OXGR1-Dependent (Pro)Renin Receptor Upregulation in Collecting Ducts of the Clipped Kidney Contributes to Na+ Balance in Goldblatt Hypertensive Mice
Abstract
:1. Introduction
2. Results
2.1. 2K1C Goldblatt Model Using a 0.13 mm Internal Gap in Mice Evidenced Chronic Reductions in Renal Blood Flow Even at 14 Days
2.2. OXGR1 Antagonist Montelukast Attenuated the Increases in Blood Pressure
2.3. Altered Histology and Decreased Kidney Size Caused by Clip Implantation after 14 Days Were Not Altered by OXGR1 Antagonism
2.4. 2K1C Goldblatt Surgery Does Not Change Water Intake, Urine Flow, or 24 h Sodium Excretion after 14 Days
2.5. Upregulation of PRR in the Clipped Kidney Is Blunted by OXGR1 Antagonism
2.6. Intrarenal Ang II Levels Were Increased in the Clipped Kidney While OXGR1 Antagonisms Prevented This Effect
2.7. Pharmacological Blockade of the OXGR1-Enhanced Natriuresis in Mice with 2K1C Surgery
2.8. Enhanced Natriuretic Responses to Saline Challenge Are Associated with ENaC Expression
2.9. Mice with Whole Genetic Ablation of OXGR1 (Oxgr1−/−) Did Not Show Increases in Blood Pressure after Goldblatt 2K1C Surgery
2.10. Altered Histology and Decreased Kidney Size Caused by Clip Implantation after 14 Days Was Not Altered in Oxgr1−/− Mice
2.11. 2K1C Goldblatt Surgery Does Not Change Water Intake, Urine Flow, or 24 h Sodium Excretion after 14 Days in Oxgr1−/− KO Mice
2.12. Upregulation of PRR in the Clipped Kidney Was Blunted in Oxgr1−/− KO Mice
2.13. Intrarenal Ang II and ACE Activity in Wild-Type and Oxgr1−/− KO 2K1C Mice
2.14. Oxgr1−/− Evidenced a More Rapid Natriuretic Response Compared with 2K1C Mice after Sodium Challenge Which Is Also Associated with ENaC Expression
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. 2K1C Goldblatt Surgery
4.3. Montelukast Administration
4.4. Colony of Oxgr1−/−
4.5. Blood Pressure Measurements
4.6. Measurement of Urine Flow, Water Intake, Food Intake, and 24 h Sodium Excretion
4.7. Saline Challenge Test
4.8. PRR Transcripts Quantitation by Real Time qRT-PCR
4.9. Immunoblotting Analyses
4.10. Histology
4.11. Immunofluorescence of PRR and OXGR1 in Kidney Tissues
4.12. Measurements of α-Ketoglutarate
4.13. Ang II Medullary Kidney Content
4.14. ACE Enzymatic Activity
4.15. Urinary Creatinine
4.16. Urinary Albumin
4.17. Plasma Renin Content
4.18. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matavelli, L.C.; Huang, J.; Siragy, H.M. (Pro)renin receptor contributes to diabetic nephropathy by enhancing renal inflammation. Clin. Exp. Pharmacol. Physiol. 2010, 37, 277–282. [Google Scholar] [CrossRef]
- Siragy, H.M.; Huang, J. Renal (pro)renin receptor upregulation in diabetic rats through enhanced angiotensin AT1 receptor and NADPH oxidase activity. Exp. Physiol. 2008, 93, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wysocki, J.; Ye, M.; Valles, P.G.; Rein, J.; Shirazi, M.; Bader, M.; Gomez, R.A.; Sequeira-Lopez, M.S.; Afkarian, M.; et al. Urinary Renin in Patients and Mice With Diabetic Kidney Disease. Hypertension 2019, 74, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Nurun, N.A.H.M.; Uddin, N.M.; Nakagawa, T.; Iwata, H.; Ichihara, A.; Inagami, T.; Suzuki, F. Role of “handle” region of prorenin prosegment in the non-proteolytic activation of prorenin by binding to membrane anchored (pro)renin receptor. Front. Biosci-Landmrk 2007, 12, 4810–4817. [Google Scholar] [CrossRef] [PubMed]
