Concise and Free-Metal Access to Lactone-Annelated Pyrrolo[2,1-a]isoquinoline Derivatives via a 1,2-Rearrangement Step
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of Compound 1g
- Methyl (2E)-3-[6,7-dimethoxy-1-(3-methoxy-3-oxoprop-1-yn-1-yl)-1-(4-nitrophenyl)-3,4-dihydroisoquinolin-2(1H)-yl]prop-2-enoate (1g). Yield 0.397 g (83%), yellow oil. IR spectrum (KBr), υ/cm−1: 2231 (C
- C), 1717 (C=O), 1519, 1349 (NO2). 1H NMR (600 MHz, CDCl3) δ 8.23–8.21 (m, 2H, H-Ar), 7.68–7.66 (m, 2H, H-Ar), 7.36 (d, J = 13.6 Hz, 1H, -CH
- CH-CO2Me), 6.65 (s, 1H, 8-CH), 6.39 (s, 1H, 5-CH), 4.94 (d, J = 13.6 Hz, 1H, -CH
- CH-CO2Me), 3.88 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 3.67 (s, 3H, OCH3), 3.66–3.63 (m, 1H, 3-CH2), 3.62 (s, 3H, OCH3), 3.49–3.46 (m, 1H, 3-CH2), 3.09–3.05 (m, 1H, 4-CH2), 2.95–2.92 (m, 1H, 4-CH2). 13C NMR (150 MHz, CDCl3) δ 169.0, 153.4, 149.3, 149.0, 148.8, 148.5, 148.0, 128.6 (2C), 127.2, 125.6, 124.3 (2C), 111.2, 111.1, 92.8, 84.7, 80.5, 64.3, 56.2, 56.1, 53.2, 51.1, 42.8, 27.9. HRMS (ESI) m/z calc’d for C25H24N2O8 [M+H]⁺ 481.1605, found: 481.1605 (0.0 ppm).
3.3. General Procedure for the Synthesis of Compounds 2a–g
- Dimethyl 11b-(4-nitrophenyl)-9,10-dimethoxy-7,11b-dihydro-6H-pyrido[2,1-a]isoquinoline-2,3-dicarboxylate (2g). Yield 0.098 g (68%), light yellow oil. IR spectrum (KBr), υ/cm−1: 1688 (C=O), 1519, 1347 (NO2). 1H NMR (600 MHz, CDCl3) δ 8.10 (d, J = 8.8 Hz, 2H, H-Ar), 7.81 (s, 1H, 4-CH), 7.54 (s, 1H, 1-CH), 7.27–7.25 (m, 2H, H-Ar), 7.01 (s, 1H, 11-CH), 6.67 (s, 1H, 8-CH), 3.90 (s, 3H, OCH3), 3.76 (s, 6H, 2*OCH3), 3.60–3.56 (m, 1H, 6-CH2), 3.39 (s, 3H, OCH3), 3.34–3.30 (m, 1H, 6-CH2), 3.00–2.96 (m, 1H, 7-CH2), 2.80–2.77 (m, 1H, 7-CH2). 13C NMR (150 MHz, CDCl3) δ 167.0, 164.3, 161.2, 156.0, 149.1, 147.8, 147.6, 147.2, 129.4 (2C), 126.2, 126.1, 123.1 (2C), 112.3, 111.3, 105.7, 104.1, 78.7, 56.1, 55.9, 51.1, 51.0, 42.4, 29.2. HRMS (ESI) m/z calc’d for C25H24N2O8 [M+Na]⁺ 503.1425, found: 503.1421 (−0.8 ppm).
