Biological Activity Evaluation of Phenolic Isatin-3-Hydrazones Containing a Quaternary Ammonium Center of Various Structures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
Synthesis of Ammonium Isatin-3-acylhydrazones
2.2. Biological Studies
2.2.1. Antimicrobial Activity
2.2.2. Hemolytic and Cytotoxic Activity
2.2.3. Antioxidant Activity
2.2.4. Anticoagulant and Antiaggregation Activities
3. Materials and Methods
3.1. Chemistry
3.2. Biological Studies
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheke, R.S.; Firke, S.D.; Patil, R.R.; Bari, S.B. ISATIN: New Hope Against Convulsion. Cent. Nerv. Syst. Agents Med. Chem. 2018, 18, 76–101. [Google Scholar] [CrossRef]
- Saini, T.; Kumar, S.; Narasimhan, B. Central Nervous System Activities of Indole Derivatives: An Overview. Cent. Nerv. Syst. Agents Med. Chem. 2015, 16, 19–28. [Google Scholar] [CrossRef]
- Medvedev, A.; Igosheva, N.; Crumeyrolle-Arias, M.; Glover, V. Isatin: Role in stress and anxiety. Stress 2005, 8, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Bharathi Dileepan, A.G.; Daniel Prakash, T.; Ganesh Kumar, A.; Shameela Rajam, P.; Violet Dhayabaran, V.; Rajaram, R. Isatin based macrocyclic Schiff base ligands as novel candidates for antimicrobial and antioxidant drug design: In vitro DNA binding and biological studies. J. Photochem. Photobiol. B 2018, 183, 191–200. [Google Scholar] [CrossRef]
- Raj, R.; Gut, J.; Rosenthal, P.J.; Kumar, V. 1H-1,2,3-Triazole-tethered isatin-7-chloroquinoline and 3-hydroxy-indole-7-chloroquinoline conjugates: Synthesis and antimalarial evaluation. Bioorg. Med. Chem. Lett. 2014, 24, 756–759. [Google Scholar] [CrossRef]
- Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem. 2019, 164, 678–688. [Google Scholar] [CrossRef]
- Medvedev, A.; Buneeva, O.; Gnedenko, O.; Ershov, P.; Ivanov, A. Isatin, an endogenous nonpeptide biofactor: A review of its molecular targets, mechanisms of actions, and their biomedical implications. Biofactors 2018, 44, 95–108. [Google Scholar] [CrossRef]
- Panda, S.S.; Girgis, A.S.; Aziz, M.N.; Bekheit, M.S. Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold. Molecules 2023, 28, 618. [Google Scholar] [CrossRef]
- Xu, P.-W.; Cui, X.-Y.; Yu, J.-S.; Zhou, J. Spirooxindoles. In Spiro Compounds; Wiley: Hoboken, NJ, USA, 2022; pp. 103–160. [Google Scholar]
- Liandi, A.R.; Cahyana, A.H.; Alfariza, D.N.; Nuraini, R.; Sari, R.W.; Wendari, T.P. Spirooxindoles: Recent Report of Green Synthesis Approach. Green Synth. Catal. 2024, 5, 1–13. [Google Scholar] [CrossRef]
- Boddy, A.J.; Bull, J.A. Stereoselective Synthesis and Applications of Spirocyclic Oxindoles. Org. Chem. Front. 2021, 8, 1026–1084. [Google Scholar] [CrossRef]