- Redublo Quinto, B.M.; Camargo de Andrade, M.C.; Ronchi, F.A.; Santos, E.L.; Alves Correa, S.A.; Shimuta, S.I.; Pesquero, J.B.; Mortara, R.A.; Casarini, D.E. Expression of angiotensin I-converting enzymes and bradykinin B-2 receptors in mouse inner medullary-collecting duct cells. Int. Immunopharmacol. 2008, 8, 254–260. [Google Scholar] [CrossRef]
- Lu, X.; Wang, F.; Liu, M.; Yang, K.T.; Nau, A.; Kohan, D.E.; Reese, V.; Richardson, R.S.; Yang, T. Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: Involvement of Nox4-derived hydrogen peroxide. Am. J. Physiol. Ren. Physiol. 2016, 310, F1243–F1250. [Google Scholar] [CrossRef]
- Xu, C.; Fang, H.; Zhou, L.; Lu, A.; Yang, T. High potassium promotes mutual interaction between (pro)renin receptor and the local renin-angiotensin-aldosterone system in rat inner medullary collecting duct cells. Am. J. Physiol. Cell Physiol. 2016, 311, C686–C695. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.C.; Gonzalez, A.A.; Visniauskas, B.; Navar, L.G. The evolving complexity of the collecting duct renin-angiotensin system in hypertension. Nat. Rev. Nephrol. 2021, 17, 481–492. [Google Scholar] [CrossRef]
- Gonzalez, A.A.; Liu, L.; Lara, L.S.; Seth, D.M.; Navar, L.G.; Prieto, M.C. Angiotensin II stimulates renin in inner medullary collecting duct cells via protein kinase C and independent of epithelial sodium channel and mineralocorticoid receptor activity. Hypertension 2011, 57, 594–599. [Google Scholar] [CrossRef]
- Gonzalez, A.A.; Lara, L.S.; Luffman, C.; Seth, D.M.; Prieto, M.C. Soluble Form of the (Pro) Renin Receptor Is Augmented in the Collecting Duct and Urine of Chronic Angiotensin II-Dependent Hypertensive Rats. Hypertension 2011, 57, 859–864. [Google Scholar] [CrossRef]
- Gonzalez, A.A.; Green, T.; Luffman, C.; Bourgeois, C.R.; Gabriel Navar, L.; Prieto, M.C. Renal medullary cyclooxygenase-2 and (pro)renin receptor expression during angiotensin II-dependent hypertension. Am. J. Physiol. Ren. Physiol. 2014, 307, F962–F970. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, N.; Stuart, D.; Mironova, E.; Bugay, V.; Wang, S.P.; Abraham, N.; Ichihara, A.; Stockand, J.D.; Kohan, D.E. Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport. Am. J. Physiol-Renal 2016, 311, F186–F194. [Google Scholar] [CrossRef]
- Wang, F.; Lu, X.; Liu, M.; Feng, Y.; Zhou, S.F.; Yang, T. Renal medullary (pro)renin receptor contributes to angiotensin II-induced hypertension in rats via activation of the local renin-angiotensin system. BMC Med. 2015, 13, 278. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.C.; Williams, D.E.; Liu, L.; Kavanagh, K.L.; Mullins, J.J.; Mitchell, K.D. Enhancement of renin and prorenin receptor in collecting duct of Cyp1a1-Ren2 rats may contribute to development and progression of malignant hypertension. Am. J. Physiol-Renal 2011, 300, F581–F588. [Google Scholar] [CrossRef]
- Prieto, M.C.; Botros, F.T.; Kavanagh, K.; Navar, L.G. Prorenin receptor in distal nephron segments of 2-kidney, 1-clip goldblatt hypertensive rats. Ochsner J. 2013, 13, 26–32. [Google Scholar] [PubMed]
