Differences in DNA Methylation in Genes Involved in Vitamin D Metabolism Are Related to Insulin Requirement in Pregnant Women with Gestational Diabetes Mellitus
Abstract
1. Introduction
2. Results
2.1. Characteristics of the Study Subjects across Different Points
2.2. DNA Methylation of Genes Involved in Vitamin D Metabolism Pathways
2.3. Association of Vitamin D Levels with DNA Methylation in Genes Related to Vitamin D Metabolism
3. Discussion
4. Materials and Methods
4.1. Population Study
4.2. Samples Extraction, DNA Isolation, and Bisulfite Conversion
4.3. DNA Methylation Analysis
4.4. Vitamin D Gene Selection and CpGs Extraction
4.5. Statistical
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallagher, J.C.; Rosen, C.J. Vitamin D: 100 years of discoveries, yet controversy continues. Lancet Diabetes Endocrinol. 2023, 11, 362–374. Available online: https://pubmed.ncbi.nlm.nih.gov/37004709/ (accessed on 1 August 2024). [CrossRef] [PubMed]
- Bikle, D.; Christakos, S. New aspects of vitamin D metabolism and action—Addressing the skin as source and target. Nat. Rev. Endocrinol. 2020, 16, 234–252. [Google Scholar] [CrossRef]
- Milajerdi, A.; Abbasi, F.; Mousavi, S.M.; Esmaillzadeh, A. Maternal vitamin D status and risk of gestational diabetes mellitus: A systematic review and meta-analysis of prospective cohort studies. Clin. Nutr. 2021, 40, 2576–2586. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, M.; Asadi, M.; Rahmani, S.; Zanjani, M.A.; Sadeghi, O.; Hosseini, S.A.; Javid, A.Z. Circulating vitamin D and the risk of gestational diabetes: A systematic review and dose-response meta-analysis. Endocrine 2020, 70, 36–47. Available online: https://pubmed.ncbi.nlm.nih.gov/32710437/ (accessed on 1 August 2024). [CrossRef] [PubMed]
- Eggemoen, Å.R.; Waage, C.W.; Sletner, L.; Gulseth, H.L.; Birkeland, K.I.; Jenum, A.K. Vitamin D, Gestational Diabetes, and Measures of Glucose Metabolism in a Population-Based Multiethnic Cohort. J. Diabetes Res. 2018, 2018, 8939235. Available online: https://pubmed.ncbi.nlm.nih.gov/29850611/ (accessed on 1 August 2024). [CrossRef] [PubMed]
- Zhu, B.; Huang, K.; Yan, S.; Hao, J.; Zhu, P.; Chen, Y.; Ye, A.; Tao, F. VDR Variants rather than Early Pregnancy Vitamin D Concentrations Are Associated with the Risk of Gestational Diabetes: The Ma’anshan Birth Cohort (MABC) Study. J. Diabetes Res. 2019, 2019, 8313901. Available online: https://pubmed.ncbi.nlm.nih.gov/31341914/ (accessed on 1 August 2024). [CrossRef]
- Yong, H.Y.; Shariff, Z.M.; Palaniveloo, L.; Loh, S.P.; Yusof, B.N.M.; Rejali, Z.; Bindels, J.; Tee, Y.Y.S.; van der Beek, E.M. High early pregnancy serum 25-hydroxy vitamin D level, within a sub-optimal range, is associated with gestational diabetes mellitus: A prospective cohort study. Nutr. Res. Pr. 2022, 16, 120–131. [Google Scholar] [CrossRef]
