Temperature-Dependent Olive Pomace Extraction for Obtaining Bioactive Compounds Preventing the Death of Murine Cortical Neurons
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Extraction Temperature on Total Polyphenol Contents and Antiradical Power
2.2. Further Treatment at 180 °C of the Extracts
2.3. HPLC Analysis
3. Materials and Methods
3.1. Raw Materials and Chemicals
3.2. High-Pressure and Temperature Extraction (HPTE)
3.3. Total Polyphenols and Antiradical Activity Analysis
3.4. HPLC-DAD Analysis
3.5. Total Solids and Bulk Density
3.6. Cell Culture
3.7. Cell Viability Assay
3.8. [Ca2+]i Assay
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pour, F.H.; Makkawi, Y.T. A Review of Post-Consumption Food Waste Management and Its Potentials for Biofuel Production. Energy Rep. 2021, 7, 7759–7784. [Google Scholar] [CrossRef]
- Amicarelli, V.; Bux, C. Food Waste Measurement toward a Fair, Healthy and Environmental-Friendly Food System: A Critical Review. Br. Food J. 2020, 123, 2907–2935. [Google Scholar] [CrossRef]
- Conrad, Z.; Blackstone, N.T. Identifying the Links between Consumer Food Waste, Nutrition, and Environmental Sustainability: A Narrative Review. Nutr. Rev. 2021, 79, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Manzanares, P.; Ballesteros, I.; Negro, M.J.; González, A.; Oliva, J.M.; Ballesteros, M. Processing of Extracted Olive Oil Pomace Residue by Hydrothermal or Dilute Acid Pretreatment and Enzymatic Hydrolysis in a Biorefinery Context. Renew. Energy 2020, 145, 1235–1245. [Google Scholar] [CrossRef]
- Cecchi, L.; Khatib, M.; Bellumori, M.; Civa, V.; Domizio, P.; Innocenti, M.; Balli, D.; Mulinacci, N. Industrial Drying for Agrifood By-Products Re-Use: Cases Studies on Pomegranate Peel (Punica Granatum L.) and Stoned Olive Pomace (Pâtè, Olea Europaea L.). Food Chem. 2023, 403, 134338. [Google Scholar] [CrossRef]
- Souilem, S.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; Sayadi, S.; Galanakis, C.M. Olive Oil Production Sector: Environmental Effects and Sustainability Challenges. In Olive Mill Waste Recent Advances for Sustainable Managment, 1st ed.; Galanakis, C.M., Ed.; Elsevier: Oxford, UK, 2017; pp. 1–28. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, C.M.; Pérez García-Serrano, A.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Combining Ultrafiltration and Nanofiltration to Obtain a Concentrated Extract of Purified Polyphenols from Wet Olive Pomace. Membranes 2023, 13, 119. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, C.; Clericuzio, M.; Borghesi, B.; Cornara, L.; Ribulla, S.; Gosetti, F.; Marengo, E.; Burlando, B. Oleuropein-Enriched Olive Leaf Extract Affects Calcium Dynamics and Impairs Viability of Malignant Mesothelioma Cells. eCAM 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Radić, K.; Vrček, V.; Pavičić, I.; Čepo, D.V. Cellular Antioxidant Activity of Olive Pomace Extracts: Impact of Gastrointestinal Digestion and Cyclodextrin Encapsulation. Molecules 2020, 25, 5027. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea Europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef]
- Yazawa, K.; Kihara, T.; Shen, H.; Shimmyo, Y.; Niidome, T.; Sugimoto, H. Distinct Mechanisms Underlie Distinct Polyphenol-induced Neuroprotection. FEBS Lett. 2006, 580, 6623–6628. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarian, B.; Palmieri, D.; Casazza, A.A.; Palombo, D.; Perego, P. Antioxidant Activity and Biological Evaluation of Olive Pomace Extract. Nat. Prod. Res. 2012, 26, 2280–2290. [Google Scholar] [CrossRef] [PubMed]
- Ju, Z.Y.; Howard, L.R. Effects of Solvent and Temperature on Pressurized Liquid Extraction of Anthocyanins and Total Phenolics from Dried Red Grape Skin. J. Agric. Food Chem. 2003, 51, 5207–5213. [Google Scholar] [CrossRef]