- Prieto, M.C.; Gonzalez-Villalobos, R.A.; Botros, F.T.; Martin, V.L.; Pagan, J.; Satou, R.; Lara, L.S.; Feng, Y.; Fernandes, F.B.; Kobori, H.; et al. Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1-7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats. Am. J. Physiol. Ren. Physiol. 2011, 300, F749–F755. [Google Scholar] [CrossRef]
- Prieto-Carrasquero, M.C.; Botros, F.T.; Pagan, J.; Kobori, H.; Seth, D.M.; Casarini, D.E.; Navar, L.G. Collecting duct renin is upregulated in both kidneys of 2-kidney, 1-clip Goldblatt hypertensive rats. Hypertension 2008, 51, 1590–1596. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.T.; Miller, J.H.; Day, M.M.; Munger, J.C.; Brookes, P.S. Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity. Cell Rep. 2018, 23, 2617–2628. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.; Xie, L.; Diao, C.; Wang, N.; Hu, W.; Zheng, Y.; Jin, L.; Yan, Z.; Gao, H. Systemic perturbations of key metabolites in diabetic rats during the evolution of diabetes studied by urine metabonomics. PLoS ONE 2013, 8, e60409. [Google Scholar] [CrossRef]
- Cohen, D.M. Inhibition of glutamine synthetase induces critical energy threshold for neuronal survival. Ann. N. Y. Acad. Sci. 1997, 826, 456–460. [Google Scholar] [CrossRef]
- Cohen, D.M.; Guthrie, P.H.; Gao, X.; Sakai, R.; Taegtmeyer, H. Glutamine cycling in isolated working rat heart. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E1312–E1316. [Google Scholar] [CrossRef] [PubMed]
- Kanaoka, Y.; Maekawa, A.; Austen, K.F. Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J. Biol. Chem. 2013, 288, 10967–10972. [Google Scholar] [CrossRef] [PubMed]
- Wittenberger, T.; Hellebrand, S.; Munck, A.; Kreienkamp, H.J.; Schaller, H.C.; Hampe, W. GPR99, a new G protein-coupled receptor with homology to a new subgroup of nucleotide receptors. BMC Genom. 2002, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Lazo-Fernandez, Y.; Welling, P.A.; Wall, S.M. alpha-Ketoglutarate stimulates pendrin-dependent Cl(-) absorption in the mouse CCD through protein kinase C. Am. J. Physiol. Ren. Physiol. 2018, 315, F7–F15. [Google Scholar] [CrossRef] [PubMed]
- Tokonami, N.; Morla, L.; Centeno, G.; Mordasini, D.; Ramakrishnan, S.K.; Nikolaeva, S.; Wagner, C.A.; Bonny, O.; Houillier, P.; Doucet, A.; et al. alpha-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism. J. Clin. Investig. 2013, 123, 3166–3171. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Huang, M.Y.; Lee, M.S.; Hsieh, C.C.; Kuo, H.F.; Kuo, C.H.; Hung, C.H. Effects of montelukast on M2-related cytokine and chemokine in M2 macrophages. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 2018, 51, 18–26. [Google Scholar] [CrossRef]
- Guerrero, A.; Visniauskas, B.; Cárdenas, P.; Figueroa, S.M.; Vivanco, J.; Salinas-Parra, N.; Araos, P.; Nguyen, Q.M.; Kassan, M.; Amador, C.A.; et al. α-Ketoglutarate Upregulates Collecting Duct (Pro)renin Receptor Expression, Tubular Angiotensin II Formation, and Na+ Reabsorption During High Glucose Conditions. Front. Cardiovasc. Med. 2021, 8, 644797. [Google Scholar] [CrossRef]
- Curnow, A.C.; Gonsalez, S.R.; Gogulamudi, V.R.; Visniauskas, B.; Simon, E.E.; Gonzalez, A.A.; Majid, D.S.A.; Lara, L.S.; Prieto, M.C. Low Nitric Oxide Bioavailability Increases Renin Production in the Collecting Duct. Front. Physiol. 2020, 11, 559341. [Google Scholar] [CrossRef]