- Saranya, P.V.; Neetha, M.; Aneeja, T.; Anilkumar, G. Transition Metal-Catalyzed Synthesis of Spirooxindoles. RSC Adv. 2021, 11, 7146–7179. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, A.V.; Mironov, V.F. Recent advances in the application of isoindigo derivatives in materials chemistry. Beilstein J. Org. Chem. 2021, 17, 1533–1564. [Google Scholar] [CrossRef] [PubMed]
- Vine, K.L.; Matesic, L.; Locke, J.M.; Skropeta, D. Cytotoxic and anticancer activities of isatin and its derivatives: A comprehensive review from 2000–2008. Adv. Anticancer Agents Med. Chem. 2013, 2, 254. [Google Scholar] [CrossRef]
- Shu, V.A.; Eni, D.B.; Ntie-Kang, F. A Survey of Isatin Hybrids and Their Biological Properties. Mol. Divers. 2024. [Google Scholar] [CrossRef] [PubMed]
- Thota, S.; Rodrigues, D.A.; Pinheiro, P.S.M.; Lima, L.M.; Fraga, C.A.M.; Barreiro, E.J. N-Acylhydrazones as drugs. Bioorg. Med. Chem. Lett. 2018, 28, 2797–2806. [Google Scholar] [CrossRef]
- Al-Wabli, R.I.; Zakaria, A.S.; Attia, M.I. Synthesis, Spectroscopic Characterization and Antimicrobial Potential of Certain New Isatin-Indole Molecular Hybrids. Molecules 2017, 22, 1958. [Google Scholar] [CrossRef]
- Bogdanov, A.V.; Zaripova, I.F.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Voronina, J.K.; Mironov, V.F. Synthesis and Antimicrobial Study of Novel 1-Benzylated Water-Soluble Isatin-3-hydrazones. Chem. Biodivers. 2018, 15, e1800088. [Google Scholar] [CrossRef]
- Medvedev, A.; Kopylov, A.; Buneeva, O.; Kurbatov, L.; Tikhonova, O.; Ivanov, A.; Zgoda, V. A Neuroprotective Dose of Isatin Causes Multilevel Changes Involving the Brain Proteome: Prospects for Further Research. Int. J. Mol. Sci. 2020, 21, 4187. [Google Scholar] [CrossRef]
- Buneeva, O.A.; Kapitsa, I.G.; Zgoda, V.G.; Medvedev, A.E. Neuroprotective effects of isatin and afobazole in rats with rotenone-induced Parkinsonism are accompanied by increased brain levels of Triton X-100 soluble alpha-synuclein. Biomed. Khim 2023, 69, 290–299. [Google Scholar] [CrossRef]
- Patel, M.; Zheng, X.; Akinfiresoye, L.R.; Prioleau, C.; Walker, T.D.; Glass, M.; Marusich, J.A. Pharmacological evaluation of new generation OXIZID synthetic cannabinoid receptor agonists. Eur. J. Pharmacol. 2024, 971, 176549. [Google Scholar] [CrossRef]
- Ahmed, M.F.; El-Haggar, R.; Almalki, A.H.; Abdullah, O.; El Hassab, M.A.; Masurier, N.; Hammad, S.F. Novel hydrazone-isatin derivatives as potential EGFR inhibitors: Synthesis and in vitro pharmacological profiling. Arch. Pharm. 2023, 356, e2300244. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Bogdanov, A.V.; Kadomtseva, M.E.; Bukharov, S.V.; Voloshina, A.D.; Mironov, V.F. Effect of the cationic moiety on the antimicrobial activity of sterically hindered isatin 3-hydrazone derivatives. Russ. J. Org. Chem. 2020, 56, 555–558. [Google Scholar] [CrossRef]