- Paini, M.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Binello, A.; Cravotto, G. Influence of Ethanol/Water Ratio in Ultrasound and High-pressure/High-temperature Phenolic Compound Extraction from Agri-food Waste. Int. J. Food Sci. Technol. 2016, 51, 349–358. [Google Scholar] [CrossRef]
- Averna, M.; Casazza, A.A.; Martines, A.; Pedrazzi, M.; Franchi, A.; De Tullio, R.; Perego, P.; Melloni, E. Cell Protection from Ca 2+-Overloading by Bioactive Molecules Extracted from Olive Pomace. Nat. Prod. Res. 2019, 33, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Franchi, A.; Pedrazzi, M.; Casazza, A.A.; Millo, E.; Damonte, G.; Salis, A.; Liessi, N.; Onofri, F.; Marte, A.; Casagrande, S.; et al. A Bioactive Olive Pomace Extract Prevents the Death of Murine Cortical Neurons Triggered by NMDAR Over-Activation. Molecules 2020, 25, 4385. [Google Scholar] [CrossRef] [PubMed]
- Companys-Alemany, J.; Turcu, A.L.; Schneider, M.; Müller, C.E.; Vázquez, S.; Griñán-Ferré, C.; Pallàs, M. NMDA Receptor Antagonists Reduce Amyloid-β Deposition by Modulating Calpain-1 Signaling and Autophagy, Rescuing Cognitive Impairment in 5XFAD Mice. CMLS 2022, 79, 408. [Google Scholar] [CrossRef] [PubMed]
- Averna, M.; Pellegrini, M.; Cervetto, C.; Pedrazzi, M.; Bavestrello, M.; De Tullio, R.; Salamino, F.; Pontremoli, S.; Melloni, E. Physiological Roles of Calpain 1 Associated to Multiprotein NMDA Receptor Complex. PLoS ONE 2015, 10, e0139750. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Casazza, A.A.; Perego, P. Valorization of Olive Oil Solid Waste Using High Pressure-High Temperature Reactor. Food Chem. 2011, 128, 704–710. [Google Scholar] [CrossRef]
- Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated Solvent Extraction: A Technique for Sample Preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar] [CrossRef]
- Gavahian, M.; Mathad, G.N.; Pandiselvam, R.; Lin, J.; Sun, D.-W. Emerging Technologies to Obtain Pectin from Food Processing By-Products: A Strategy for Enhancing Resource Efficiency. Trends Food Sci. Technol. 2021, 115, 42–54. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M. Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery. Antioxidants 2020, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Belghith, Y.; Kallel, I.; Rosa, M.; Stathopoulos, P.; Skaltsounis, L.A.; Allouche, N.; Chemat, F.; Tomao, V. Intensification of Biophenols Extraction Yield from Olive Pomace Using Innovative Green Technologies. Biomolecules 2023, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- Cacace, J.E.; Mazza, M. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
- Putnik, P.; Barba, F.J.; Španić, I.; Zorić, Z.; Dragović-Uzelac, V.; Bursać Kovačević, D. Green Extraction Approach for the Recovery of Polyphenols from Croatian Olive Leaves (Olea Europea). Food Bioprod. 2017, 106, 19–28. [Google Scholar] [CrossRef]
- Jiang, Z.; Han, Z.; Wen, M.; Ho, C.T.; Wu, Y.; Wang, Y.; Xu, N.; Xie, Z.; Zhang, J.; Zhang, L.; et al. Comprehensive Comparison on the Chemical Metabolites and Taste Evaluation of Tea after Roasting Using Untargeted and Pseudotargeted Metabolomics. Food Sci. Hum. Wellness 2022, 11, 606–617. [Google Scholar] [CrossRef]
- Liao, J.J.; Latif, N.H.A.; Trache, D.; Brosse, N.; Hussin, M.H. Current Advancement on the Isolation, Characterization and Application of Lignin. Int. J. Biol. Macromol. 2020, 162, 985–1024. [Google Scholar] [CrossRef]
- Liu, J.; Sandahl, M.; Sjoberg, P.J.R.; Turner, C. Pressurised hot water extraction in continuous flow mode for thermolabile compounds: Extraction of polyphenols in red onions. Anal. Bioanal. Chem. 2014, 406, 441–445. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Renard, C.M.G.C. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Crit. Rev. Food Sci. Nutr. 2012, 52, 213–248. [Google Scholar] [CrossRef]