- Molina-Vega, M.; Picón-César, M.J.; Lima-Rubio, F.; Gutiérrez-Repiso, C.; Linares-Pineda, T.M.; Suárez-Arana, M.; Fernández-Ramos, A.M.; Tinahones, F.J.; Morcillo, S. Insulin Requirement for Gestational Diabetes Control Is Related to Higher Vitamin D Levels up to 1 Year Postpartum: A Prospective Cohort Study. Antioxidants 2022, 11, 2230. Available online: https://pubmed.ncbi.nlm.nih.gov/36421415/ (accessed on 1 August 2024). [CrossRef]
- Smith, D.A.; Sadler, M.C.; Altman, R.B. Promises and challenges in pharmacoepigenetics. Camb. Prism. Precis. Med. 2023, 1, e18. [Google Scholar] [CrossRef]
- Ling, C. Pharmacoepigenetics in type 2 diabetes: Is it clinically relevant? Diabetologia 2022, 65, 1849–1853. Available online: https://pubmed.ncbi.nlm.nih.gov/35307762/ (accessed on 1 August 2024). [CrossRef]
- Elbere, I.; Silamikelis, I.; Ustinova, M.; Kalnina, I.; Zaharenko, L.; Peculis, R.; Konrade, I.; Ciuculete, D.M.; Zhukovsky, C.; Gudra, D.; et al. Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals. Clin. Epigenet. 2018, 10, 156. Available online: https://pubmed.ncbi.nlm.nih.gov/30545422/ (accessed on 1 August 2024). [CrossRef] [PubMed]
- García-Calzón, S.; Perfilyev, A.; Männistö, V.; de Mello, V.D.; Nilsson, E.; Pihlajamäki, J.; Ling, C. Diabetes medication associates with DNA methylation of metformin transporter genes in the human liver. Clin. Epigenet. 2017, 9, 102. Available online: https://pubmed.ncbi.nlm.nih.gov/28947922/ (accessed on 1 August 2024). [CrossRef] [PubMed]
- Scisciola, L.; Rizzo, M.R.; Cataldo, V.; Fontanella, R.A.; Balestrieri, M.L.; D’Onofrio, N.; Barbieri, M. Incretin drugs effect on epigenetic machinery: New potential therapeutic implications in preventing vascular diabetic complications. FASEB J. 2020, 34, 16489–16503. [Google Scholar] [CrossRef]
- Yan, J.-B.; Lai, C.-C.; Jhu, J.-W.; Gongol, B.; Marin, T.L.; Lin, S.-C.; Chiu, H.-Y.; Yen, C.-J.; Wang, L.-Y.; Peng, I.-C. Insulin and Metformin Control Cell Proliferation by Regulating TDG-Mediated DNA Demethylation in Liver and Breast Cancer Cells. Mol. Ther. Oncolytics 2020, 18, 282–294. Available online: https://pubmed.ncbi.nlm.nih.gov/32728616/ (accessed on 1 August 2024). [CrossRef]
- Qiu, L.W.; Gu, L.Y.; Lü, L.; Chen, X.F.; Li, C.F.; Mei, Z.C. FOXO1-mediated epigenetic modifications are involved in the insulin-mediated repression of hepatocyte aquaporin 9 expression. Mol. Med. Rep. 2014, 11, 3064–3068. [Google Scholar] [CrossRef]
- García-Gómez, E.; Gómez-Viais, Y.I.; Cruz-Aranda, M.M.; Martínez-Razo, L.D.; Reyes-Mayoral, C.; Ibarra-González, L.; Montoya-Estrada, A.; Osorio-Caballero, M.; Perichart-Perera, O.; Camacho-Arroyo, I.; et al. The Effect of Metformin and Carbohydrate-Controlled Diet on DNA Methylation and Gene Expression in the Endometrium of Women with Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2023, 24, 6857. [Google Scholar] [CrossRef] [PubMed]
