Childhood Cardiovascular Health, Obesity, and Some Related Disorders: Insights into Chronic Inflammation and Oxidative Stress
Abstract
:1. Introduction
2. Cardiovascular Health Metrics
3. Cardiovascular Diseases
4. Chronic Systemic Inflammation and Oxidative Stress in Cardiovascular Diseases
5. Metabolic Syndrome and Obesity Markers in Children
6. Metabolic Syndrome, Chronic Systemic Inflammation, and Oxidative Stress
6.1. Glucose Intolerance, Chronic Systemic Inflammation, and Oxidative Stress
6.2. Dyslipidemia, Chronic Systemic Inflammation, and Oxidative Stress
6.3. Arterial Hypertension, Chronic Systemic Inflammation, and Oxidative Stress
6.4. Obesity, Chronic Systemic Inflammation, and Oxidative Stress
7. Essential Recommendations for Clinicians
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berrahmoune, H.; Lamont, J.; Fitzgerald, P.; Visvikis-Siest, S. Inter-individual variation of inflammatory markers of cardiovascular risks and diseases. Clin. Chem. Lab. Med. 2005, 43, 671–684. [Google Scholar] [CrossRef]
- Perak, A.M.; Benuck, I. Preserving optimal cardiovascular health in children. Pediatr. Ann. 2018, 47, e479–e486. [Google Scholar] [CrossRef]
- Williams, C.L.; Hayman, L.L.; Daniels, S.R.; Robinson, T.N.; Steinberger, J.; Paridon, S.; Bazzarre, T. Cardiovascular health in childhood: A statement for health professionals from the Committee on Atherosclerosis, Hypertension, and Obesity in the Young (AHOY) of the Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 2002, 106, 143–160. [Google Scholar] [CrossRef]
- Crichton, G.E.; Elias, M.F.; Davey, A.; Sauvageot, N.; Delagardelle, C.; Beissel, J.; Alkerwi, A.a. Cardiovascular health: A cross-national comparison between the Maine Syracuse Study (Central New York, USA) and ORISCAV-LUX (Luxembourg). BMC Public Health 2014, 14, 253. [Google Scholar] [CrossRef]
- Koyawala, N.; Mathews, L.M.; Marvel, F.A.; Martin, S.S.; Blumenthal, R.S.; Sharma, G. A clinician’s guide to addressing cardiovascular health based on a revised AHA framework. Am. J. Cardiovasc. Dis. 2023, 13, 52–58. [Google Scholar]
- Gluvic, Z.; Zaric, B.; Resanovic, I.; Obradovic, M.; Mitrovic, A.; Radak, D.; Isenovic, E.R. Link between metabolic syndrome and insulin resistance. Curr. Vasc. Pharmacol. 2017, 15, 30–39. [Google Scholar] [CrossRef]
- Jaksic, M.; Martinovic, M.; Gligorovic-Barhanovic, N.; Vujacic, A.; Djurovic, D.; Nedovic-Vukovic, M. Association between inflammation, oxidative stress, vitamin D, copper and zinc with pre-obesity and obesity in school children from the city of Podgorica, Montenegro. J. Pediatr. Endocrinol. Metab. 2019, 32, 951–957. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of oxidative stress in metabolic syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Charakida, M.; Georgiopoulos, G.; Dangardt, F.; Chiesa, S.T.; Hughes, A.D.; Rapala, A.; Davey Smith, G.; Lawlor, D.; Finer, N.; Deanfield, J.E. Early vascular damage from smoking and alcohol in teenage years: The ALSPAC study. Eur. Heart J. 2019, 40, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Hahad, O.; Daiber, A. Double hazard of smoking and alcohol on vascular function in adolescents. Eur. Heart J. 2019, 40, 354–356. [Google Scholar] [CrossRef] [PubMed]
- Hayman, L.L.; Williams, C.L.; Daniels, S.R.; Steinberger, J.; Paridon, S.; Dennison, B.A.; McCrindle, B.W. Cardiovascular health promotion in the schools: A statement for health and education professionals and child health advocates from the Committee on Atherosclerosis, Hypertension, and Obesity in Youth (AHOY) of the Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 2004, 110, 2266–2275. [Google Scholar] [CrossRef]
- Fuchs, F.D.; Whelton, P.K. high blood pressure and cardiovascular disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef]
- Barton, M. Obesity and aging: Determinants of endothelial cell dysfunction and atherosclerosis. Pflug. Arch. 2010, 460, 825–837. [Google Scholar] [CrossRef]
- Mushenkova, N.V.; Bezsonov, E.E.; Orekhova, V.A.; Popkova, T.V.; Starodubova, A.V.; Orekhov, A.N. Recognition of oxidized lipids by macrophages and its role in atherosclerosis development. Biomedicines 2021, 9, 915. [Google Scholar] [CrossRef]
- Eikendal, A.L.; Evelein, A.M.; Uiterwaal, C.S.; van der Ent, C.K.; Visseren, F.L.; Bots, M.L.; Hoefer, I.E.; den Ruijter, H.M.; Dalmeijer, G.W. Relation between circulating inflammatory chemokines and vascular characteristics in healthy, young children. J. Am. Heart Assoc. 2015, 4, e002346. [Google Scholar] [CrossRef]