- Bogdanov, A.; Tsivileva, O.; Voloshina, A.; Lyubina, A.; Amerhanova, S.; Burtceva, E.; Bukharov, S.; Samorodov, A.; Pavlov, V. Synthesis and diverse biological activity profile of triethylammonium isatin-3-hydrazones. ADMET DMPK 2022, 10, 163–179. [Google Scholar] [CrossRef]
- Bogdanov, A.V.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Bukharov, S.V.; Dobrynin, A.B.; Voronina, J.K.; Terekhova, N.V.; Samorodov, A.V.; Pavlov, V.N.; et al. Isatin-3-acylhydrazones with Enhanced Lipophilicity: Synthesis, Antimicrobial Activity Evaluation and the Influence on Hemostasis System. Chem. Biodivers. 2022, 19, e202100496. [Google Scholar] [CrossRef]
- Pashirova, T.N.; Shaikhutdinova, Z.M.; Mironov, V.F.; Bogdanov, A.V. Ammonium Amphiphiles Based on Natural Compounds: Design, Synthesis, Properties, and Biomedical Applications. A Review. Dokl. Chem. 2023, 509, 71–88. [Google Scholar] [CrossRef]
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med. 2023, 20, e1004264. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Bloem, A.; Bax, H.I.; Yusuf, E.; Verkaik, N.J. New-Generation Antibiotics for Treatment of Gram-Positive Infections: A Review with Focus on Endocarditis and Osteomyelitis. J. Clin. Med. 2021, 10, 1743. [Google Scholar] [CrossRef]
- Sharma, S.; Pellett, S.; Morse, S.A. Special Issue: Gram-Positive Bacterial Toxins. Microorganisms 2023, 11, 2054. [Google Scholar] [CrossRef]
- Tetteh, J.N.A.; Matthaus, F.; Hernandez-Vargas, E.A. A survey of within-host and between-hosts modelling for antibiotic resistance. Biosystems 2020, 196, 104182. [Google Scholar] [CrossRef] [PubMed]
- Kline, K.A.; Lewis, A.L. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiol. Spectr. 2016, 4, 459–502. [Google Scholar] [CrossRef] [PubMed]
- Sumantran, V.N. Cellular chemosensitivity assays: An overview. Methods Mol. Biol. 2011, 731, 219–236. [Google Scholar] [PubMed]
- Robles-Loaiza, A.A.; Pinos-Tamayo, E.A.; Mendes, B.; Ortega-Pila, J.A.; Proano-Bolanos, C.; Plisson, F.; Teixeira, C.; Gomes, P.; Almeida, J.R. Traditional and Computational Screening of Non-Toxic Peptides and Approaches to Improving Selectivity. Pharmaceuticals 2022, 15, 323. [Google Scholar] [CrossRef]
- Tramer, F.; Da Ros, T.; Passamonti, S. Screening of fullerene toxicity by hemolysis assay. Methods Mol. Biol. 2012, 926, 203–217. [Google Scholar] [PubMed]
- Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef]
- de Sa Junior, P.L.; Camara, D.A.D.; Porcacchia, A.S.; Fonseca, P.M.M.; Jorge, S.D.; Araldi, R.P.; Ferreira, A.K. The Roles of ROS in Cancer Heterogeneity and Therapy. Oxid. Med. Cell Longev. 2017, 2017, 2467940. [Google Scholar] [CrossRef]
- Tuli, H.S.; Kaur, J.; Vashishth, K.; Sak, K.; Sharma, U.; Choudhary, R.; Behl, T.; Singh, T.; Sharma, S.; Saini, A.K.; et al. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch. Toxicol. 2023, 97, 103–120. [Google Scholar] [CrossRef]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef]