- García-Calzón, S.; Schrader, S.; Perfilyev, A.; Martinell, M.; Ahlqvist, E.; Ling, C. DNA methylation partially mediates antidiabetic effects of metformin on HbA1c levels in individuals with type 2 diabetes. Diabetes Res. Clin. Pr. 2023, 202, 110807. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, D.; Lin, J.; Li, X.; Liu, Y.; Gao, J.; Xue, Y.; Zhang, Y.; Ding, R.; Huang, G.; et al. The influence of CYP2R1 polymorphisms and gene-obesity interaction with hypertension risk in a Chinese rural population. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 241–248. Available online: https://pubmed.ncbi.nlm.nih.gov/34906413/ (accessed on 1 August 2024). [CrossRef]
- Rochel, N. Vitamin D and Its Receptor from a Structural Perspective. Nutrients 2022, 14, 2847. [Google Scholar] [CrossRef]
- Yu, H.; Xie, Y.; Dai, M.; Pan, Y.; Xie, C. SMAD3 interacts with vitamin D receptor and affects vitamin D-mediated oxidative stress to ameliorate cerebral ischaemia-reperfusion injury. Eur. J. Neurosci. 2022, 56, 6055–6068. Available online: https://pubmed.ncbi.nlm.nih.gov/36161391/ (accessed on 1 August 2024). [CrossRef]
- De Azevedo, L.A.; Matte, U.; Da Silveira, T.R.; Álvares-Da-Silva, M.R. Genetic variants underlying Vitamin D metabolism and VDR-TGFβ-1-SMAD3 interaction may impact on HCV progression: A study based on dbGaP data from the HALT-C study. J. Hum. Genet. 2017, 62, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Latic, N.; Erben, R.G. FGF23 and Vitamin D Metabolism. JBMR Plus 2021, 12, e10558. [Google Scholar] [CrossRef] [PubMed]
- Linares-Pineda, T.; Peña-Montero, N.; Fragoso-Bargas, N.; Gutiérrez-Repiso, C.; Lima-Rubio, F.; Suarez-Arana, M.; Sánchez-Pozo, A.; Tinahones, F.J.; Molina-Vega, M.; Picón-César, M.J.; et al. Epigenetic marks associated with gestational diabetes mellitus across two time points during pregnancy. Clin. Epigenet. 2023, 15, 110. [Google Scholar] [CrossRef]
- Classification and Diagnosis of Diabetes Mellitus and Other Categories of Glucose Intolerance. Available online: http://diabetesjournals.org/diabetes/article-pdf/28/12/1039/350249/28-12-1039.pdf (accessed on 1 August 2024).
- Morris, T.J.; Butcher, L.M.; Feber, A.; Teschendorff, A.E.; Chakravarthy, A.R.; Wojdacz, T.K.; Beck, S. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 2014, 30, 428–430. Available online: https://pubmed.ncbi.nlm.nih.gov/24336642/ (accessed on 1 August 2024). [CrossRef] [PubMed]
- Teschendorff, A.E.; Marabita, F.; Lechner, M.; Bartlett, T.; Tegner, J.; Gomez-Cabrero, D.; Beck, S. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 2013, 29, 189–196. Available online: https://pubmed.ncbi.nlm.nih.gov/23175756/ (accessed on 1 August 2024). [CrossRef]
- KEGG: Kyoto Encyclopedia of Genes and Genomes. Buscar con Google. Available online: https://www.google.com/search?q=KEGG%3A+kyoto+encyclopedia+of+genes+and+genomes.&rlz=1C1CHBF_esES1033ES1033&oq=KEGG%3A+kyoto+encyclopedia+of+genes+and+genomes.&gs_lcrp=EgZjaHJvbWUqBggAEEUYOzIGCAAQRRg7MgYIARBFGDrSAQcyOTRqMGo3qAIAsAIA&sourceid=chrome&ie=UTF-8 (accessed on 18 January 2024).
- STRING: Functional Protein Association Networks. Available online: https://www.string-db.org/ (accessed on 18 January 2024).
- Allaire, J.J. RStudio: Integrated Development Environment for R. Available online: http://www.rstudio.org/ (accessed on 1 August 2024).