- Kelishadi, R.; Sharifi, M.; Khosravi, A.; Adeli, K. Relationship between C-reactive protein and atherosclerotic risk factors and oxidative stress markers among young persons 10–18 years old. Clin. Chem. 2007, 53, 456–464. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Pahwa, R.; Goyal, A.; Jialal, I. Chronic Inflammation. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Hashemi, M.; Amin, M.M.; Chavoshani, A.; Rafiei, N.; Ebrahimpour, K.; Kelishadi, R. Relationship of urinary phthalate metabolites with cardiometabolic risk factors and oxidative stress markers in children and adolescents. J. Environ. Public Health 2021, 2021, 5514073. [Google Scholar] [CrossRef]
- Hertiš Petek, T.; Petek, T.; Močnik, M.; Marčun Varda, N. Systemic inflammation, oxidative stress and cardiovascular health in children and adolescents: A systematic review. Antioxidants 2022, 11, 894. [Google Scholar] [CrossRef]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef] [PubMed]
- Bussler, S.; Penke, M.; Flemming, G.; Elhassan, Y.S.; Kratzsch, J.; Sergeyev, E.; Lipek, T.; Vogel, M.; Spielau, U.; Körner, A.; et al. Novel insights in the metabolic syndrome in childhood and adolescence. Horm. Res. Paediatr. 2017, 88, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. The metabolic syndrome in children and adolescents. Lancet 2007, 369, 2059–2061. [Google Scholar] [CrossRef]
- Fernández, J.R.; Redden, D.T.; Pietrobelli, A.; Allison, D.B. Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J. Pediatr. 2004, 145, 439–444. [Google Scholar] [CrossRef]
- Mancia, G.; Bombelli, M.; Corrao, G.; Facchetti, R.; Madotto, F.; Giannattasio, C.; Trevano, F.Q.; Grassi, G.; Zanchetti, A.; Sega, R. Metabolic syndrome in the Pressioni Arteriose Monitorate E Loro Associazioni (PAMELA) study: Daily life blood pressure, cardiac damage, and prognosis. Hypertension 2007, 49, 40–47. [Google Scholar] [CrossRef]
- Elliott, W.J.; Meyer, P.M. Incident diabetes in clinical trials of antihypertensive drugs: A network meta-analysis. Lancet 2007, 369, 201–207. [Google Scholar] [CrossRef]
- Meigs, J.B. Metabolic syndrome (insulin resistance syndrome or syndrome X). In UpToDate; Nathan, D.M., Wolfsdorf, J.I., Swenson, S., Eds.; UpToDate: Waltham, MA, USA, 2023; Available online: https://www.uptodate.com/contents/metabolic-syndrome-insulin-resistance-syndrome-or-syndrome-x#H1 (accessed on 1 September 2024).
- Al-Shorman, A.; Al-Domi, H.; Faqih, A. Markers of subclinical atherosclerosis in schoolchildren with obesity and metabolic syndrome. Swiss Med. Wkly. 2017, 147, w14446. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Fischer, N.; Fritzenwanger, M.; Pernow, J.; Brehm, B.R.; Figulla, H.R. Association of waist circumference, traditional cardiovascular risk factors, and stromal-derived factor-1 in adolescents. Pediatr. Diabetes 2009, 10, 329–335. [Google Scholar] [CrossRef]
- Akinci, G.; Coskun, S.; Akinci, B.; Hekimsoy, Z.; Bayindir, P.; Onur, E.; Ozmen, B. Atherosclerosis risk factors in children of parents with the metabolic syndrome. Atherosclerosis 2007, 194, e165–e171. [Google Scholar] [CrossRef]
- Viljem, P.; Nika, Z.; Marko, T.; Jurij, D.; Andraž, S. Alpha cell stimulus-secretion coupling and intercellular interactions in health and type 2 diabetes. Acta Med.-Biotech. 2023, 16, 21–28. [Google Scholar] [CrossRef]
- Weiss, R.; Bremer, A.A.; Lustig, R.H. What is metabolic syndrome, and why are children getting it? Ann. N. Y. Acad. Sci. 2013, 1281, 123–140. [Google Scholar] [CrossRef]
- Genovesi, S.; Parati, G. Cardiovascular risk in children: Focus on pathophysiological aspects. Int. J. Mol. Sci. 2020, 21, 6612. [Google Scholar] [CrossRef]
- Espinola-Klein, C.; Gori, T.; Blankenberg, S.; Munzel, T. Inflammatory markers and cardiovascular risk in the metabolic syndrome. Front. Biosci. 2011, 16, 1663–1674. [Google Scholar] [CrossRef]
- Olza, J.; Aguilera, C.M.; Gil-Campos, M.; Leis, R.; Bueno, G.; Valle, M.; Canete, R.; Tojo, R.; Moreno, L.A.; Gil, A. A continuous metabolic syndrome score is associated with specific biomarkers of inflammation and CVD risk in prepubertal children. Ann. Nutr. Metab. 2015, 66, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Ruperez, A.I.; Mesa, M.D.; Anguita-Ruiz, A.; Gonzalez-Gil, E.M.; Vazquez-Cobela, R.; Moreno, L.A.; Gil, A.; Gil-Campos, M.; Leis, R.; Bueno, G.; et al. Antioxidants and oxidative stress in children: Influence of puberty and metabolically unhealthy status. Antioxidants 2020, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Orru, M.; Morrell, C.; Piras, M.G.; Taub, D.; Schlessinger, D.; Uda, M.; Lakatta, E.G. Independent and additive effects of cytokine patterns and the metabolic syndrome on arterial aging in the SardiNIA Study. Atherosclerosis 2011, 215, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.S.; Steinberger, J.; Kaiser, D.R.; Olson, T.P.; Bank, A.J.; Dengel, D.R. Oxidative stress and adverse adipokine profile characterize the metabolic syndrome in children. J. Cardiometab Syndr. 2006, 1, 248–252. [Google Scholar] [CrossRef]
