller, J. Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana. Mol. Plant Pathol. 2011, 12, 247–262. [Google Scholar] [CrossRef]
- Devos, S.; Laukens, K.; Deckers, P.; Van Der Straeten, D.; Beeckman, T.; Inzé, D.; Van Onckelen, H.; Witters, E.; Prinsen, E. A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol. Plant Microbe Interact. 2006, 19, 1431–1443. [Google Scholar] [CrossRef]
- Dekhuijzen, H.M. The occurrence of free and bound cytokinins in dubroots and Plasmodiophora brassicae infected turnip tissue cultures. Plant Cell Rep. 1980, 49, 169–176. [Google Scholar]
- Takei, K.; Sakakibara, H.; Taniguchi, M.; Sugiyama, T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol. 2001, 42, 85–93. [Google Scholar] [CrossRef]
- Miyawaki, K.; Matsumoto-Kitano, M.; Kakimoto, T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: Tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 2004, 37, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.; Sheen, J.; Müller, B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 2012, 63, 353–380. [Google Scholar] [CrossRef]
- Werner, T.; Motyka, V.; Laucou, V.; Smets, R.; Van Onckelen, H.; Schmülling, T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 2003, 15, 2532–2550. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lv, Y.; Zhang, M.; Liu, Y.; Kong, L.; Zou, M.; Lu, G.; Cao, J.; Yu, X. Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom. 2013, 14, 594. [Google Scholar] [CrossRef] [PubMed]
- Laila, R.; Robin, A.H.K.; Park, J.I.; Saha, G.; Kim, H.T.; Kayum, M.A.; Nou, I.S. Expression and role of response regulating, biosynthetic and degrading genes for cytokinin signaling during clubroot disease development. Int. J. Mol. Sci. 2020, 21, 3896. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Y.; Lu, S.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Fang, Z.; Hou, X. Genome-wide identification and analysis of cytokinin dehydrogenase/oxidase (CKX) family genes in Brassica oleracea L. reveals their involvement in response to Plasmodiophora brassicae infections. Hortic. Plant J. 2022, 8, 68–80. [Google Scholar] [CrossRef]
- Chen, J.; Wan, H.; Zhu, W.; Dai, X.; Yu, Y.; Zeng, C. Identification and expression analysis of the isopentenyl transferase (IPT) gene family under lack of nitrogen stress in oilseed (Brassica napus L.). Plants 2023, 12, 2166. [Google Scholar] [CrossRef] [PubMed]
- Schmülling, T.; Werner, T.; Riefler, M.; Krupková, E.; Manns, I.B.Y. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 2003, 116, 241–252. [Google Scholar] [CrossRef]
- Kakimoto, T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiol. 2001, 42, 677–685. [Google Scholar] [CrossRef]