3.4. General Procedure for the Synthesis of Compounds 3a–g, 4, 5a,b and 6a,b
- Methyl 10,11-dimethoxy-3a-methyl-2-oxo-3,3a,7,8-tetrahydro-2H-furo[2′,3′:2,3]pyrrolo[2,1-a]isoquinoline-4-carboxylate (3a). Yield 0.059 g (55%), white solid, mp 210–212 °C. IR spectrum (KBr), υ/cm−1: 1764, 1680 (C=O). 1H NMR (600 MHz, CDCl3) δ 7.19 (s, 1H, 5-CH), 6.69 (s, 1H, H-Ar), 6.60 (s, 1H, H-Ar), 3.90 (s, 3H, OCH3), 3.87 (s, 3H, OCH3), 3.70 (s, 3H, OCH3), 3.68–3.60 (m, 2H, 7-CH2), 3.52 (d, J = 18.2 Hz, 1H, 3-CH2), 2.90 (d, J = 18.2 Hz, 1H, 3-CH2), 2.90–2.85 (m, 1H, 8-CH2), 2.74–2.70 (m, 1H, 8-CH2), 1.03 (s, 3H, CH3). 13C NMR (150 MHz, CDCl3) δ 174.9, 164.6, 150.0, 148.3, 146.5, 129.0, 122.4, 111.5, 109.2, 108.4, 104.9, 56.4, 56.0, 54.1, 50.8, 42.8, 40.5, 29.8, 21.6. HRMS (ESI) m/z calc’d for C₁₉H2₁NO6 [M+H]⁺ 360.1442, found: 360.1451 (2.5 ppm).
- Methyl 10,11-dimethoxy-2-oxo-3a-(propan-2-yl)-3,3a,7,8-tetrahydro-2H-furo[2′,3′:2,3]pyrrolo[2,1-a]isoquinoline-4-carboxylate (3b). Yield 0.081 g (50%), white solid, mp 237–239 °C. IR spectrum (KBr), υ/cm−1: 1751, 1675 (C=O). 1H NMR (600 MHz, CDCl3) δ 7.35 (s, 1H, 5-CH), 6.67 (s, 1H, H-Ar), 6.62 (s, 1H, H-Ar), 3.90 (s, 3H, OCH3), 3.88 (s, 3H, OCH3), 3.79 (d, J = 17.9 Hz, 1H, 3-CH2), 3.68 (s, 3H, OCH3), 3.66–3.64 (m, 2H, 7-CH2), 2.98–2.93 (m, 1H, 8-CH2), 2.95 (d, J = 17.9 Hz, 1H, 3-CH2), 2.75–2.71 (m, 1H, 8-CH2), 1.85–1.79 (m, 1H, CH(CH3)2), 0.98 (d, J = 6.7 Hz, 3H, CH(CH3)2), 0.43 (d, J = 6.7 Hz, 3H, CH(CH3)2). 13C NMR (150 MHz, CDCl3) δ 174.6, 165.3, 150.1, 148.7, 148.1, 128.9, 122.4, 111.5, 109.7, 105.1, 102.2, 60.8, 56.4, 56.0, 50.7, 42.4, 39.7, 34.3, 29.3, 20.5, 16.4. HRMS (ESI) m/z calc’d for C2₁H25NO6 [M+H]⁺ 388.1755, found: 388.1765 (2.6 ppm).
- Methyl 3a-benzyl-10,11-dimethoxy-2-oxo-3,3a,7,8-tetrahydro-2H-furo[2′,3′:2,3]pyrrolo[2,1-a]isoquinoline-4-carboxylate (3c). Yield 0.083 g (64%), white solid, mp 218–220 °C. IR spectrum (KBr), υ/cm−1: 1762, 1676 (C=O). 1H NMR (600 MHz, CDCl3) δ 7.07 (t, J = 7.6 Hz, 1H, H-Ph), 7.04 (s, 1H, 5-CH), 6.95 (t, J = 7.6 Hz, 2H, H-Ph), 6.71 (s, 1H, H-Ar), 6.59 (s, 1H, H-Ar), 6.25 (d, J = 7.6 Hz, 2H, H-Ph), 3.95 (s, 3H, OCH3), 3.93 (s, 3H, OCH3), 3.78 (s, 3H, OCH3), 3.65 (d, J = 18.2 Hz, 1H, 3-CH2), 3.46–3.42 (m, 1H, 7-CH2), 3.31 (d, J = 14.1 Hz, 1H, -CH2-Ph), 3.30–3.27 (m, 1H, 7-CH2), 3.07 (d, J = 18.2 Hz, 1H, 3-CH2), 2.65 (d, J = 14.1 Hz, 1H, -CH2-Ph), 2.38–2.34 (m, 1H, 8-CH2), 1.85–1.80 (m, 1H, 8-CH2). 13C NMR (150 MHz, CDCl3) δ 174.3, 165.1, 150.5, 148.6, 147.8, 135.6, 130.3, 130.2 (2C), 127.3 (2C), 126.5, 122.5, 111.5, 109.4, 104.7, 104.1, 58.0, 56.6, 56.3, 51.0, 42.3, 41.2, 39.3, 28.9. HRMS (ESI) m/z calc’d for C25H25NO6 [M+H]⁺ 436.1755, found: 436.1757 (0.5 ppm).