- Gonzalez-Jimenez, E.; Schmidt-Riovalle, J.; Sinausia, L.; Carmen Valenza, M.; Perona, J.S. Predictive value of ceruloplasmin for metabolic syndrome in adolescents. Biofactors 2016, 42, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Kuo, H.K.; Hwang, J.J.; Lai, L.P.; Chiang, F.T.; Tseng, C.D.; Lin, J.L. Serum bilirubin is inversely associated with insulin resistance and metabolic syndrome among children and adolescents. Atherosclerosis 2009, 203, 563–568. [Google Scholar] [CrossRef]
- Huerta-Delgado, A.S.; Roffe-Vazquez, D.N.; Gonzalez-Gil, A.M.; Villarreal-Calderon, J.R.; Tamez-Rivera, O.; Rodriguez-Gutierrez, N.A.; Castillo, E.C.; Silva-Platas, C.; Garcia-Rivas, G.; Elizondo-Montemayor, L. Serum irisin levels, endothelial dysfunction, and inflammation in pediatric patients with type 2 diabetes mellitus and metabolic syndrome. J. Diabetes Res. 2020, 2020, 1949415. [Google Scholar] [CrossRef]
- Makni, E.; Moalla, W.; Benezzeddine-Boussaidi, L.; Lac, G.; Tabka, Z.; Elloumi, M. Correlation of resistin with inflammatory and cardiometabolic markers in obese adolescents with and without metabolic syndrome. Obes. Facts 2013, 6, 393–404. [Google Scholar] [CrossRef]
- Stringer, D.M.; Sellers, E.A.; Burr, L.L.; Taylor, C.G. Altered plasma adipokines and markers of oxidative stress suggest increased risk of cardiovascular disease in First Nation youth with obesity or type 2 diabetes mellitus. Pediatr. Diabetes 2009, 10, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, I.; Zelzer, S.; Raggam, R.B.; Pruller, F.; Truschnig-Wilders, M.; Meinitzer, A.; Schnedl, W.J.; Horejsi, R.; Moller, R.; Weghuber, D.; et al. Link between leptin and interleukin-6 levels in the initial phase of obesity related inflammation. Transl. Res. 2012, 159, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Metzig, A.M.; Schwarzenberg, S.J.; Fox, C.K.; Deering, M.M.; Nathan, B.M.; Kelly, A.S. Postprandial endothelial function, inflammation, and oxidative stress in obese children and adolescents. Obesity 2011, 19, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, J.S.; Kytö, V.; Juonala, M.; Viikari, J.S.A.; Nevalainen, J.; Kähönen, M.; Lehtimäki, T.; Hutri-Kähönen, N.; Laitinen, T.P.; Tossavainen, P.; et al. Childhood dyslipidemia and carotid atherosclerotic plaque in adulthood: The Cardiovascular Risk in Young Finns Study. J. Am. Heart Assoc. 2023, 12, e027586. [Google Scholar] [CrossRef]
- Mosca, S.; Araújo, G.; Costa, V.; Correia, J.; Bandeira, A.; Martins, E.; Mansilha, H.; Tavares, M.; Coelho, M.P. dyslipidemia diagnosis and treatment: Risk stratification in children and adolescents. J. Nutr. Metab. 2022, 2022, 4782344. [Google Scholar] [CrossRef]
- Loffredo, L.; Martino, F.; Carnevale, R.; Pignatelli, P.; Catasca, E.; Perri, L.; Calabrese, C.M.; Palumbo, M.M.; Baratta, F.; Del Ben, M.; et al. Obesity and hypercholesterolemia are associated with NOX2 generated oxidative stress and arterial dysfunction. J. Pediatr. 2012, 161, 1004–1009. [Google Scholar] [CrossRef]
- Martino, F.; Loffredo, L.; Carnevale, R.; Sanguigni, V.; Martino, E.; Catasca, E.; Zanoni, C.; Pignatelli, P.; Violi, F. Oxidative stress is associated with arterial dysfunction and enhanced intima-media thickness in children with hypercholesterolemia: The potential role of nicotinamide-adenine dinucleotide phosphate oxidase. Pediatrics 2008, 122, e648–e655. [Google Scholar] [CrossRef]
- Reilly, M.P.; Pratico, D.; Delanty, N.; DiMinno, G.; Tremoli, E.; Rader, D.; Kapoor, S.; Rokach, J.; Lawson, J.; FitzGerald, G.A. Increased formation of distinct F2 isoprostanes in hypercholesterolemia. Circulation 1998, 98, 2822–2828. [Google Scholar] [CrossRef]
- Eren, E.; Ellidag, H.Y.; Aydin, O.; Yilmaz, N. HDL functionality and crystal-based sterile inflammation in atherosclerosis. Clin. Chim. Acta 2015, 439, 18–23. [Google Scholar] [CrossRef]
- Schoeps, D.O.; Holzer, S.; Suano-Souza, F.I.; Hix, S.; Fonseca, F.L.A.; Sarni, R.O.S. Myeloperoxidase as cardiovascular risk marker in pre-pubertal preterm children? Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1345–1352. [Google Scholar] [CrossRef]