- Werner, T.; Motyka, V.; Strnad, M.; Schmülling, T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA 2001, 98, 10487–10492. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Yang, S.; Kim, E.; Ko, Y.; Hwang, S.; Shin, J.; Shim, J.E.; Shim, H.; Kim, H.; Kim, C.; et al. AraNet v2: An improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res. 2015, 43, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Wei, X.; Gao, R.; Huo, F.; Nie, X.; Tong, W.; Song, W. Genome-wide identification of PYL gene family in wheat: Evolution, expression and 3d structure analysis. Genomics 2021, 113, 854–866. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, L.; Hao, Z.; Wu, W.; Xu, L.; Yang, Y.; Zhang, J.; Lu, Y.; Shi, J.; Chen, J. Genome-wide identification and abiotic-stress-responsive expression of CKX gene family in liriodendron chinense. Plants 2023, 12, 2157. [Google Scholar] [CrossRef] [PubMed]
- Edger, P.P.; Pires, J.C. Gene and genome duplications: The impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res. 2009, 17, 699–717. [Google Scholar] [CrossRef]
- Jiao, Y.; Wickett, N.J.; Ayyampalayam, S.; Chanderbali, A.S.; Landherr, L.; Ralph, P.E.; Tomsho, L.P.; Hu, Y.; Liang, H.; Soltis, P.S.; et al. Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hasegawa, Y.; Saito, M.; Shirasawa, S.; Fukushima, A.; Ito, T.; Fujii, H.; Kishitani, S.; Kitashiba, H.; Nishio, T. Extensive chromosome homoeology among brassiceae species were revealed by comparative genetic mapping with high-density est-based SNP markers in radish (Raphanus Sativus L.). DNA Res. 2011, 18, 401–411. [Google Scholar] [CrossRef]
- Nelson, M.N.; Parkin, I.A.P.; Lydiate, D.J. The mosaic of ancestral karyotype blocks in the Sinapis alba L. Genome 2011, 54, 33–41. [Google Scholar] [CrossRef]
- Cheng, F.; Liang, J.; Cai, C.; Cai, X.; Wu, J.; Wang, X. Genome sequencing supports a multi-vertex model for brassiceae species. Curr. Opin. Plant Biol. 2017, 36, 79–87. [Google Scholar] [CrossRef]
- Paritosh, K.; Gupta, V.; Yadava, S.K.; Singh, P.; Pradhan, A.K.; Pental, D. RNA-Seq based SNPs for mapping in Brassica juncea (AABB): Synteny analysis between the two constituent genomes a (from B. rapa) and b (from B. nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns. BMC Genom. 2014, 15, 396. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.M.; Kim, N.; Ahn, B.O.; Oh, M.; Chung, W.H.; Chung, H.; Jeong, S.; Lim, K.B.; Hwang, Y.J.; Kim, G.B.; et al. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the brassica genomes. Theor. Appl. Genet. 2016, 129, 1357–1372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, T.; Wang, J.; Wang, P.; Qiu, Y.; Zhao, W.; Pang, S.; Li, X.; Wang, H.; Song, J.P.; et al. Pan-Genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. Mol. Plant 2021, 14, 2032–2055. [Google Scholar] [CrossRef] [PubMed]
- Mun, J.H.; Kwon, S.J.; Yang, T.J.; Seol, Y.J.; Jin, M.; Kim, J.A.; Lim, M.H.; Kim, J.S.; Baek, S.; Choi, B.S.; et al. Genome-wide comparative analysis of the brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol. 2009, 10, R111. [Google Scholar] [CrossRef] [PubMed]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.; Barton, N.H. Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes. Science 2003, 300, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.M.; Chung, W.H.; Chung, H.; Kim, N.; Park, B.S.; Lim, K.B.; Yu, H.J.; Mun, J.H. Comparative analysis of the radish genome based on a conserved ortholog set (COS) of brassica. Theor. Appl. Genet. 2014, 127, 1975–1989. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.M.; Mun, J.H.; Lee, I.; Woo, J.C.; Hong, C.B.; Kim, S.G. Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members. Plant Physiol. 2006, 140, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, L.; Fedorov, A. Introns in gene evolution. Genetica 2003, 118, 123–131. [Google Scholar] [CrossRef]
- Ren, X.Y.; Vorst, O.; Fiers, M.W.E.J.; Stiekema, W.J.; Nap, J.P. In plants, highly expressed genes are the least compact. Trends Genet. 2006, 22, 528–532. [Google Scholar] [CrossRef]
- Tan, M.; Li, G.; Qi, S.; Liu, X.; Chen, X.; Ma, J.; Zhang, D.; Han, M. Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.). Gene 2018, 651, 106–117. [Google Scholar] [CrossRef]
- Feng, Y.; Lv, J.; Peng, M.; Li, J.; Wu, Y.; Gao, M.; Wu, X.; Wang, Y.; Wu, T.; Zhang, X.; et al. Genome-wide identification and characterization of the IPT family members in nine rosaceae species and a functional analysis of MdIPT5b in cold resistance. Hortic. Plant J. 2023, 9, 616–630. [Google Scholar] [CrossRef]
- García-Gutiérrez, Á.; Cánovas, F.M.; Ávila, C. Glutamate synthases from conifers: Gene structure and phylogenetic studies. BMC Genom. 2018, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- Jeffares, D.C.; Penkett, C.J.; Bähler, J. Rapidly regulated genes are intron poor. Trends Genet. 2008, 24, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Wang, D.; Wang, R.; Kong, N.; Zhang, C.; Yang, C.; Wu, W.; Ma, H.; Chen, Q. Genome-wide analysis of the potato Hsp20 gene family: Identification, genomic organization and expression profiles in response to heat stress. BMC Genom. 2018, 19, 61. [Google Scholar] [CrossRef]
- Zhou, F.; Guo, Y.; Qiu, L.J. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC Plant Biol. 2016, 16, 58. [Google Scholar] [CrossRef]
- Chen, J.; Piao, Y.; Liu, Y.; Li, X.; Piao, Z. Genome-wide identification and expression analysis of chitinase gene family in brassica rapa reveals its role in clubroot resistance. Plant Sci. 2018, 270, 257–267. [Google Scholar] [CrossRef]
- Sham, A.; Moustafa, K.; Al-Ameri, S.; Al-Azzawi, A.; Iratni, R.; AbuQamar, S. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays. PLoS ONE 2015, 10, e0125666. [Google Scholar] [CrossRef]
- Yu, T.F.; Zhao, W.Y.; Fu, J.D.; Liu, Y.W.; Chen, M.; Zhou, Y.B.; Ma, Y.Z.; Xu, Z.S.; Xi, Y.J. Genome-wide analysis of CDPK family in foxtail millet and determination of SiCDPK24 functions in drought stress. Front. Plant Sci. 2018, 9, 651. [Google Scholar] [CrossRef]