- El-Kenawi, A.; Ruffell, B. Inflammation, ROS, and Mutagenesis. Cancer Cell 2017, 32, 727–729. [Google Scholar] [CrossRef]
- Arfin, S.; Jha, N.K.; Jha, S.K.; Kesari, K.K.; Ruokolainen, J.; Roychoudhury, S.; Rathi, B.; Kumar, D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants 2021, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Wang, J.Q.; Assaraf, Y.G.; Ren, L.; Gupta, P.; Wei, L.; Ashby, C.R., Jr.; Yang, D.H.; Chen, Z.S. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updat. 2018, 41, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Hisada, Y.; Mackman, N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017, 130, 1499–1506. [Google Scholar] [CrossRef]
- Khorana, A.A.; Mackman, N.; Falanga, A.; Pabinger, I.; Noble, S.; Ageno, W.; Moik, F.; Lee, A.Y.Y. Cancer-associated venous thromboembolism. Nat. Rev. Dis. Primers 2022, 8, 11. [Google Scholar] [CrossRef]
- Mulder, F.I.; Horvath-Puho, E.; van Es, N.; van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Buller, H.R.; Sorensen, H.T. Venous thromboembolism in cancer patients: A population-based cohort study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef]
- Moik, F.; Ay, C.; Pabinger, I. Risk prediction for cancer-associated thrombosis in ambulatory patients with cancer: Past, present and future. Thromb. Res. 2020, 191 (Suppl. S1), S3–S11. [Google Scholar] [CrossRef]
- Moik, F.; van Es, N.; Posch, F.; Di Nisio, M.; Fuereder, T.; Preusser, M.; Pabinger, I.; Ay, C. Gemcitabine and Platinum-Based Agents for the Prediction of Cancer-Associated Venous Thromboembolism: Results from the Vienna Cancer and Thrombosis Study. Cancers 2020, 12, 2493. [Google Scholar] [CrossRef]
- Moik, F.; Ay, C. Hemostasis and cancer: Impact of haemostatic biomarkers for the prediction of clinical outcomes in patients with cancer. J. Thromb. Haemost. 2022, 20, 2733–2745. [Google Scholar] [CrossRef] [PubMed]
- Wikler, M.A. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard, 8th ed.; Wayne, P., Ed.; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2009. [Google Scholar]
- Voloshina, A.D.; Gumerova, S.K.; Sapunova, A.C.; Kulik, N.V.; Mirgorodskaya, A.B.; Kotenko, A.A.; Prokopyeva, T.M.; Mikhailov, V.A.; Zakharova, L.Y.; Sinyashin, O.G. The structure—Activity correlation in the family of dicationic imidazolium surfactants: Antimicrobial properties and cytotoxic effect. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129728. [Google Scholar] [CrossRef] [PubMed]
- Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Belenok, M.G.; Strobykina, I.Y.; Lyubina, A.P.; Gumerova, S.K.; Kataev, V.E. Antimicrobial and cytotoxic effects of ammonium derivatives of diterpenoids steviol and isosteviol. Bioorg. Med. Chem. 2021, 32, 115974. [Google Scholar] [CrossRef] [PubMed]