- Charakida, M.; Tousoulis, D.; Skoumas, I.; Pitsavos, C.; Vasiliadou, C.; Stefanadi, E.; Antoniades, C.; Latsios, G.; Siasos, G.; Stefanadis, C. Inflammatory and thrombotic processes are associated with vascular dysfunction in children with familial hypercholesterolemia. Atherosclerosis 2009, 204, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Holven, K.B.; Damas, J.K.; Yndestad, A.; Waehre, T.; Ueland, T.; Halvorsen, B.; Heggelund, L.; Sandberg, W.J.; Semb, A.G.; Froland, S.S.; et al. Chemokines in children with heterozygous familiar hypercholesterolemia: Selective upregulation of RANTES. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Rus, R.; Marčun-Varda, N. Novosti pri obravnavi arterijske hipertenzije pri otrocih in mladostnikih glede na ameriške (2017) in evropske (2016) smernice. Zdrav Vestn. 2020, 89, 498–514. [Google Scholar] [CrossRef]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar] [CrossRef]
- Lurbe, E.; Agabiti-Rosei, E.; Cruickshank, J.K.; Dominiczak, A.; Erdine, S.; Hirth, A.; Invitti, C.; Litwin, M.; Mancia, G.; Pall, D.; et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 2016, 34, 1887–1920. [Google Scholar] [CrossRef]
- Hsu, C.N.; Tain, Y.L. Early origins of hypertension: Should prevention start before birth using natural antioxidants? Antioxidants 2020, 9, 1034. [Google Scholar] [CrossRef]
- McNiece, K.L.; Poffenbarger, T.S.; Turner, J.L.; Franco, K.D.; Sorof, J.M.; Portman, R.J. Prevalence of hypertension and pre-hypertension among adolescents. J. Pediatr. 2007, 150, 640–644.e641. [Google Scholar] [CrossRef]
- Assadi, F. The growing epidemic of hypertension among children and adolescents: A challenging road ahead. Pediatr. Cardiol. 2012, 33, 1013–1020. [Google Scholar] [CrossRef]
- Hertiš Petek, T.; Petek, T. Razširjenost in Kvaliteta življenja otrok in Mladostnikov z Arterijsko Hipertenzijo; Raziskovalna Naloga; Faculty of Medicine University of Maribor: Maribor, Slovenia, 2016. [Google Scholar]
- Wirix, A.J.; Kaspers, P.J.; Nauta, J.; Chinapaw, M.J.; Kist-van Holthe, J.E. Pathophysiology of hypertension in obese children: A systematic review. Obes. Rev. 2015, 16, 831–842. [Google Scholar] [CrossRef]
- Mendez-Cruz, A.R.; Paez, A.; Jimenez-Flores, R.; Reyes-Reali, J.; Varela, E.; Cerbulo-Vazquez, A.; Rodriguez, E.; Lopez-Marure, R.; Masso, F.A.; Flores-Romo, L.; et al. Increased expression of inflammation-related co-stimulatory molecules by HUVECs from newborns with a strong family history of myocardial infarction stimulated with TNF-alpha and oxLDL. Immunol. Lett. 2007, 111, 116–123. [Google Scholar] [CrossRef]
- Parisi, F.; Milazzo, R.; Savasi, V.M.; Cetin, I. Maternal low-grade chronic inflammation and intrauterine programming of health and disease. Int. J. Mol. Sci. 2021, 22, 1732. [Google Scholar] [CrossRef] [PubMed]
- Skilton, M.R. Intrauterine risk factors for precocious atherosclerosis. Pediatrics 2008, 121, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Leduc, L.; Levy, E.; Bouity-Voubou, M.; Delvin, E. Fetal programming of atherosclerosis: Possible role of the mitochondria. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 149, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Silvestro, S.; Calcaterra, V.; Pelizzo, G.; Bramanti, P.; Mazzon, E. Prenatal hypoxia and placental oxidative stress: Insights from animal models to clinical evidences. Antioxidants 2020, 9, 414. [Google Scholar] [CrossRef]
- Craig, A.; Mels, C.M.C.; Kruger, R. Thiobarbituric acid-reactive substances relate to arterial stiffness and blood pressure in 6 to 8-year-old boys stratified by maternal risk. Free Radic. Res. 2018, 52, 180–187. [Google Scholar] [CrossRef]
- Kuller, L.H. Ethnic differences in atherosclerosis, cardiovascular disease and lipid metabolism. Curr. Opin. Lipidol. 2004, 15, 109–113. [Google Scholar] [CrossRef]
- Litwin, M.; Michalkiewicz, J.; Niemirska, A.; Gackowska, L.; Kubiszewska, I.; Wierzbicka, A.; Wawer, Z.T.; Janas, R. Inflammatory activation in children with primary hypertension. Pediatr. Nephrol. 2010, 25, 1711–1718. [Google Scholar] [CrossRef]
- Turi, S.; Friedman, A.; Bereczki, C.; Papp, F.; Kovacs, J.; Karg, E.; Nemeth, I. Oxidative stress in juvenile essential hypertension. J. Hypertens. 2003, 21, 145–152. [Google Scholar] [CrossRef]
- Cazeau, R.M.; Huang, H.; Bauer, J.A.; Hoffman, R.P. Effect of vitamins C and E on endothelial function in type 1 diabetes mellitus. J. Diabetes Res. 2016, 2016, 3271293. [Google Scholar] [CrossRef]
- Cakici, E.K.; Eroglu, F.K.; Yazilitas, F.; Bulbul, M.; Gur, G.; Aydog, O.; Gungor, T.; Erel, O.; Alisik, M.; Elhan, A.H. Evaluation of the level of dynamic thiol/disulphide homeostasis in adolescent patients with newly diagnosed primary hypertension. Pediatr. Nephrol. 2018, 33, 847–853. [Google Scholar] [CrossRef]
- Yamano, Y.; Miyakawa, S.; Nakadate, T. Association of arteriosclerosis index and oxidative stress markers in school children. Pediatr. Int. 2015, 57, 449–454. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, National Center for Health Statistics. Clinical Growth Charts. Available online: https://www.cdc.gov/growthcharts/clinical_charts.htm (accessed on 30 June 2024).