- Song, S.; Xu, Y.; Huang, D.; Miao, H.; Liu, J.; Jia, C.; Hu, W.; Valarezo, A.V.; Xu, B.; Jin, Z. Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana. Plant Physiol. Biochem. 2018, 128, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Idrovo Espín, F.M.; Peraza-Echeverria, S.; Fuentes, G.; Santamaría, J.M. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya. Plant Physiol. Biochem. 2012, 54, 113–122. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, R.; Wang, D.; Zhang, J.; Zang, S.; Zou, W.; Feng, A.; You, C.; Su, Y.; Wu, Q.; et al. Dissecting the features of TGA gene family in Saccharum and the functions of ScTGA1 under biotic stresses. Plant Physiol. Biochem. 2023, 200, 107760. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Huh, S.U.; Kojima, M.; Sakakibara, H.; Paek, K.H.; Hwang, I. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell 2010, 19, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Dai, Y.; Noman, M.; Li, R.; Li, X.; Wu, X.; Wang, H.; Song, F.; Li, D. Genome-wide characterization and functional analysis of the melon TGA gene family in disease resistance through ectopic overexpression in Arabidopsis thaliana. Plant Physiol. Biochem. 2024, 212, 108784. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Mao, W.; Tang, W.; Soares, M.A.; Li, H. Wild rosa endophyte M7SB41-mediated host plant’s powdery mildew resistance. J. Fungi 2023, 9, 620. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wu, M.; Wang, X.; Li, M.; Gao, X.; Xu, X.; Zhang, Y.; Liu, X.; Yu, L.; Zhang, Y. Common Bean (Phaseolus vulgaris L.) NAC transcriptional factor PvNAC52 enhances transgenic Arabidopsis resistance to salt, alkali, osmotic, and ABA stress by upregulating stress-responsive genes. Int. J. Mol. Sci. 2024, 25, 5818. [Google Scholar] [CrossRef]
- Yu, K.; Yu, Y.; Bian, L.; Ni, P.; Ji, X.; Guo, D.; Zhang, G.; Yang, Y. Genome-wide identification of cytokinin oxidases/dehydrogenase (CKXs) in grape and expression during berry set. Sci. Hortic. 2021, 280, 109917. [Google Scholar] [CrossRef]
- Zamioudis, C.; Hanson, J.; Pieterse, C.M. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytol. 2014, 204, 368–379. [Google Scholar] [CrossRef]
- Chen, H.; Wang, T.; He, X.; Cai, X.; Lin, R.; Liang, J.; Wu, J.; King, G.; Wang, X. BRAD V3.0: An upgraded Brassicaceae database. Nucleic Acids Res. 2022, 7, 1432–1441. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Lu, S.; Anderson, J.B.; Chitsaz, F.; Derbyshire, M.K.; DeWeese-Scott, C.; Fong, J.H.; Geer, L.Y.; Geer, R.C.; Gonzales, N.R.; et al. CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011, 39, d255–d259. [Google Scholar] [CrossRef] [PubMed]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef] [PubMed]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef]
- Guo, A.Y.; Zhu, Q.H.; Chen, X.; Luo, J.C. GSDS: A gene structure display server. Hereditas 2007, 29, 1023–1026. [Google Scholar] [CrossRef]
- Machanick, P.; Bailey, T.L. MEME-ChIP: Motif analysis of large DNA datasets. Bioinformatics 2011, 27, 1696–1697. [Google Scholar] [CrossRef]