- Methyl 10,11-dimethoxy-2-oxo-3a-phenyl-3,3a,7,8-tetrahydro-2H-furo[2′,3′:2,3]pyrrolo[2,1-a]isoquinoline-4-carboxylate (3d). Yield 0.077 g (61%), white solid, mp 212–214 °C. IR spectrum (KBr), υ/cm−1: 1759, 1679 (C=O). 1H NMR (600 MHz, CDCl3) δ 7.37 (s, 1H, 5-CH), 7.10–7.08 (m, 2H, H-Ph), 7.06–7.04 (m, 1H, H-Ph), 7.02 (d, J = 7.6 Hz, 2H, H-Ph), 6.53 (s, 1H, H-Ar), 6.14 (s, 1H, H-Ar), 3.85–3.81 (m, 1H, 7-CH2), 3.79 (s, 3H, OCH3), 3.78 (br. D, J = 5.0 Hz, 2H, 3-CH2), 3.75–3.73 (m, 1H, 7-CH2), 3.57 (s, 3H, OCH3), 3.54 (s, 3H, OCH3), 3.04–3.00 (m, 1H, 8-CH2), 2.82–2.79 (m, 1H, 8-CH2). 13C NMR (150 MHz, CDCl3) δ 174.1, 164.1, 149.6, 147.7, 146.9, 138.7, 128.3 (3C), 127.5, 126.4 (2C), 122.7, 110.9, 110.6, 109.4, 106.1, 60.8, 56.0, 55.9, 50.8, 42.4, 38.0, 29.1. HRMS (ESI) m/z calc’d for C24H23NO6 [M+H]⁺ 422.1598, found: 422.1604 (1.4 ppm).
- Methyl 10,11-dimethoxy-3a-(4-methoxyphenyl)-2-oxo-3,3a,7,8-tetrahydro-2H-furo[2′,3′:2,3]pyrrolo[2,1-a]isoquinoline-4-carboxylate (3e). Yield 0.067 g (50%), light yellow solid, mp 196–198 °C. IR spectrum (KBr), υ/cm−1: 1760, 1675 (C=O). 1H NMR (600 MHz, CDCl3) δ 7.34 (s, 1H, 5-CH), 6.92 (d, J = 8.6 Hz, 2H, H-Ar), 6.62 (d, J = 8.6 Hz, 2H, H-Ar), 6.53 (s, 1H, H-Ar), 6.18 (s, 1H, H-Ar), 3.84–3.80 (m, 1H, 7-CH2), 3.81 (s, 3H, OCH3), 3.75 (br. S, 2H, 3-CH2), 3.73-3.71 (m, 1H, 7-CH2), 3.69 (s, 3H, OCH3), 3.58 (s, 6H, 2*OCH3), 3.03–2.98 (m, 1H, 8-CH2), 2.81–2.78 (m, 1H, 8-CH2). 13C NMR (150 MHz, CDCl3) δ 174.3, 164.2, 158.6, 149.6, 147.7, 146.6, 130.7, 128.3, 127.5 (2C), 122.7, 113.6 (2C), 110.9, 110.6, 109.4, 105.9, 60.4, 56.0, 55.9, 55.2, 50.8, 42.4, 38.2, 29.1. HRMS (ESI) m/z calc’d for C25H25NO7 [M+H]⁺ 452.1704, found: 452.1714 (2.2 ppm).