- Gonzalez, A.A.; Zamora, L.; Reyes-Martinez, C.; Salinas-Parra, N.; Roldan, N.; Cuevas, C.A.; Figueroa, S.; Gonzalez-Vergara, A.; Prieto, M.C. (Pro)renin receptor activation increases profibrotic markers and fibroblast-like phenotype through MAPK-dependent ROS formation in mouse renal collecting duct cells. Clin. Exp. Pharmacol. Physiol. 2017, 44, 1134–1144. [Google Scholar] [CrossRef]
- Eldahr, S.S.; Dipp, S.; Guan, S.; Navar, L.G. Renin, Angiotensinogen, and Kallikrein Gene-Expression in 2-Kidney Goldblatt Hypertensive Rats. Am. J. Hypertens 1993, 6, 914–919. [Google Scholar] [CrossRef]
- Prieto, M.C.; Reverte, V.; Mamenko, M.; Kuczeriszka, M.; Veiras, L.C.; Rosales, C.B.; McLellan, M.; Gentile, O.; Jensen, V.B.; Ichihara, A.; et al. Collecting duct prorenin receptor knockout reduces renal function, increases sodium excretion, and mitigates renal responses in ANG II-induced hypertensive mice. Am. J. Physiol. Ren. Physiol. 2017, 313, F1243–F1253. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, N.; Stuart, D.; Calquin, M.; Quadri, S.; Wang, S.; Van Hoek, A.N.; Siragy, H.M.; Ichihara, A.; Kohan, D.E. Nephron-specific deletion of the prorenin receptor causes a urine concentration defect. Am. J. Physiol. Ren. Physiol. 2015, 309, F48–F56. [Google Scholar] [CrossRef] [PubMed]
- Navar, L.G.; Harrison-Bernard, L.M. Intrarenal angiotensin II augmentation in angiotensin II dependent hypertension. Hypertens Res. 2000, 23, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Cervenka, L.; Horacek, V.; Vaneckova, I.; Hubacek, J.A.; Oliverio, M.I.; Coffman, T.M.; Navar, L.G. Essential role of AT(1A) receptor in the development of 2KIC hypertension. Hypertension 2002, 40, 735–741. [Google Scholar] [CrossRef]
- Ramkumar, N.; Stuart, D.; Rees, S.; Van Hoek, A.; Sigmund, C.D.; Kohan, D.E. Collecting duct-specific knockout of renin attenuates angiotensin II-induced hypertension. Am. J. Physiol. Renal. 2014, 307, F931–F938. [Google Scholar] [CrossRef]
- Gonzalez, A.A.; Womack, J.P.; Liu, L.; Seth, D.M.; Prieto, M.C. Angiotensin II Increases the Expression of (Pro)Renin Receptor During Low-Salt Conditions. Am. J. Med. Sci. 2014, 348, 416–422. [Google Scholar] [CrossRef]
- He, W.; Miao, F.J.; Lin, D.C.; Schwandner, R.T.; Wang, Z.; Gao, J.; Chen, J.L.; Tian, H.; Ling, L. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 2004, 429, 188–193. [Google Scholar] [CrossRef]
- Gogulamudi, V.R.; Arita, D.Y.; Bourgeois, C.R.T.; Jorgensen, J.; He, J.; Wimley, W.C.; Satou, R.; Gonzalez, A.A.; Prieto, M.C. High glucose induces trafficking of prorenin receptor and stimulates profibrotic factors in the collecting duct. Sci. Rep. 2021, 11, 13815. [Google Scholar] [CrossRef]
- Peti-Peterdi, J. Mitochondrial TCA cycle intermediates regulate body fluid and acid-base balance. J. Clin. Investig. 2013, 123, 2788–2790. [Google Scholar] [CrossRef]
- Fedorova, L.V.; Sodhi, K.; Gatto-Weis, C.; Puri, N.; Hinds, T.D., Jr.; Shapiro, J.I.; Malhotra, D. Peroxisome proliferator-activated receptor delta agonist, HPP593, prevents renal necrosis under chronic ischemia. PLoS ONE 2013, 8, e64436. [Google Scholar] [CrossRef]