- Rombauts, S.; Déhais, P.; Van Montagu, M.; Rouzé, P. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res. 1999, 27, 295–296. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.A.; Haubold, B.; Mitchell-Olds, T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol. 2000, 17, 1483–1498. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiu, Y.; Wang, X.; Yue, Z.; Yang, X.; Chen, X.; Zhang, X.; Shen, D.; Wang, H.; Song, J.; et al. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis. Sci. Rep. 2017, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yue, Z.; Mei, S.; Qiu, Y.; Yang, X.; Chen, X.; Cheng, F.; Wu, Z.; Sun, Y.; Jing, Y.; et al. A de novo genome of a Chinese radish cultivar. Hortic. Plant J. 2015, 1, 155–164. [Google Scholar]
- Geourjon, C.; Deléage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 1995, 11, 681–684. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef]
- Bowie, J.U.; Lüthy, R.; Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991, 253, 164–170. [Google Scholar] [CrossRef]
- Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 1992, 356, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Pontius, J.; Richelle, J.; Wodak, S.J. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J. Mol. Biol. 1996, 264, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Maiti, R.; Van Domselaar, G.H.; Zhang, H.; Wishart, D.S. SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Res. 2004, 32 (Suppl. 2), W590–W594. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Dong, Z.; Fang, L.; Luo, Y.; Wei, Z.; Guo, H.; Zhang, G.; Gu, Y.Q.; Coleman-Derr, D.; Xia, Q.; et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019, 47, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, 605–612. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | Chromosome | Gene Length (bp) | Protein Length (aa) | MW (Da) | PI | Predicted Localization |
---|---|---|---|---|---|---|---|
RsIPT1 | Rsa10009818 | R07 | 1032 | 344 | 38,962.4 | 9.75 | Cytoskeleton |
RsIPT2 | Rsa10020209 | R04 | 2169 | 470 | 53,202.4 | 6.18 | Nucleus |
RsIPT3-1 | Rsa10027751 | R05 | 1312 | 333 | 37,545 | 8.27 | Chloroplast |
RsIPT3-2 | Rsa10001423 | Scaffold638 | 1151 | 218 | 25,130.6 | 7.82 | Cytoplasm |
RsIPT5-1 | Rsa10015237 | R07 | 1926 | 335 | 37,836.2 | 5.78 | Mitochondrion |
RsIPT5-2 | Rsa10023282 | R02 | 1943 | 335 | 37,872 | 5.94 | Chloroplast |
RsIPT7-1 | Rsa10028124 | R01 | 1390 | 322 | 35,774.8 | 8.57 | Chloroplast |
RsIPT7-2 | Rsa10010488 | R05 | 339 | 113 | 12,356.3 | 10.35 | Chloroplast |
RsIPT8-1 | Rsa10042487 | R05 | 1563 | 327 | 36,928.9 | 9.29 | Chloroplast |
RsIPT8-2 | Rsa10027852 | R01 | 1405 | 325 | 36,904.9 | 9.08 | Mitochondrion |
RsIPT9-1 | Rsa10023211 | R02 | 3166 | 499 | 56,375.9 | 7.18 | Chloroplast |
RsIPT9-2 | Rsa10035858 | R03 | 2755 | 467 | 52,553.9 | 8 | Chloroplast |
RsIPT10 | Rsa10008422 | R02 | 3375 | 300 | 33,134 | 5.28 | Chloroplast |
Gene Name | Gene ID | Chromosome | Gene Length (bp) | Protein Length (aa) | MW (Da) | PI | Predicted Localization |
---|---|---|---|---|---|---|---|
RsCKX1-1 | Rsa10025968 | R03 | 1709 | 432 | 48,162.5 | 7.75 | Mitochondrion |
RsCKX1-2 | Rsa10039146 | R01 | 1409 | 387 | 43,085.8 | 8.39 | Mitochondrion |