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Avila Edwards, K.C.; Eneli, I.; Hamre, R.; Joseph, M.M.; et al. Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity. Pediatrics 2023, 151, e2022060640. [Google Scholar] [CrossRef]
- Gregorič, A.; Marčun Varda, N. Hipertenzija pri otrocih. Med. Razgl. 2012, 51, 63–80. [Google Scholar]
- Sladowska-Kozlowska, J.; Litwin, M.; Niemirska, A.; Pludowski, P.; Wierzbicka, A.; Skorupa, E.; Wawer, Z.T.; Janas, R. Oxidative stress in hypertensive children before and after 1 year of antihypertensive therapy. Pediatr. Nephrol. 2012, 27, 1943–1951. [Google Scholar] [CrossRef]
- Krajewska, M.; Witkowska-Sędek, E.; Rumińska, M.; Stelmaszczyk-Emmel, A.; Sobol, M.; Majcher, A.; Pyrżak, B. Vitamin D effects on selected anti-inflammatory and pro-inflammatory markers of obesity-related chronic inflammation. Front. Endocrinol. 2022, 13, 920340. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, M.; Witkowska-Sędek, E.; Rumińska, M.; Kucharska, A.M.; Stelmaszczyk-Emmel, A.; Sobol, M.; Majcher, A.; Pyrżak, B. The link between vitamin D, chemerin and metabolic profile in overweight and obese children—Preliminary results. Front. Endocrinol. 2023, 14, 1143755. [Google Scholar] [CrossRef] [PubMed]
- Hueso, L.; Ortega, R.; Selles, F.; Wu-Xiong, N.Y.; Ortega, J.; Civera, M.; Ascaso, J.F.; Sanz, M.J.; Real, J.T.; Piqueras, L. Upregulation of angiostatic chemokines IP-10/CXCL10 and I-TAC/CXCL11 in human obesity and their implication for adipose tissue angiogenesis. Int. J. Obes. 2018, 42, 1406–1417. [Google Scholar] [CrossRef] [PubMed]
- Moreno, B.; Hueso, L.; Ortega, R.; Benito, E.; Martínez-Hervas, S.; Peiro, M.; Civera, M.; Sanz, M.J.; Piqueras, L.; Real, J.T. Association of chemokines IP-10/CXCL10 and I-TAC/CXCL11 with insulin resistance and enhance leukocyte endothelial arrest in obesity. Microvasc. Res. 2022, 139, 104254. [Google Scholar] [CrossRef]
- Orlando, A.; Nava, E.; Giussani, M.; Genovesi, S. Adiponectin and cardiovascular risk. From pathophysiology to clinic: Focus on children and adolescents. Int. J. Mol. Sci. 2019, 20, 3228. [Google Scholar] [CrossRef]
- Maggio, A.B.R.; Farpour-Lambert, N.J.; Aggoun, Y.; Galan, K.; Montecucco, F.; Mach, F.; Beghetti, M. Serum cardiovascular risk biomarkers in pre-pubertal obese children. Eur. J. Clin. Investig. 2018, 48, e12995. [Google Scholar] [CrossRef]
- Stoppa-Vaucher, S.; Dirlewanger, M.A.; Meier, C.A.; de Moerloose, P.; Reber, G.; Roux-Lombard, P.; Combescure, C.; Saudan, S.; Schwitzgebel, V.M. Inflammatory and prothrombotic states in obese children of European descent. Obesity 2012, 20, 1662–1668. [Google Scholar] [CrossRef] [PubMed]
- Peña, A.; Olson, M.L.; Ayers, S.L.; Sears, D.D.; Vega-López, S.; Colburn, A.T.; Shaibi, G.Q. Inflammatory mediators and type 2 diabetes risk factors before and in response to lifestyle intervention among latino adolescents with obesity. Nutrients 2023, 15, 2442. [Google Scholar] [CrossRef] [PubMed]
- Egashira, K. Molecular mechanisms mediating inflammation in vascular disease: Special reference to monocyte chemoattractant protein-1. Hypertension 2003, 41, 834–841. [Google Scholar] [CrossRef]
- Filgueiras, M.S.; Rocha, N.P.; Novaes, J.F.; Bressan, J. Vitamin D status, oxidative stress, and inflammation in children and adolescents: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, K.; Friebe, D.; Ullrich, T.; Kratzsch, J.; Dittrich, K.; Herberth, G.; Adams, V.; Kiess, W.; Erbs, S.; Korner, A. Chemerin as a mediator between obesity and vascular inflammation in children. J. Clin. Endocrinol. Metab. 2012, 97, E556–E564. [Google Scholar] [CrossRef]
- Niklowitz, P.; Rothermel, J.; Lass, N.; Barth, A.; Reinehr, T. Link between chemerin, central obesity, and parameters of the Metabolic Syndrome: Findings from a longitudinal study in obese children participating in a lifestyle intervention. Int. J. Obes. 2018, 42, 1743–1752. [Google Scholar] [CrossRef]
- Wojcik, M.; Koziol-Kozakowska, A.; Janus, D.; Furtak, A.; Malek, A.; Sztefko, K.; Starzyk, J.B. Circulating chemerin level may be associated with early vascular pathology in obese children without overt arterial hypertension—Preliminary results. J. Pediatr. Endocrinol. Metab. 2020, 33, 729–734. [Google Scholar] [CrossRef]