- Sahni, P.V.; Zhang, J.; Sosunov, S.; Galkin, A.; Niatsetskaya, Z.; Starkov, A.; Brookes, P.S.; Ten, V.S. Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice. Pediatr. Res. 2018, 83, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Crake, R.L.I.; Burgess, E.R.; Royds, J.A.; Phillips, E.; Vissers, M.C.M.; Dachs, G.U. The Role of 2-Oxoglutarate Dependent Dioxygenases in Gliomas and Glioblastomas: A Review of Epigenetic Reprogramming and Hypoxic Response. Front. Oncol. 2021, 11, 619300. [Google Scholar] [CrossRef] [PubMed]
- Peti-Peterdi, J. High glucose and renin release: The role of succinate and GPR91. Kidney Int. 2010, 78, 1214–1217. [Google Scholar] [CrossRef]
- Gonzalez, A.A.; Luffman, C.; Bourgeois, C.R.; Vio, C.P.; Prieto, M.C. Angiotensin II-independent upregulation of cyclooxygenase-2 by activation of the (Pro)renin receptor in rat renal inner medullary cells. Hypertension 2013, 61, 443–449. [Google Scholar] [CrossRef]
- Gonzalez, A.A.; Prieto, M.C. Roles of collecting duct renin and (pro)renin receptor in hypertension: Mini review. Ther. Adv. Cardiovasc. Dis. 2015, 9, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.A.; Prieto, M.C. Renin and the (pro)renin receptor in the renal collecting duct: Role in the pathogenesis of hypertension. Clin. Exp. Pharmacol. Physiol. 2015, 42, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, S.; Ando, T.; Niiyama, M.; Seki, Y.; Yoshida, N.; Watanabe, D.; Kawakami-Mori, F.; Kobori, H.; Nishiyama, A.; Ichihara, A. Serum soluble (pro)renin receptor levels in patients with essential hypertension. Hypertens Res. 2014, 37, 642–648. [Google Scholar] [CrossRef]
- Nguyen, G.; Blanchard, A.; Curis, E.; Bergerot, D.; Chambon, Y.; Hirose, T.; Caumont-Prim, A.; Tabard, S.B.; Baron, S.; Frank, M.; et al. Plasma Soluble (Pro) Renin Receptor Is Independent of Plasma Renin, Prorenin, and Aldosterone Concentrations But Is Affected by Ethnicity. Hypertension 2014, 63, 297–302. [Google Scholar] [CrossRef]
- Gladysheva, I.P.; Sullivan, R.D.; Ramanathan, K.; Reed, G.L. Soluble (Pro)Renin Receptor Levels Are Regulated by Plasma Renin Activity and Correlated with Edema in Mice and Humans with HFrEF. Biomedicines 2022, 10, 1874. [Google Scholar] [CrossRef]
- Hamada, K.; Taniguchi, Y.; Shimamura, Y.; Inoue, K.; Ogata, K.; Ishihara, M.; Horino, T.; Fujimoto, S.; Ohguro, T.; Yoshimoto, Y.; et al. Serum level of soluble (pro)renin receptor is modulated in chronic kidney disease. Clin. Exp. Nephrol. 2013, 17, 848–856. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Starvation Ketosis and the Kidney. Am. J. Nephrol. 2021, 52, 467–478. [Google Scholar] [CrossRef]
- Gonzalez-Villalobos, R.A.; Satou, R.; Ohashi, N.; Semprun-Prieto, L.C.; Katsurada, A.; Kim, C.; Upchurch, G.M.; Prieto, M.C.; Kobori, H.; Navar, L.G. Intrarenal mouse renin-angiotensin system during ANG II-induced hypertension and ACE inhibition. Am. J. Physiol. Renal. 2010, 298, F150–F157. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Villalobos, R.A.; Seth, D.M.; Satou, R.; Horton, H.; Ohashi, N.; Miyata, K.; Katsurada, A.; Tran, D.V.; Kobori, H.; Navar, L.G. Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. Am. J. Physiol. Renal. 2008, 295, F772–F779. [Google Scholar] [CrossRef]
- Ploth, D.W. Angiotensin-dependent renal mechanisms in two-kidney, one-clip renal vascular hypertension. Am. J. Physiol. 1983, 245, F131–F141. [Google Scholar] [CrossRef] [PubMed]