- Methyl 3ª-(4-fluorophenyl)-10,11-dimethoxy-2-oxo-3,3ª,7,8-tetrahydro-2H-furo[2′,3′:2,3]pyrrolo[2,1-a]isoquinoline-4-carboxylate (3f). Yield 0.080 g (61%), white solid, mp 206–208 °C. IR spectrum (KBr), υ/cm−1: 1771, 1683 (C=O). 1H NMR (600 MHz, CDCl3) δ 7.35 (s, 1H, 5-CH), 6.99–6.97 (m, 2H, H-Ar), 6.80–6.77 (m, 2H, H-Ar), 6.54 (s, 1H, H-Ar), 6.14 (s, 1H, H-Ar), 3.83–3.80 (m, 1H, 7-CH2), 3.81 (s, 3H, OCH3), 3.76 (d, J = 15.7 Hz, 2H, 3-CH2), 3.75–3.71 (m, 1H, 7-CH2), 3.58 (s, 6H, 2*OCH3), 3.03–2.98 (m, 1H, 8-CH2), 2.82–2.79 (m, 1H, 8-CH2). 13C NMR (150 MHz, CDCl3) δ 173.8, 164.1, 161.8 (d, J = 247.1 Hz, 1C), 149.7, 147.9, 146.9, 134.6, 128.4, 128.1 (d, J = 8.1 Hz, 2C), 122.4, 115.2 (d, J = 21.6 Hz, 2C), 111.0, 110.4, 109.3, 105.8, 60.4, 56.0, 55.9, 50.8, 42.4, 38.2, 29.1. HRMS (ESI) m/z calc’d for C24H22FNO6 [M+H]⁺ 440.1504, found: 440.1500 (−0.9 ppm).
- Methyl 10,11-dimethoxy-3ª-(4-nitrophenyl)-2-oxo-3,3ª,7,8-tetrahydro-2H-furo[2′,3′:2,3]pyrrolo[2,1-a]isoquinoline-4-carboxylate (3g). Yield 0.018 g (13%), yellow solid, mp 147–149 °C. IR spectrum (KBr), υ/cm−1: 1774, 1682 (C=O), 1519, 1347 (NO2). 1H NMR (600 MHz, CDCl3) δ 7.98 (d, J = 8.8 Hz, 2H, H-Ar), 7.43 (s, 1H, 5-CH), 7.22 (d, J = 8.8 Hz, 2H, H-Ar), 6.58 (s, 1H, H-Ar), 6.12 (s, 1H, H-Ar), 3.90–3.83 (m, 3H, 3-CH2, 7-CH2), 3.81 (s, 3H, OCH3), 3.78 (d, J = 17.4 Hz, 1H, 3-CH2), 3.58 (s, 3H, OCH3), 3.56 (s, 3H, OCH3), 3.09–3.04 (m, 1H, 8-CH2), 2.89–2.85 (m, 1H, 8-CH2). 13C NMR (150 MHz, CDCl3) δ 172.8, 163.7, 150.4, 148.1, 147.2, 147.0, 146.1, 128.8, 127.5 (2C), 123.5 (2C), 121.6, 111.3 (2C), 108.8 (2C), 60.8, 56.1, 56.0, 51.1, 42.5, 38.0, 29.0. HRMS (ESI) m/z calc’d for C24H22N2O8 [M+H]⁺ 467.1449, found: 467.1455 (1.3 ppm).
- Dimethyl 11-hydroxy-8,9-dimethoxy-11-(4-methoxyphenyl)-6,11-dihydro-5H-pyrrolo[2,1-b][3]benzazepine-1,2-dicarboxylate (5a). Yield 0.079 g (55%), orange oil. IR spectrum (KBr), υ/cm−1: 3521 (OH), 1723, 1709 (C=O). 1H NMR (600 MHz, CDCl3) δ 7.61 (s, 1H, 3-CH), 7.17 (s, 1H, 10-CH), 6.98 (d, J = 8.9 Hz, 2H, H-Ar), 6.77 (d, J = 8.9 Hz, 2H, H-Ar), 6.60 (s, 1H, 7-CH), 4.03–3.99 (m, 1H, 5-CH2), 3.93 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 3.89 (s, 3H, OCH3), 3.88–3.84 (m, 1H, 5-CH2), 3.80 (s, 3H, OCH3), 3.76 (s, 3H, OCH3), 3.64 (s, 1H, OH), 2.98–2.94 (m, 1H, 6-CH2), 2.86–2.82 (m, 1H, 6-CH2). 13C NMR (150 MHz, CDCl3) δ 169.6, 164.1, 159.6, 148.3, 147.6, 138.5, 137.2, 134.0, 128.4 (2C), 127.4, 127.2, 116.9, 114.0 (2C), 113.4, 113.3, 110.7, 77.7, 56.2, 56.1, 55.4, 52.8, 51.6, 48.2, 33.2. HRMS (ESI) m/z calc’d for C26H27NO8 [M+Na]⁺ 504.1629, found: 504.1641 (2.4 ppm).