- Simunovic, M.; Supe-Domic, D.; Karin, Z.; Degoricija, M.; Paradzik, M.; Bozic, J.; Unic, I.; Skrabic, V. Serum catestatin concentrations are decreased in obese children and adolescents. Pediatr. Diabetes 2019, 20, 549–555. [Google Scholar] [CrossRef]
- Mohanraj, L.; Kim, H.S.; Li, W.; Cai, Q.; Kim, K.E.; Shin, H.J.; Lee, Y.J.; Lee, W.J.; Kim, J.H.; Oh, Y. IGFBP-3 inhibits cytokine-induced insulin resistance and early manifestations of atherosclerosis. PLoS ONE 2013, 8, e55084. [Google Scholar] [CrossRef]
- Kaya, A.; Gamsizkan, Z.; Kaya, N.; Davran, F. The predictive role of laboratory parameters in cardiovascular risk assessment in obese. Medicine 2023, 102, e34634. [Google Scholar] [CrossRef]
- Suano de Souza, F.I.; D’Almeida, V.; Fonseca, F.L.; Hix, S.; Miranda, R.; Gomes de Torres Rossi, R.; Ribeiro, R.; Saccardo Sarni, R.O. Lack of association of homocysteine concentrations with oxidative stress, alterations in carotid intima media thickness and endothelial reactivity in prepubertal children. Ann. Nutr. Metab. 2013, 63, 25–31. [Google Scholar] [CrossRef]
- Economou, E.V.; Malamitsi-Puchner, A.V.; Pitsavos, C.P.; Kouskouni, E.E.; Magaziotou-Elefsinioti, I.; Damianaki-Uranou, D.; Stefanadis, C.I.; Creatsas, G. Negative association between circulating total homocysteine and proinflammatory chemokines MCP-1 and RANTES in prepubertal lean, but not in obese, children. J. Cardiovasc. Pharmacol. 2004, 44, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Codoner-Franch, P.; Tavarez-Alonso, S.; Murria-Estal, R.; Tortajada-Girbes, M.; Simo-Jorda, R.; Alonso-Iglesias, E. Elevated advanced oxidation protein products (AOPPs) indicate metabolic risk in severely obese children. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Okur, I.; Tumer, L.; Ezgu, F.S.; Yesilkaya, E.; Aral, A.; Oktar, S.O.; Bideci, A.; Hasanoglu, A. Oxidized low-density lipoprotein levels and carotid intima-media thickness as markers of early atherosclerosis in prepubertal obese children. J. Pediatr. Endocrinol. Metab. 2013, 26, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Ostrow, V.; Wu, S.; Aguilar, A.; Bonner, R., Jr.; Suarez, E.; De Luca, F. Association between oxidative stress and masked hypertension in a multi-ethnic population of obese children and adolescents. J. Pediatr. 2011, 158, 628–633.e1. [Google Scholar] [CrossRef] [PubMed]
- Olza, J.; Aguilera, C.M.; Gil-Campos, M.; Leis, R.; Bueno, G.; Valle, M.; Cañete, R.; Tojo, R.; Moreno, L.A.; Gil, A. Waist-to-height ratio, inflammation and CVD risk in obese children. Public Health Nutr. 2014, 17, 2378–2385. [Google Scholar] [CrossRef]
- Correia-Costa, L.; Sousa, T.; Morato, M.; Cosme, D.; Afonso, J.; Moura, C.; Mota, C.; Areias, J.C.; Guerra, A.; Schaefer, F.; et al. Association of myeloperoxidase levels with cardiometabolic factors and renal function in prepubertal children. Eur. J. Clin. Investig. 2016, 46, 50–59. [Google Scholar] [CrossRef]
- Teng, N.; Maghzal, G.J.; Talib, J.; Rashid, I.; Lau, A.K.; Stocker, R. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep. 2017, 22, 51–73. [Google Scholar] [CrossRef]
- Ndrepepa, G. Myeloperoxidase—A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin. Chim. Acta 2019, 493, 36–51. [Google Scholar] [CrossRef]
- Elmas, B.; Karacan, M.; Dervisoglu, P.; Kosecik, M.; Isguven, S.P.; Bal, C. Dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in obese children and its relationship with inflammatory-cardiovascular markers. Anatol. J. Cardiol. 2017, 18, 361–369. [Google Scholar] [CrossRef]
- Correia-Costa, L.; Sousa, T.; Morato, M.; Cosme, D.; Afonso, J.; Areias, J.C.; Schaefer, F.; Guerra, A.; Afonso, A.C.; Azevedo, A.; et al. Oxidative stress and nitric oxide are increased in obese children and correlate with cardiometabolic risk and renal function. Br. J. Nutr. 2016, 116, 805–815. [Google Scholar] [CrossRef]