- Agarkov, A.S.; Nefedova, A.A.; Gabitova, E.R.; Mingazhetdinova, D.O.; Ovsyannikov, A.S.; Islamov, D.R.; Amerhanova, S.K.; Lyubina, A.P.; Voloshina, A.D.; Litvinov, I.A.; et al. (2-Hydroxy-3-Methoxybenzylidene)thiazolo[3,2-a]pyrimidines: Synthesis, Self-Assembly in the Crystalline Phase and Cytotoxic Activity. Int. J. Mol. Sci. 2023, 24, 2084. [Google Scholar] [CrossRef]
- Born, G. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962, 194, 927–929. [Google Scholar] [CrossRef]
Cmpd. | MIC/MBC, μM | ||||
---|---|---|---|---|---|
Sa | Bc | Ef | MRSA-1 | MRSA-2 | |
3a | 3.0 ± 0.2/11.9 ± 0.9 | 11.9 ± 1.1/n.a. | 47.5 ± 4.2/190 ± 18 | 3.0 ± 0.2/23.8 ± 1.9 | 5.9 ± 0.6/95 ± 7.8 |
3b | 5.7 ± 0.5/91.1 ± 8.7 | 11.4 ± 0.8/n.a. | 45.6 ± 4.3/91.1 ± 8.2 | 5.7 ± 0.4/11.4 ± 0.9 | 2.8 ± 0.2/91.1 ± 7.5 |
3c | 41.0 ± 3.8/325 ± 28 | 325 ± 26/n.a. | 20.3 ± 1.7/325 ± 31 | n.d. | n.d. |
3d | 78.3 ± 6.7/n.a. | n.a. | 39.2 ± 2.8/157 ± 14 | n.d. | n.d. |
3e | 5.9 ± 0.5/5.9 ± 0.5 | 5.9 ± 0.6/n.a. | 11.8 ± 0.7/47.3 ± 3.8 | 5.9 ± 0.5/11.8 ± 1.0 | 3.0 ± 0.2/23.7 ± 1.9 |
3f | 4.5 ± 0.4/4.5 ± 0.4 | 36.3 ± 2.8/n.a. | 9.0 ± 0.8/18.1 ± 1.6 | 4.5 ± 0.3/36.3 ± 2.9 | 36.3 ± 2.7/36.3 ± 2.7 |
3g | n.a. | n.a. | n.a. | n.d. | n.d. |
3h | 51.2 ± 4.4/51.2 ± 4.4 | n.a. | 51.2 ± 4.8/51.2 ± 4.8 | n.d. | n.d. |
3i | n.a. | n.a. | n.a. | n.d. | n.d. |
3j | n.a. | n.a. | n.a. | n.d. | n.d. |
3k | 35.0 ± 2.9/35.0 ± 2.9 | 17.5 ± 1.5/n.a. | n.a. | n.d. | n.d. |
3l | 8.6 ± 0.7/138 ± 12 | 8.6 ± 0.8/68.8 ± 6.2 | n.a. | 34.4 ± 2.8/68.8 ± 5.7 | 34.4 ± 2.8/68.8 ± 6.3 |
3m | 4.2 ± 0.3/8.4 ± 0.7 | 16.9 ± 1.4/67.6 ± 5.5 | n.a. | 16.9 ± 1.5/270 ± 22 | 16.9 ± 1.3/67.6 ± 6.4 |
3n | 128 ± 11/n.a. | n.a. | n.a. | n.d. | n.d. |
Norfloxacin | 12.2 ± 0.9/12.2 ± 0.9 | 24.5 ± 1.7/24.5 ± 1.7 | 24.5 ± 1.7/48.9 ± 3.2 | >500/>500 | 12.2 ± 0.8/48.9 ± 3.3 |
Cmpd. | IC50, μM | Cmpd. | IC50, μM |
---|---|---|---|
3a | 4.53 ± 0.22 | 3h | 4.53 ± 0.22 |
3b | 8.98 ± 0.12 | 3i | 5.79 ± 0.00 |
3c | 27.77 ± 0.25 | 3j | 6.85 ± 0.28 |
3d | 15.24 ± 0.11 | 3k | 5.47 ± 0.13 |
3e | 3.41 ± 0.16 | 3l | 8.18 ± 0.31 |
3f | 6.38 ± 0.01 | 3m | 6.79 ± 0.18 |
3g | 6.68 ± 0.02 | 3n | 7.32 ± 0.11 |
Trolox | 30.90 ± 1.54 |
Cmpd. | Latent Period, % of Control | Maximum Amplitude (MA), % of Control | Aggregation Rate, % of Control | Time to MA, % of Control | APTT $, % of Control |
---|---|---|---|---|---|
3a | +3.7 (3.1–4.5) # | −4.3 (3.2–5.7) *,# | +4.2 (3.1–5.8) # | +14.6 (13.2–17.5) *,# | +1.2 (0.7–2.4) |
3b | +4.6 (3.1–6.2) # | −14.4 (11.3–16.7) * | −10.4 (8.3–12.1) * | +18.6 (14.9–21.3) *,# | +3.7 (3.2–5.6) |
3c | +6.1 (4.7–7.2) *,# | −13.1 (10.7–14.5) * | −20.7 (18.3–24.1) *,# | −14.1 (11.2–15.7) *,# | +6.2 (5.7–9.4) *,† |
3d | +2.3 (2.1–3.7) # | −1.6 (1.2–3.5) # | −4.1 (3.7–5.2) # | −10.5 (9.3–13.6) *,# | +1.9 (1.4–3.3) |
3e | +7.4 (5.3–8.2) *,# | −18.1 (15.3–19.7) * | −8.9 (6.1–11.7) * | +15.9 (12.4–17.5) * | +6.5 (4.8–7.3) *,† |