- Dimethyl 11-(4-fluorophenyl)-11-hydroxy-8,9-dimethoxy-6,11-dihydro-5H-pyrrolo[2,1-b][3]benzazepine-1,2-dicarboxylate (5b). Yield 0.062 g (44%), orange oil. IR spectrum (KBr), υ/cm−1: 3449 (OH), 1715 (C=O). 1H NMR (600 MHz, CDCl3) δ 7.59 (s, 1H, 3-CH), 7.17 (s, 1H, 10-CH), 7.06–7.03 (m, 2H, H-Ar), 6.94–6.91 (m, 2H, H-Ar), 6.61 (s, 1H, 7-CH), 4.02–3.98 (m, 1H, 5-CH2), 3.93 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 3.89 (s, 3H, OCH3), 3.87–3.85 (m, 1H, 5-CH2), 3.80 (s, 3H, OCH3), 3.75 (s, 1H, OH), 2.95–2.91 (m, 1H, 6-CH2), 2.87–2.83 (m, 1H, 6-CH2). 13C NMR (150 MHz, CDCl3) δ 169.6, 164.0, 162.6 (d, J = 248.5 Hz, 1C), 148.5, 147.7, 142.2, 136.9, 133.7, 129.1 (d, J = 8.1 Hz, 2C), 127.5, 127.4, 117.0, 115.6 (d, J = 21.6 Hz, 2C), 113.6, 113.4, 110.6, 77.6, 56.2, 56.1, 52.9, 51.6, 48.4, 33.2. HRMS (ESI) m/z calc’d for C25H24FNO7 [M+Na]⁺ 492.1429, found: 492.1434 (1.0 ppm).
- Methyl (1E)-8,9-dimethoxy-1-(2-methoxy-2-oxoethylidene)-10b-(4-methoxyphenyl)-1,5,6,10b-tetrahydropyrrolo[2,1-a]isoquinoline-2-carboxylate (6a). Yield 0.021 g (15%), beige solid, mp 227–229 °C. IR spectrum (KBr), υ/cm−1: 1721, 1679 (C=O). 1H NMR (600 MHz, CDCl3) δ 7.31 (s, 1H, 3-CH), 7.21 (d, J = 8.8 Hz, 2H, H-Ar), 6.84 (d, J = 8.8 Hz, 2H, H-Ar), 6.60 (s, 1H, H-Ar), 6.42 (s, 1H, H-Ar), 5.60 (s, 1H, =CH-CO2Me), 3.90 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.75 (s, 3H, OCH3), 3.74–3.70 (m, 1H, 5-CH2), 3.69 (s, 3H, OCH3), 3.33–3.30 (m, 1H, 5-CH2), 3.12–3.08 (m, 1H, 6-CH2), 2.69–2.66 (m, 1H, 6-CH2). 13C NMR (150 MHz, CDCl3) δ 169.5, 165.7, 159.5, 148.4, 148.3, 146.8, 136.9, 130.6, 129.8 (2C), 129.3, 126.3, 120.0, 113.7 (2C), 111.4, 109.3, 94.4, 64.7, 56.2, 56.1, 55.4, 52.4, 51.0, 48.0, 28.8. HRMS (ESI) m/z calc’d for C26H27NO7 [M+H]⁺ 466.1860, found: 466.1861 (0.2 ppm).