RsCKX1-3 | Rsa10011234 | R04 | 2028 | 440 | 48,832.3 | 9.22 | Mitochondrion |
RsCKX2-1 | Rsa10025912 | R09 | 4169 | 508 | 56,240.3 | 6.61 | Plasma Membrane |
RsCKX2-2 | Rsa10031296 | R01 | 8890 | 506 | 56,077 | 6.02 | Chloroplast |
RsCKX3-1 | Rsa10019391 | R02 | 2619 | 424 | 47,506.6 | 6.87 | Extracell |
RsCKX3-2 | Rsa10023843 | R09 | 2391 | 425 | 47,456.9 | 7.67 | Vacuole |
RsCKX4 | Rsa10036909 | R04 | 3204 | 469 | 51,700.7 | 6.6 | Extracell |
RsCKX5 | Rsa10034185 | R07 | 1994 | 407 | 45,073.9 | 6.06 | Chloroplast |
RsCKX6 | Rsa10027735 | R05 | 2192 | 430 | 48,062.9 | 8.48 | Mitochondrion |
RsCKX7-1 | Rsa10021101 | R07 | 3676 | 526 | 57,887.1 | 4.82 | Cytoplasm |
RsCKX7-2 | Rsa10013210 | R02 | 2058 | 421 | 45,749.1 | 4.38 | Cytoplasm |
Orthologous Pairs | Ka | Ks | Ka/Ks | MYA a | Paralogous Pairs | Ka | Ks | Ka/Ks | MYA a |
---|---|---|---|---|---|---|---|---|---|
AtIPT1/RsIPT1 | 0.15 | 0.59 | 0.26 | 19.57 | RsIPT3-1/RsIPT3-2 | 0.07 | 0.43 | 0.16 | 14.31 |
AtIPT2/RsIPT2 | 0.11 | 0.44 | 0.25 | 14.53 | RsIPT5-1/RsIPT5-2 | 0.07 | 0.47 | 0.16 | 15.66 |
AtIPT3/RsIPT3-1 | 0.08 | 0.56 | 0.14 | 18.77 | RsIPT7-1/RsIPT7-2 | 0.03 | 0.19 | 0.15 | 6.20 |
AtIPT3/RsIPT3-2 | 0.09 | 0.62 | 0.14 | 20.78 | RsIPT8-1/RsIPT8-2 | 0.12 | 0.38 | 0.30 | 12.68 |
AtIPT5/RsIPT5-1 | 0.07 | 0.54 | 0.12 | 18.13 | RsIPT9-1/RsIPT9-2 | 0.06 | 0.43 | 0.14 | 14.43 |
AtIPT5/RsIPT5-2 | 0.08 | 0.45 | 0.18 | 15.03 | RsCKX1-1/RsCKX1-2 | 0.10 | 0.44 | 0.23 | 14.72 |
AtIPT7/RsIPT7-1 | 0.07 | 0.44 | 0.15 | 14.68 | RsCKX1-1/RsCKX1-3 | 0.07 | 0.46 | 0.15 | 15.47 |
AtIPT7/RsIPT7-2 | 0.07 | 0.45 | 0.15 | 14.97 | RsCKX1-2/RsCKX1-3 | 0.09 | 0.58 | 0.16 | 19.26 |
AtIPT8/RsIPT8-1 | 0.14 | 0.61 | 0.24 | 20.17 | RsCKX2-1/RsCKX2-2 | 0.10 | 0.37 | 0.27 | 12.24 |
AtIPT8/RsIPT8-2 | 0.18 | 0.51 | 0.34 | 17.11 | RsCKX3-1/RsCKX3-2 | 0.05 | 0.34 | 0.15 | 11.47 |
AtIPT9/RsIPT9-1 | 0.10 | 0.39 | 0.26 | 12.83 | RsCKX7-1/RsCKX7-2 | 0.05 | 0.39 | 0.12 | 12.86 |
AtIPT9/RsIPT9-2 | 0.09 | 0.42 | 0.22 | 14.01 | |||||
AtCKX1/RsCKX1-1 | 0.07 | 0.38 | 0.18 | 12.73 | |||||
AtCKX1/RsCKX1-2 | 0.10 | 0.44 | 0.24 | 14.75 | |||||
AtCKX1/RsCKX1-3 | 0.07 | 0.46 | 0.15 | 15.43 | |||||
AtCKX2/RsCKX2-1 | 0.10 | 0.50 | 0.21 | 16.57 | |||||
AtCKX2/RsCKX2-2 | 0.09 | 0.49 | 0.19 | 16.42 | |||||
AtCKX3/RsCKX3-1 | 0.07 | 0.32 | 0.22 | 10.69 | |||||
AtCKX3/RsCKX3-2 | 0.07 | 0.37 | 0.18 | 12.44 | |||||
AtCKX4/RsCKX4 | 0.09 | 0.44 | 0.20 | 14.73 | |||||
AtCKX5/RsCKX5 | 0.03 | 0.48 | 0.07 | 16.10 | |||||
AtCKX6/RsCKX6 | 0.06 | 0.46 | 0.14 | 15.42 | |||||
AtCKX7/RsCKX7-1 | 0.05 | 0.53 | 0.09 | 17.56 | |||||
AtCKX7/RsCKX7-2 | 0.05 | 0.52 | 0.10 | 17.47 |
Group Type | Gene ID | Secondary Structure (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Hh | Gg | Ti | Bb | Ee | Tt | Ss | Cc | Ambiguous States | Other States | ||
Group I | RsCKX1-1 | 33.4 | 0 | 0 | 0 | 19.72 | 7.19 | 0 | 39.68 | 0 | 0 |
RsCKX1-2 | 28.24 | 0 | 0 | 0 | 22.28 | 7.25 | 0 | 42.23 | 0 | 0 | |
RsCKX1-3 | 30.07 | 0 | 0 | 0 | 20.5 | 6.15 | 0 | 43.28 | 0 | 0 | |