- Codoner-Franch, P.; Tavarez-Alonso, S.; Murria-Estal, R.; Herrera-Martin, G.; Alonso-Iglesias, E. Polyamines are increased in obese children and are related to markers of oxidative/nitrosative stress and angiogenesis. J. Clin. Endocrinol. Metab. 2011, 96, 2821–2825. [Google Scholar] [CrossRef] [PubMed]
- Farrokhi, F.; Moohebati, M.; Aghdaei, H.R.; Ghaffarzadegan, K.; Norouzi, F.; Sahebkar, A.; Tavallaie, S.; Azarpazhooh, M.R.; Ghayour-Mobarhan, M.; Ferns, G.A. Effects of statin therapy on serum trace element status in dyslipidemic patients: Results of a randomized placebo-controlled cross-over trial. Clin. Lab. 2012, 58, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Torkanlou, K.; Bibak, B.; Abbaspour, A.; Abdi, H.; Saleh Moghaddam, M.; Tayefi, M.; Mohammadzadeh, E.; Safarian Bana, H.; Aghasizade, M.; Ferns, G.A.; et al. Reduced serum levels of zinc and superoxide dismutase in obese individuals. Ann. Nutr. Metab. 2016, 69, 232–236. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal 2011, 15, 1583–1606. [Google Scholar] [CrossRef] [PubMed]
- Aldosari, S.; Awad, M.; Harrington, E.O.; Sellke, F.W.; Abid, M.R. Subcellular reactive oxygen species (ROS) in cardiovascular pathophysiology. Antioxidants 2018, 7, 14. [Google Scholar] [CrossRef]
- Kiseleva, O.I.; Arzumanian, V.A.; Poverennaya, E.V.; Pyatnitskiy, M.A.; Ilgisonis, E.V.; Zgoda, V.G.; Plotnikova, O.A.; Sharafetdinov, K.K.; Lisitsa, A.V.; Tutelyan, V.A.; et al. Does proteomic mirror reflect clinical characteristics of obesity? J. Pers. Med. 2021, 11, 64. [Google Scholar] [CrossRef]
- Małecki, P.; Tracz, J.; Łuczak, M.; Figlerowicz, M.; Mazur-Melewska, K.; Służewski, W.; Mania, A. Serum proteome assessment in nonalcoholic fatty liver disease in children: A preliminary study. Expert Rev. Proteom. 2020, 17, 623–632. [Google Scholar] [CrossRef]
- Cominetti, O.; Núñez Galindo, A.; Corthésy, J.; Valsesia, A.; Irincheeva, I.; Kussmann, M.; Saris, W.H.M.; Astrup, A.; McPherson, R.; Harper, M.E.; et al. Obesity shows preserved plasma proteome in large independent clinical cohorts. Sci. Rep. 2018, 8, 16981. [Google Scholar] [CrossRef]
- Tsukahara, H. Biomarkers for oxidative stress: Clinical application in pediatric medicine. Curr. Med. Chem. 2007, 14, 339–351. [Google Scholar] [CrossRef]
- Schipper, H.S.; de Ferranti, S. Cardiovascular risk assessment and management for pediatricians. Pediatrics 2022, 150, e2022057957. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011, 128 (Suppl. 5), S213–S256. [Google Scholar] [CrossRef]
- de Ferranti, S.D.; Steinberger, J.; Ameduri, R.; Baker, A.; Gooding, H.; Kelly, A.S.; Mietus-Snyder, M.; Mitsnefes, M.M.; Peterson, A.L.; St-Pierre, J.; et al. Cardiovascular risk reduction in high-risk pediatric patients: A scientific statement from the American Heart Association. Circulation 2019, 139, e603–e634. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhou, Z.; Lyu, X.; Xu, H.; Zhu, H.; Pan, H.; Wang, L.; Yang, H.; Gong, F. The antiobesity effect and safety of GLP-1 receptor agonist in overweight/obese patients without diabetes: A systematic review and meta-analysis. Horm. Metab. Res. 2022, 54, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shi, H.; Shi, Y.; Wang, A.; Guo, N.; Tao, H.; Nahata, M.C. Comparative efficacy and safety of glucagon-like peptide-1 receptor agonists in children and adolescents with obesity or overweight: A systematic review and network meta-analysis. Pharmaceuticals 2024, 17, 828. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung, and Blood Institute. Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Full Report; National Institutes of Health: Bethesda, MD, USA, 2012; Volume 2024. [Google Scholar]
- Morton, K.; Heindl, B.; Clarkson, S.; Bittner, V. Primordial prevention of atherosclerotic cardiovascular disease: A review of the literature. J. Cardiopulm. Rehabil. Prev. 2022, 42, 389–396. [Google Scholar] [CrossRef]
Oxidative Stress Markers | Antioxidant System Markers | Adipokines and Other Systemic Inflammation Markers |
---|---|---|