3f | +10.2 (8.9–13.5) * | −11.6 (9.4–12.3) * | −11.5 (8.5–13.4) * | −17.5 (16.4–20.3) *,# | +3.4 (2.7–5.9) |
3g | −3.0 (1.5–4.3) | −14.9 (13.3–15.9) * | −12.1 (10.9–14.3) * | −26.7 (24.4–28.7) *,# | +6.3 (5.6–7.4) *,† |
3h | +4.1 (3.8–5.3) *,# | −1.2 (1.0–2.8) # | −2.3 (1.8–3.5) # | −15.6 (14.8–17.2) *,# | +2.4 (1.7–3.6) |
3i | +7.1 (6.4–7.9) *,# | −2.6 (1.6–3.7) # | +24.9 (21.8–27.4) *,# | −15.6 (14.5–16.7) *,# | +7.3 (6.2–10.1) *,† |
3j | −12.1 (9.4–13.9) *,# | −20.7 (18.6–23.8) *,# | −31.2 (30.4–33.5) *,# | +12.7 (10.4–14.5) * | +3.2 (2.5–4.7) |
3k | −3.1 (2.5–4.6) # | +5.2 (3.4–8.2) # | +2.5 (1.5–4.3) # | −12.6 (10.2–14.7) *,# | +7.1 (6.3–8.2) *,† |
3l | −25.0 (21.5–28.5) *,# | −20.5 (17.8–22.4) *,# | −16.9 (14.8–18.3) *,# | +19.3 (17.6–20.5) *,# | +19.2 (16.3–20.7) * |
3m | −3.1 (2.7–5.1) | −17.8 (15.9–16.6) * | −18.7 (16.5–19.2) *,# | +17.2 (16.4–19.3) *,# | +15.4 (13.2–17.1) *,† |
3n | +2.8 (2.1–3.6) # | +1.1 (0.9–2.4) # | −1.1 (0.5–1.6) # | −11.7 (10.5–14.5) *,# | +2.1 (1.3–3.7) |
Acetylsalicylic acid | −2.1 (1.1–2.6) | −13.7 (10.8–16.4) * | −10.5 (7.6–12.3) * | +10.5 (8.7–13.4) * | - |
Heparin sodium | - | - | - | - | +20.3 (19.7–21.4) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neganova, M.; Aleksandrova, Y.; Voloshina, A.; Lyubina, A.; Appazov, N.; Yespenbetova, S.; Valiullina, Z.; Samorodov, A.; Bukharov, S.; Gibadullina, E.; et al. Biological Activity Evaluation of Phenolic Isatin-3-Hydrazones Containing a Quaternary Ammonium Center of Various Structures. Int. J. Mol. Sci. 2024, 25, 11130. https://doi.org/10.3390/ijms252011130
Neganova M, Aleksandrova Y, Voloshina A, Lyubina A, Appazov N, Yespenbetova S, Valiullina Z, Samorodov A, Bukharov S, Gibadullina E, et al. Biological Activity Evaluation of Phenolic Isatin-3-Hydrazones Containing a Quaternary Ammonium Center of Various Structures. International Journal of Molecular Sciences. 2024; 25(20):11130. https://doi.org/10.3390/ijms252011130
Chicago/Turabian StyleNeganova, Margarita, Yulia Aleksandrova, Alexandra Voloshina, Anna Lyubina, Nurbol Appazov, Sholpan Yespenbetova, Zulfiia Valiullina, Aleksandr Samorodov, Sergey Bukharov, Elmira Gibadullina, and et al. 2024. "Biological Activity Evaluation of Phenolic Isatin-3-Hydrazones Containing a Quaternary Ammonium Center of Various Structures" International Journal of Molecular Sciences 25, no. 20: 11130. https://doi.org/10.3390/ijms252011130
APA StyleNeganova, M., Aleksandrova, Y., Voloshina, A., Lyubina, A., Appazov, N., Yespenbetova, S., Valiullina, Z., Samorodov, A., Bukharov, S., Gibadullina, E., Tapalova, A., & Bogdanov, A. (2024). Biological Activity Evaluation of Phenolic Isatin-3-Hydrazones Containing a Quaternary Ammonium Center of Various Structures. International Journal of Molecular Sciences, 25(20), 11130. https://doi.org/10.3390/ijms252011130