- He, J.; Huang, C.; Lai, C.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yong, Q. The effect of lignin degradation products on the generation of pseudo-lignin during dilute acid pretreatment. Ind. Crop Prod. 2020, 146, 112205. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Chung, H.-S.; Chung, S.-K.; Youn, K.-S. Effects Of Roasting Temperature And Time On Bulk Density, Soluble Solids, Browning Index And Phenolic Compounds Of Corn Kernels. J. Food Process Preserv. 2011, 35, 832–839. [Google Scholar] [CrossRef]
- Repetto, G.; Del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
Extraction Temperature (°C) | TPC (mgCAE/mLextract) | TPY (mgCAE/gOP) | ARP (mgTE/mLextract) | Extract Total Solids (mg/mL) | Residue Bulk Density (g/cm3) | |
---|---|---|---|---|---|---|
OP37 | 37 | 0.58 ± 0.01 | 5.80 ± 0.15 | 0.68 ± 0.05 | 5.48 ± 0.67 | 0.502 ± 0.018 |
OP120 | 120 | 2.25 ± 0.22 | 25.22 ± 2.17 | 5.39 ± 0.05 | 11.53 ± 0.23 | 0.388 ± 0.018 |
OP180 | 180 | 6.31 ± 0.09 | 63.13 ± 0.90 | 15.06 ± 0.06 | 30.88 ± 0.06 | 0.319 ± 0.013 |
OPR37 | 180 | 5.98 ± 0.40 | 59.78 ± 4.00 | 9.43 ± 0.35 | 30.53 ± 1.07 | 0.239 ± 0.012 |
OPR120 | 180 | 4.07 ± 0.13 | 40.74 ± 1.29 | 9.16 ± 0.07 | 30.22 ± 0.55 | 0.262 ± 0.029 |
OPR180 | 180 | 3.42 ± 0.08 | 45.20 ± 0.84 | 4.63 ± 0.29 | 12.55 ± 0.49 | 0.232 ± 0.002 |
TPC (mgCAE/mLextract) | ARP (mgTE/mLextract) | Extract Total Solids (mg/mL) | |
---|---|---|---|
OP37/180 | 0.92 ± 0.06 | 3.21 ± 0.36 | 12.55 ± 0.49 |
OP120/180 | 3.00 ± 0.05 | 5.99 ± 0.42 | 2.90 ± 0.40 |
OP180/180 | 5.48 ± 0.73 | 11.94 ± 0.32 | 8.15 ± 0.85 |
Total Area280nm | 4-Hydroxy Benzoic Acid (mg/L) | Caffeic Acid (mg/L) | Oleuropein (mg/L) | |
---|---|---|---|---|
OP37 | 70,514 | 1.3 | 16.8 | 53.7 |
OP120 | 312,870 | 16.8 | 32.1 | 1107.9 |
OP180 | 1,070,876 | 32.2 | 41.3 | 897.4 |
OPR37 | 915,217 | 28.2 | 48.8 | 1038.7 |
OPR120 | 814,442 | 20.4 | 34.6 | 877.8 |
OPR180 | 219,365 | 5.6 | 15.5 | 122.5 |
OP37/180 | 104,862 | 16.8 | 17.3 | 54.0 |
OP120/180 | 359,021 | 29.2 | 28.7 | 439.4 |
OP180/180 | 1,159,472 | 44.4 | 17.6 | 571.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casazza, A.A.; Capraro, M.; Pedrazzi, M.; D’Agostino, G.; Onofri, F.; Marte, A.; De Tullio, R.; Perego, P.; Averna, M. Temperature-Dependent Olive Pomace Extraction for Obtaining Bioactive Compounds Preventing the Death of Murine Cortical Neurons. Int. J. Mol. Sci. 2024, 25, 907. https://doi.org/10.3390/ijms25020907
Casazza AA, Capraro M, Pedrazzi M, D’Agostino G, Onofri F, Marte A, De Tullio R, Perego P, Averna M. Temperature-Dependent Olive Pomace Extraction for Obtaining Bioactive Compounds Preventing the Death of Murine Cortical Neurons. International Journal of Molecular Sciences. 2024; 25(2):907. https://doi.org/10.3390/ijms25020907
Chicago/Turabian StyleCasazza, Alessandro Alberto, Michela Capraro, Marco Pedrazzi, Giulia D’Agostino, Franco Onofri, Antonella Marte, Roberta De Tullio, Patrizia Perego, and Monica Averna. 2024. "Temperature-Dependent Olive Pomace Extraction for Obtaining Bioactive Compounds Preventing the Death of Murine Cortical Neurons" International Journal of Molecular Sciences 25, no. 2: 907. https://doi.org/10.3390/ijms25020907
APA StyleCasazza, A. A., Capraro, M., Pedrazzi, M., D’Agostino, G., Onofri, F., Marte, A., De Tullio, R., Perego, P., & Averna, M. (2024). Temperature-Dependent Olive Pomace Extraction for Obtaining Bioactive Compounds Preventing the Death of Murine Cortical Neurons. International Journal of Molecular Sciences, 25(2), 907. https://doi.org/10.3390/ijms25020907