Lipid peroxidation F2 isoprostanes malondialdehyde (MDA) thiobarbituric acid reactive substances (TBARSs) oxidized low-density lipoprotein (oxLDL) Protein oxidation advanced oxidation protein products (AOPPs) Carbohydrate oxidation advanced glycosylation end-products (AGEs) Nucleic acid oxidation 8-hydroxy-2′-deoxyguanosine (8-OHdG) Reactive oxygen species (ROS) generation myeloperoxidase (MPO) NADPH 1 oxidase (NOX2) Nitric oxide system (NOx) polyamines derived from arginine asymmetric dimethyloarginine (ADMA) nitrite and nitrate NO | thiol/disulphide homeostasis glutathione (GSH) superoxide dismutase (SOD) catalase (CAT) glutathione peroxidase (GPx) carotenes (vitamin A) ascorbic acid (vitamin C) tocopherols (vitamins E) bilirubin ceruloplasmin Total antioxidant capacity (TAC) | chemerin adiponectin leptin resistin visfatin adipomyokine irisin RANTES 2 monocyte chemoattractant protein−1 (MCP−1) stromal-derived factor (SDF−1) interleukins IL-1, −1β, −6, −10, −18 tumor necrosis factor alpha (TNF−α) plasminogen activator-inhibitor−1 (PAI−1) α-1-acid glycoprotein (AGP)high sensitivity C-reactive protein (hsCRP) C-reactive protein (CRP) myeloperoxidase (MPO) |
Criteria | Metabolic Syndrome in Children (IDF 1) | Cardiovascular Health Metric for Children |
---|---|---|
Waist circumference | ≥90th percentile for age and sex | Not specifically included |
Triglycerides | ≥1.7 mmol/L (150 mg/dL) | Elevated triglycerides (cutoffs vary by age) |
High-density lipoprotein cholesterol | <1.03 mmol/L (40 mg/dL) in males <1.29 mmol/L (50 mg/dL) in females | Low HDL cholesterol (cutoffs vary by age and sex) |
Blood pressure | Systolic BP ≥ 130 mmHg or diastolic BP ≥ 85 mmHg | ≥90th percentile for age, sex, and height |
Fasting glucose | ≥5.6 mmol/L (100 mg/dL) | ≥5.6 mmol/L (100 mg/dL) |
Body mass index | Not specifically included | Within normal range for age and sex (≥5th and <85th percentile) |
Total cholesterol | Not specifically included | Acceptable range (varies by age) |
Condition | Some Oxidative Stress and Inflammation Markers |
---|---|
Metabolic Syndrome | Interleukins (IL-1, IL-6, IL-10, IL-18), adiponectin, resistin, tumor necrosis factor alpha, leptin, monocyte chemoattractant protein-1, angiotensinogen, plasminogen activator-inhibitor-1, myeloperoxidase, e-selectin, carotenes, tocopherols, some other dietary vitamins |
Glucose Intolerance | Irisin, leptin, adiponectin, resistin, visfatin, stromal-derived factor, soluble e-selectin |
Dyslipidemia | Nicotinamide-adenine dinucleotide phosphate oxidase, oxidized low-density lipoprotein, plasminogen activator-inhibitor-1, interleukin-1β, intracellular cell adhesion molecules, RANTES 1 |
Arterial Hypertension | Nitrate levels, lipid peroxidation end products, glutathione depletion, oxidized low-density lipoprotein, myeloperoxidase, urine 8-isoprostane, antioxidative capacity, thiol/disulfide homeostasis, nitric oxide, superoxide dismutase |
Obesity | Reactive oxygen species, adipocytokines, I-TAC/CXCL11 2, adiponectin, monocyte chemoattractant protein-1, chemerin, catestatin, homocysteine, superoxide dismutase, nitric oxide, polyamines, thiol/disulfide homeostasis, myeloperoxidase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hertiš Petek, T.; Marčun Varda, N. Childhood Cardiovascular Health, Obesity, and Some Related Disorders: Insights into Chronic Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2024, 25, 9706. https://doi.org/10.3390/ijms25179706
Hertiš Petek T, Marčun Varda N. Childhood Cardiovascular Health, Obesity, and Some Related Disorders: Insights into Chronic Inflammation and Oxidative Stress. International Journal of Molecular Sciences. 2024; 25(17):9706. https://doi.org/10.3390/ijms25179706
Chicago/Turabian StyleHertiš Petek, Tjaša, and Nataša Marčun Varda. 2024. "Childhood Cardiovascular Health, Obesity, and Some Related Disorders: Insights into Chronic Inflammation and Oxidative Stress" International Journal of Molecular Sciences 25, no. 17: 9706. https://doi.org/10.3390/ijms25179706
APA StyleHertiš Petek, T., & Marčun Varda, N. (2024). Childhood Cardiovascular Health, Obesity, and Some Related Disorders: Insights into Chronic Inflammation and Oxidative Stress. International Journal of Molecular Sciences, 25(17), 9706. https://doi.org/10.3390/ijms25179706