RsCKX6 | 35.2 | 0 | 0 | 0 | 18.18 | 5.83 | 0 | 40.79 | 0 | 0 | |
Group II | RsCKX2-1 | 34.12 | 0 | 0 | 0 | 18.54 | 6.71 | 0 | 40.63 | 0 | 0 |
RsCKX2-2 | 37.23 | 0 | 0 | 0 | 19.21 | 6.14 | 0 | 37.43 | 0 | 0 | |
RsCKX3-1 | 36.4 | 0 | 0 | 0 | 18.44 | 6.15 | 0 | 39.01 | 0 | 0 | |
RsCKX3-2 | 33.25 | 0 | 0 | 0 | 19.81 | 5.19 | 0 | 41.75 | 0 | 0 | |
RsCKX4 | 33.76 | 0 | 0 | 0 | 18.38 | 6.41 | 0 | 41.45 | 0 | 0 | |
Group III | RsCKX5 | 33.5 | 0 | 0 | 0 | 19.21 | 4.93 | 0 | 42.36 | 0 | 0 |
Group IV | RsCKX7-1 | 32.95 | 0 | 0 | 0 | 17.9 | 6.29 | 0 | 42.86 | 0 | 0 |
RsCKX7-2 | 31.67 | 0 | 0 | 0 | 17.38 | 6.43 | 0 | 44.52 | 0 | 0 |
RsCKX1-1 | RsCKX1-2 | RsCKX1-3 | RsCKX2-1 | RsCKX2-2 | RsCKX3-1 | RsCKX3-2 | RsCKX4 | RsCKX5 | RsCKX6 | RsCKX7-1 | RsCKX7-2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RsCKX1-1 | 0 | 0.017 | 0.014 | 0.532 | 0.543 | 0.541 | 0.534 | 0.529 | 0.12 | 0.085 | 0.667 | 0.662 |
RsCKX1-2 | 0 | 0.023 | 0.459 | 0.457 | 0.472 | 0.477 | 0.493 | 0.129 | 0.095 | 0.519 | 0.509 | |
RsCKX1-3 | 0 | 0.529 | 0.539 | 0.54 | 0.528 | 0.528 | 0.118 | 0.089 | 0.66 | 0.671 | ||
RsCKX2-1 | 0 | 0.075 | 0.131 | 0.134 | 0.118 | 0.518 | 0.54 | 0.833 | 0.798 | |||
RsCKX2-2 | 0 | 0.139 | 0.146 | 0.111 | 0.517 | 0.546 | 0.825 | 0.467 | ||||
RsCKX3-1 | 0 | 0.079 | 0.135 | 0.526 | 0.536 | 0.813 | 0.817 | |||||
RsCKX3-2 | 0 | 0.157 | 0.517 | 0.534 | 0.842 | 0.831 | ||||||
RsCKX4 | 0 | 0.524 | 0.529 | 0.835 | 0.774 | |||||||
RsCKX5 | 0 | 0.103 | 0.702 | 0.689 | ||||||||
RsCKX6 | 0 | 0.627 | 0.629 | |||||||||
RsCKX7-1 | 0 | 0.025 | ||||||||||
RsCKX7-2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Wei, X.; Lei, W.; Su, H.; Zhao, Y.; Yuan, Y.; Zhang, X.; Li, X. Genome-Wide Identification, Expression, and Protein Analysis of CKX and IPT Gene Families in Radish (Raphanus sativus L.) Reveal Their Involvement in Clubroot Resistance. Int. J. Mol. Sci. 2024, 25, 8974. https://doi.org/10.3390/ijms25168974
Yang H, Wei X, Lei W, Su H, Zhao Y, Yuan Y, Zhang X, Li X. Genome-Wide Identification, Expression, and Protein Analysis of CKX and IPT Gene Families in Radish (Raphanus sativus L.) Reveal Their Involvement in Clubroot Resistance. International Journal of Molecular Sciences. 2024; 25(16):8974. https://doi.org/10.3390/ijms25168974
Chicago/Turabian StyleYang, Haohui, Xiaochun Wei, Weiwei Lei, Henan Su, Yanyan Zhao, Yuxiang Yuan, Xiaowei Zhang, and Xixiang Li. 2024. "Genome-Wide Identification, Expression, and Protein Analysis of CKX and IPT Gene Families in Radish (Raphanus sativus L.) Reveal Their Involvement in Clubroot Resistance" International Journal of Molecular Sciences 25, no. 16: 8974. https://doi.org/10.3390/ijms25168974
APA StyleYang, H., Wei, X., Lei, W., Su, H., Zhao, Y., Yuan, Y., Zhang, X., & Li, X. (2024). Genome-Wide Identification, Expression, and Protein Analysis of CKX and IPT Gene Families in Radish (Raphanus sativus L.) Reveal Their Involvement in Clubroot Resistance. International Journal of Molecular Sciences, 25(16), 8974. https://doi.org/10.3390/ijms25168974