- Methyl (1E)-8,9-dimethoxy-1-(2-methoxy-2-oxoethylidene)-10b-(4-nitrophenyl)-1,5,6,10b-tetrahydropyrrolo[2,1-a]isoquinoline-2-carboxylate (6b). Yield 0.045 g (31%), orange oil. IR spectrum (KBr), υ/cm−1: 1733, 1699 (C=O), 1518, 1349 (NO2). 1H NMR (600 MHz, CDCl3) δ 8.19–8.17 (m, 2H, H-Ar), 7.51–7.49 (m, 2H, H-Ar), 7.32 (s, 1H, 3-CH), 6.65 (s, 1H, H-Ar), 6.35 (s, 1H, H-Ar), 5.59 (s, 1H, =CH-CO2Me), 3.91 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.75 (s, 3H, OCH3), 3.71 (s, 3H, OCH3), 3.68–3.64 (m, 1H, 5-CH2), 3.41–3.39 (m, 1H, 5-CH2), 3.16–3.11 (m, 1H, 6-CH2), 2.73–2.70 (m, 1H, 6-CH2). 13C NMR (150 MHz, CDCl3) δ 169.0, 165.3, 150.2, 148.9, 148.7, 147.6, 146.8, 130.7, 129.3 (2C), 129.1, 126.4, 123.8 (2C), 118.8, 111.7, 109.0, 95.9, 64.6, 56.3, 56.1, 52.6, 51.2, 48.2, 28.5. HRMS (ESI) m/z calc’d for C25H24N2O8 [M+H]⁺ 481.1605, found: 481.1605 (0.0 ppm).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hitotsuyanagi, Y.; Fukaya, H.; Takeda, E.; Matsuda, S.; Saishu, Y.; Zhu, S.; Komatsu, K.; Takeya, K. Structures of stemona-amine B and stemona-lactams M–R. Tetrahedron 2013, 69, 6297–6304. [Google Scholar] [CrossRef]
- Xu, Y.; Xiong, L.; Yan, Y.; Sun, D.; Duan, Y.; Li, H.; Chen, L. Alkaloids from Stemona Tuberosa and Their Anti-Inflammatory Activity. Front. Chem. 2022, 10, 847595. [Google Scholar] [CrossRef]
- Nogawa, T.; Kawatani, M.; Uramoto, M.; Okano, A.; Aono, H.; Futamura, Y.; Takahashi, S.; Osada, H. Pyrrolizilactone, a new pyrrolizidinone metabolite produced by a fungus. J. Antibiot. 2013, 66, 621–623. [Google Scholar] [CrossRef] [PubMed]
- Salatino, A.; Salatino, M.L.F.; Negri, G. Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae). J. Braz. Chem. Soc. 2007, 18, 11–33. [Google Scholar] [CrossRef]
- Farias, R.; Rao, V.; Viana, G.; Silveira, E.; Maciel, M.; Pino, A. Hypoglycemic Effect of Trans-Dehydrocrotonin, a Nor-Clerodane Diterpene from Croton Cajucara. Planta Med. 1997, 63, 558–560. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Haun, M. Cytotoxicity of Trans-Dehydrocrotonin from Croton Cajucara on V79 Cells and Rat Hepatocytes. Planta Med. 1999, 65, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Aleman, J.; del Solar, V.; Martin-Santos, C.; Cubo, L.; Ranninger, C.N. Tandem Cyclization–Michael Reaction by Combination of Metal-and Organocatalysis. J. Org. Chem. 2011, 76, 7287–7293. [Google Scholar] [CrossRef]
- Herath, H.B.; Herath, W.H.; Carvalho, P.; Khan, S.I.; Tekwani, B.L.; Duke, S.O.; Tomaso-Peterson, M.; Nanayakkara, N.D. Biologically active tetranorditerpenoids from the fungus Sclerotinia homoeocarpa causal agent of dollar spot in turfgrass. J. Nat. Prod. 2009, 72, 2091–2097. [Google Scholar] [CrossRef]
- Ivanescu, B.; Miron, A.; Corciova, A. Sesquiterpene lactones from Artemisia genus: Biological activities and methods of analysis. J. Anal. Methods Chem. 2015, 2015, 247685. [Google Scholar] [CrossRef]
- Greger, H. Structural classification and biological activities of Stemona alkaloids. Phytochem. Rev. 2019, 18, 463–493. [Google Scholar] [CrossRef]