- Navar, L.G. The kidney in blood pressure regulation and development of hypertension. Med. Clin. N. Am. 1997, 81, 1165–1198. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Fox, J.; Mitchell, K.D.; Navar, L.G. Angiotensin and angiotensin converting enzyme tissue levels in two-kidney, one clip hypertensive rats. Hypertension 1992, 20, 763–767. [Google Scholar] [CrossRef]
- Alawi, L.F.; Dhakal, S.; Emberesh, S.E.; Sawant, H.; Hosawi, A.; Thanekar, U.; Grobe, N.; Elased, K.M. Effects of Angiotensin II Type 1A Receptor on ACE2, Neprilysin and KIM-1 in Two Kidney One Clip (2K1C) Model of Renovascular Hypertension. Front. Pharmacol. 2020, 11, 602985. [Google Scholar] [CrossRef] [PubMed]
- Friedland, J.; Silverstein, E. A sensitive fluorimetric assay for serum angiotensin-converting enzyme. Am. J. Clin. Pathol. 1976, 66, 416–424. [Google Scholar] [CrossRef]
- Ronchi, F.A.; Irigoyen, M.C.; Casarini, D.E. Association of somatic and N-domain angiotensin-converting enzymes from Wistar rat tissue with renal dysfunction in diabetes mellitus. J. Renin-Angiotensin-Aldosterone Syst. JRAAS 2007, 8, 34–41. [Google Scholar] [CrossRef]
Sham WT | 2K1C | 2K1C + ML | 2K1C KO | Sham WT + ML | Sham KO | |
---|---|---|---|---|---|---|
ACE activity (nmol/min/mg) | ||||||
Right Kidney | 6.8 ± 0.9 | 37.4 ± 11.2 ** | 34.4 ± 18.1 ** | 9.8 ± 0.8 | 6.3 ± 0.9 | 5.8 ± 1.2 |
Left Kidney | 7.6 ± 1.1 | 17.2 ± 5.4 * | 10.3 ± 3.2 | 7.1 ± 1.5 | 3.9 ± 1.1 | 4.6 ± 1.1 |
Ang II levels (ng/ml/total protein) | ||||||
Right Kidney | 2.9 ± 0.3 | 23.4 ± 8.2 ** | 14.4 ± 18.1 * | 4.1 ± 0.8 | 3.6 ± 0.6 | 3.7 ± 1.2 |
Left Kidney | 2.5 ± 0.4 | 4.1 ± 0.4 * | 3.3 ± 0.8 | 2.6 ± 0.9 | 2.1 ± 0.3 | 2.4 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas, P.; Nuñez-Allimant, C.; Silva, K.; Cid-Salinas, C.; León, A.C.; Vallotton, Z.; Lorca, R.A.; Oliveira, L.C.G.d.; Casarini, D.E.; Céspedes, C.; et al. OXGR1-Dependent (Pro)Renin Receptor Upregulation in Collecting Ducts of the Clipped Kidney Contributes to Na+ Balance in Goldblatt Hypertensive Mice. Int. J. Mol. Sci. 2024, 25, 10045. https://doi.org/10.3390/ijms251810045
Cárdenas P, Nuñez-Allimant C, Silva K, Cid-Salinas C, León AC, Vallotton Z, Lorca RA, Oliveira LCGd, Casarini DE, Céspedes C, et al. OXGR1-Dependent (Pro)Renin Receptor Upregulation in Collecting Ducts of the Clipped Kidney Contributes to Na+ Balance in Goldblatt Hypertensive Mice. International Journal of Molecular Sciences. 2024; 25(18):10045. https://doi.org/10.3390/ijms251810045
Chicago/Turabian StyleCárdenas, Pilar, Camila Nuñez-Allimant, Katherin Silva, Catalina Cid-Salinas, Allison C. León, Zoe Vallotton, Ramón A. Lorca, Lilian Caroline Gonçalves de Oliveira, Dulce E Casarini, Carlos Céspedes, and et al. 2024. "OXGR1-Dependent (Pro)Renin Receptor Upregulation in Collecting Ducts of the Clipped Kidney Contributes to Na+ Balance in Goldblatt Hypertensive Mice" International Journal of Molecular Sciences 25, no. 18: 10045. https://doi.org/10.3390/ijms251810045
APA StyleCárdenas, P., Nuñez-Allimant, C., Silva, K., Cid-Salinas, C., León, A. C., Vallotton, Z., Lorca, R. A., Oliveira, L. C. G. d., Casarini, D. E., Céspedes, C., Prieto, M. C., & Gonzalez, A. A. (2024). OXGR1-Dependent (Pro)Renin Receptor Upregulation in Collecting Ducts of the Clipped Kidney Contributes to Na+ Balance in Goldblatt Hypertensive Mice. International Journal of Molecular Sciences, 25(18), 10045. https://doi.org/10.3390/ijms251810045