Control | Lifestyle | Insulin-Treated | p Value | |
---|---|---|---|---|
Baseline (n) | 16 | 10 | 6 | |
Age (years) | 34.1 ± 4.5 | 31.6 ± 2.7 | 37.5 ± 3.4 | 0.018 |
BMI before pregnancy (kg/m2) | 25.5 ± 4.1 | 23.8 ± 2.9 | 28.4 ± 4.6 | 0.113 |
Fasting glycemia (mg/dL) | 4.5 ± 0.4 | 4.6 ± 0.3 | 5.5 ± 0.4 | 0.002 |
HbA1c (%) | 5.1 ± 0.3 | 5.1 ± 0.4 | 5.5 ± 0.3 | 0.03 |
25-OH-D (ng/mL) | 24.8 ± 9.2 | 21.3 ± 8.2 | 30 ± 4.6 | 0.115 |
Vitamin D | 0.503 | |||
supplements (%) | ||||
-No | 81.3 | 80.0 | 100.0 | |
-Yes | 18.8 | 20.0 | 0.0 | |
HOMA-IR | 1.6 ± 0.7 | 1.3 ± 0.5 | 3.3 ± 0.9 | 0.002 |
MD adherence score | 7.7 ± 1.3 | 7.2 ± 2.2 | 6.8 ± 1.7 | 0.303 |
Daily walking/cycling (min) | 65.8 ± 47.3 | 54.9 ± 59.8 | 23.9 ± 27.7 | 0.108 |
Antepartum visit (n) | 16 | 10 | 6 | |
Weight gain in pregnancy (kg) | 11.0 ± 4.1 | 8.2 ±4.7 | 11.1 ± 4.9 | 0.26 |
Fasting glycemia (mg/dL) | 4.3 ± 0.8 | 4.3 ± 0.9 | 4.6 ± 0.9 | 0.786 |
HbA1c (%) | 5.2 ± 0.3 | 5.3 ± 0.3 | 5.6 ± 0.3 | 0.045 |
25-OH-D (ng/mL) | 23.3 ± 8.6 | 21.3 ± 10.9 | 35.4 ± 9.6 | 0.028 |
HOMA-IR | 3.5 ± 7.3 | 1.7 ± 1.0 | 7.2 ± 5.4 | 0.016 |
Postpartum visit (n) | 16 | 8 | 6 | |
BMI (kg/m2) | 27.1 ± 4.1 | 23.8 ± 2.0 | 28.9 ± 3.5 | 0.027 |
Fasting glycemia (mg/dL) | 4.5 ± 0.3 | 4.4 ± 0.5 | 4.9 ± 0.4 | 0.07 |
HbA1c (%) | 5.4 ± 0.3 | 5.4 ± 0.4 | 5.5 ± 0.3 | 0.874 |
25-OH-D (ng/mL) | 25.0 ± 6.4 | 23.8 ± 3.8 | 31.6 ± 2.5 | 0.008 |
HOMA-IR | 1.2 ± 0.7 | 0.99 ± 0.8 | 1.8 ± 0.6 | 0.07 |
1 year after birth visit (n) | 7 | 5 | 5 | |
BMI (kg/m2) | 26.4 ± 4.2 | 26.1 ± 6.5 | 31.1 ± 6.0 | 0.19 |
Fasting glycemia (mg/dL) | 4.8 ± 0.5 | 5.1 ± 0.5 | 5.1 ± 0.5 | 0.751 |
HbA1c (%) | 5.3 ± 0.1 | 5.4 ± 0.4 | 5.5 ± 0.4 | 0.670 |
25-OH-D (ng/mL) | 25.1 ± 7.0 | 22.8 ± 6.8 | 36.3 ± 12.2 | 0.120 |
HOMA-IR | 1.3 ± 0-8 | 1.9 ± 0.8 | 2.4 ± 1.2 | 0.894 |
MD adherence score | 8.0 ± 1.4 | 7.6 ± 2.3 | 6.6 ± 1.5 | 0.378 |
Daily walking/cycling (min) | 32.7 ± 24.6 | 33.58 ± 23.4 | 31.4 ± 27.2 | 0.539 |
CpG_lD | Gene | Island Position | Gene Position | p.Value T0 | p.Value TI |
---|---|---|---|---|---|
cg19218509 | ASP | Island | Body | 0.109 | 0.014 |
cg18384385 | CAI | OpenSea | 0.048 | 0.020 | |
cg01532206 | CA7 | Island | 0.054 | 0.029 | |
cg182.76810 | CTNNBI | N Shore | 0.135 | 0.015 | |
cg26528620 | CYP2R1 | Island | Bod | 0.657 | 0.017 |
cg07039630 | FGFRI | OpenSea | 0.623 | 0.033 | |
cg03919554 | FGFR3 | Island | 0.487 | 0.045 | |
cg13060399 | GALNT3 | OpenSea | Body | 0.227 | 0.015 |
cg11009335 | GALNT3 | S Shore | TSS1500 | 0.128 | 0.042 |
cg19786733 | KLB | S Shore | Body | 0.104 | 0.034 |