- Pilli, R.A.; Rosso, G.B.; de Oliveira, M.D.C.F. The chemistry of Stemona alkaloids: An update. Nat. Prod. Rep. 2010, 27, 1908–1937. [Google Scholar] [CrossRef]
- Li, L.; Tang, M.C.; Tang, S.; Gao, S.; Soliman, S.; Hang, L.; Xu, W.; Ye, T.; Watanabe, K.; Tang, Y. Genome mining and assembly-line biosynthesis of the UCS1025A pyrrolizidinone family of fungal alkaloids. J. Am. Chem. Soc. 2018, 140, 2067–2071. [Google Scholar] [CrossRef]
- Bartoli, A.; Rodier, F.; Commeiras, L.; Parrain, J.L.; Chouraqui, G. Construction of spirolactones with concomitant formation of the fused quaternary centre–application to the synthesis of natural products. Nat. Prod. Rep. 2011, 28, 763–782. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhang, Z.; Li, P.; Miao, T.; Wang, L. Synthesis of Spirolactones via a BF3·Et2O-Promoted Cascade Annulation of α-Keto Acids and 1,3-Enynes. Org. Lett. 2021, 23, 5698–5702. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhou, M.; Zhu, J.P.; Zhang, X.F.; Liu, Z.J.; Li, H.R.; Chen, Y.; Chen, H.-P.; Zhao, J.; Pu, J.-X.; et al. An unexpected photoinduced cyclization to synthesize fully substituted γ-spirolactones via intramolecular hydrogen abstraction with allyl acrylates. Org. Chem. Front. 2022, 9, 2316–2321. [Google Scholar] [CrossRef]
- Nair, D.; Basu, P.; Pati, S.; Baseshankar, K.; Sankara, C.S.; Namboothiri, I.N. Synthesis of Spirolactones and Functionalized Benzofurans via Addition of 3-Sulfonylphthalides to 2-Formylaryl Triflates and Conversion to Benzofuroisocoumarins. J. Org. Chem. 2023, 88, 4519–4527. [Google Scholar] [CrossRef] [PubMed]
- Delayre, B.; Wang, Q.; Zhu, J. Natural product synthesis enabled by domino processes incorporating a 1,2-rearrangement step. ACS Cent. Sci. 2021, 7, 559–569. [Google Scholar] [CrossRef]
- Obydennik, A.Y.; Titov, A.A.; Listratova, A.V.; Borisova, T.N.; Sokolova, I.L.; Rybakov, V.B.; Van der Eycken, E.V.; Voskressensky, L.G.; Varlamov, A.V. Divergent and Nucleophile-Assisted Rearrangement in the Construction of Pyrrolo [2,1-b][3]benzazepine and Pyrido[2,1-a]isoquinoline Scaffolds. Chem.-Eur. J. 2023, e202302919. [Google Scholar] [CrossRef]
- Motiwala, H.F.; Armaly, A.M.; Cacioppo, J.G.; Coombs, T.C.; Koehn, K.R.; Norwood IV, V.M.; Aube, J. HFIP in organic synthesis. Chem. Rev. 2022, 122, 12544–12747. [Google Scholar] [CrossRef] [PubMed]
- Listratova, A.V.; Titov, A.A.; Obydennik, A.Y.; Varlamov, A.V. N-propargyl aza-Claisen rearrangement in the synthesis of heterocycles. Tetrahedron 2022, 121, 132914. [Google Scholar] [CrossRef]
- Westermaier, M.; Mayr, H. Regio- and Stereoselective Ring-Opening Reactions of Epoxides with Indoles and Pyrroles in 2,2,2-Trifluoroethanol. Chem.-Eur. J. 2008, 14, 1638–1647. [Google Scholar] [CrossRef] [PubMed]
- Li, G.X.; Qu, J. Friedel–Crafts alkylation of arenes with epoxides promoted by fluorinated alcohols or water. Chem. Commun. 2010, 46, 2653–2655. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, Y.S.; Chung, B.Y.; Park, H. Asymmetric synthesis of both enantiomers of novel tetracyclic heterocycle, furo [3′,2′:2,3]pyrrolo[2,1-a] isoquinoline derivative via a diastereoselective N-acyliminium ion cyclization. Tetrahedron 1997, 53, 2449–2458. [Google Scholar] [CrossRef]
- Titov, A.A.; Kobzev, M.S.; Borisova, T.N.; Listratova, A.V.; Evenko, T.V.; Varlamov, A.V.; Voskressensky, L.G. Facile Methods for the Synthesis of 8-Ylidene-1,2,3,8-tetrahydrobenzazecines. Eur. J. Org. Chem. 2020, 2020, 3041–3049. [Google Scholar] [CrossRef]
- Titov, A.A.; Purgatorio, R.; Obydennik, A.Y.; Listratova, A.V.; Borisova, T.N.; De Candia, M.; Catto, M.; Altomare, C.D.; Varlamov, A.V.; Voskressensky, L.G. Synthesis of Isomeric 3-Benzazecines Decorated with Endocyclic Allene Moiety and Exocyclic Conjugated Double Bond and Evaluation of Their Anticholinesterase Activity. Molecules 2022, 27, 6276. [Google Scholar] [CrossRef]
- Dantignana, V.; Milan, M.; Cussó, O.; Company, A.; Bietti, M.; Costas, M. Chemoselective Aliphatic C–H Bond Oxidation Enabled by Polarity Reversal. ACS Cent. Sci. 2017, 3, 1350–1358. [Google Scholar] [CrossRef]
- Call, A.; Cianfanelli, M.; Besalú-Sala, P.; Olivo, G.; Palone, A.; Vicens, L.; Ribas, X.; Luis, J.M.; Bietti, M.; Costas, M. Carboxylic Acid Directed γ-Lactonization of Unactivated Primary C–H Bonds Catalyzed by Mn Complexes: Application to Stereoselective Natural Product Diversification. J. Am. Chem. Soc. 2022, 144, 19542–19558. [Google Scholar] [CrossRef]
Entry | R | Product | Yield, % |
---|---|---|---|
1 | Me | 2a | 95 a |
2 | i-Pr | 2b | 55 |
3 | Bn | 2c | 56 |
4 | Ph | 2d | 71 |
5 | 4-OMe-C6H4- | 2e | 79 |
6 | 4-F-C6H4- | 2f | 80 |
7 | 4-NO2-C6H4- | 2g | 68 |
Entry | glacial AcOH (Equiv.) | Yield 3a, % | Yield 2a, % |
---|---|---|---|
1 | - | 25 | 71 |
2 | 0.5 | 43 | 43 |
3 | 3.0 | 55 | - a |
4 | 5.0 | 56 | - a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obydennik, A.Y.; Titov, A.A.; Listratova, A.V.; Borisova, T.N.; Rybakov, V.B.; Voskressensky, L.G.; Varlamov, A.V. Concise and Free-Metal Access to Lactone-Annelated Pyrrolo[2,1-a]isoquinoline Derivatives via a 1,2-Rearrangement Step. Int. J. Mol. Sci. 2024, 25, 1085. https://doi.org/10.3390/ijms25021085
Obydennik AY, Titov AA, Listratova AV, Borisova TN, Rybakov VB, Voskressensky LG, Varlamov AV. Concise and Free-Metal Access to Lactone-Annelated Pyrrolo[2,1-a]isoquinoline Derivatives via a 1,2-Rearrangement Step. International Journal of Molecular Sciences. 2024; 25(2):1085. https://doi.org/10.3390/ijms25021085
Chicago/Turabian StyleObydennik, Arina Y., Alexander A. Titov, Anna V. Listratova, Tatiana N. Borisova, Victor B. Rybakov, Leonid G. Voskressensky, and Alexey V. Varlamov. 2024. "Concise and Free-Metal Access to Lactone-Annelated Pyrrolo[2,1-a]isoquinoline Derivatives via a 1,2-Rearrangement Step" International Journal of Molecular Sciences 25, no. 2: 1085. https://doi.org/10.3390/ijms25021085
APA StyleObydennik, A. Y., Titov, A. A., Listratova, A. V., Borisova, T. N., Rybakov, V. B., Voskressensky, L. G., & Varlamov, A. V. (2024). Concise and Free-Metal Access to Lactone-Annelated Pyrrolo[2,1-a]isoquinoline Derivatives via a 1,2-Rearrangement Step. International Journal of Molecular Sciences, 25(2), 1085. https://doi.org/10.3390/ijms25021085