cg02411493 | NADSYNI | O ensea | Bod | 0.488 | 0.032 |
cg12407703 | NCOAI | OpenSea | 0.926 | 0.013 | |
cg03984919 | NCOAI | OpenSea | 0.547 | 0.040 | |
cg01986891 | NCOA3 | OpenSea | 0.065 | 0.003 | |
cg09799714 | PDZD3 | OpenSea | 0.956 | 0.032 | |
cg25356935 | PDZD3 | OpenSea | 0.061 | 0.007 | |
cg05435065 | POR | Island | TSS1500 | 0.102 | 0.013 |
cg24341498 | RXRA | Island | TSS1500 | 0.094 | 0.014 |
cg16363447 | SLC34A2 | Island | Bod | 0.987 | 0.012 |
cg09922639 | SMAD3 | OpenSea | 0.606 | 0.022 | |
cg21494626 | SMAD3 | OpenSea | Body | 0.267 | 0.010 |
cg13173254 | VDR | OpenSea | 0.046 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Montero, N.; Linares-Pineda, T.M.; Fernández-Valero, A.; Lima-Rubio, F.; Fernández-Ramos, A.M.; Gutiérrez-Repiso, C.; Suárez-Arana, M.; Picón-César, M.J.; Molina-Vega, M.; Morcillo, S. Differences in DNA Methylation in Genes Involved in Vitamin D Metabolism Are Related to Insulin Requirement in Pregnant Women with Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2024, 25, 10576. https://doi.org/10.3390/ijms251910576
Peña-Montero N, Linares-Pineda TM, Fernández-Valero A, Lima-Rubio F, Fernández-Ramos AM, Gutiérrez-Repiso C, Suárez-Arana M, Picón-César MJ, Molina-Vega M, Morcillo S. Differences in DNA Methylation in Genes Involved in Vitamin D Metabolism Are Related to Insulin Requirement in Pregnant Women with Gestational Diabetes Mellitus. International Journal of Molecular Sciences. 2024; 25(19):10576. https://doi.org/10.3390/ijms251910576
Chicago/Turabian StylePeña-Montero, Nerea, Teresa María Linares-Pineda, Andrea Fernández-Valero, Fuensanta Lima-Rubio, Ana María Fernández-Ramos, Carolina Gutiérrez-Repiso, María Suárez-Arana, María José Picón-César, María Molina-Vega, and Sonsoles Morcillo. 2024. "Differences in DNA Methylation in Genes Involved in Vitamin D Metabolism Are Related to Insulin Requirement in Pregnant Women with Gestational Diabetes Mellitus" International Journal of Molecular Sciences 25, no. 19: 10576. https://doi.org/10.3390/ijms251910576
APA StylePeña-Montero, N., Linares-Pineda, T. M., Fernández-Valero, A., Lima-Rubio, F., Fernández-Ramos, A. M., Gutiérrez-Repiso, C., Suárez-Arana, M., Picón-César, M. J., Molina-Vega, M., & Morcillo, S. (2024). Differences in DNA Methylation in Genes Involved in Vitamin D Metabolism Are Related to Insulin Requirement in Pregnant Women with Gestational Diabetes Mellitus. International Journal of Molecular Sciences, 25(19), 10576. https://doi.org/10.3390/ijms251910576