Transcriptomic Evidence of a Link between Cell Wall Biogenesis, Pathogenesis, and Vigor in Walnut Root and Trunk Diseases
Abstract
:1. Introduction
2. Results
2.1. Differential Expression Analysis
2.2. Biological Process Analysis
2.3. Subcellular Localization Analysis
2.4. QTL Region Analysis
3. Discussion
3.1. Uninfected Transcriptional Repertoires May Predict Susceptibility
3.2. Low Differential Expression Signal in P. vulnus
3.3. J. regia May Be a Source of Vigor and Susceptibility
3.4. Defense Response and Hormones Involved
3.5. DEGs within the QTL Region. Is RNA Splicing Involved?
3.6. Potential Link between Cell Wall Biogenesis, Pathogenesis and Vigor
3.7. Cell Wall Biosynthetic Genes Are Known to Affect Pathogenesis and Plant Growth
4. Methods and Materials
4.1. Plant Material
4.2. Phenotypic Analysis
4.3. Sample Collection, RNA Isolation and Sequencing
4.4. Bioinformatics
4.5. Splicing Analysis
4.6. Differential Expression Analysis
4.7. Expression by Haplotype
4.8. Gene Ontology Analysis
4.9. Subcellular Localization Analysis
4.10. R Packages and Code Availability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDFA. California Agricultural Statistics Review 2020–2021. 2021. Available online: https://www.nass.usda.gov/Statistics_by_State/California/index.php (accessed on 24 July 2023).
- Grant, J.A.; Caprile, J.L.; Doll, D.A.; Murdock, J. Sample Costs to Establish an Orchard and Produce Walnuts, San Joaquin Valley—North (Cost Studies UC Davis). 2017. Available online: https://coststudyfiles.ucdavis.edu/uploads/cs_public/1d/05/1d05d59d-706e-4937-8e05-5563b7468e23/2017-walnutssjvn-final_draft.pdf (accessed on 24 July 2023).
- Olson, B.; Walton, J.; Laminen, B.; Sam, M. The Effect of Crown Gall on Tree Growth and Productivity; Walnut Research UC Davis: Davis, CA, USA, 2002. [Google Scholar]
- Epstein, L.; Kaur, S.; McKenna, J.R.; Grant, J.A.; Olson, W.; Reil, W. Crown Gall Can Spread Between Walnut Trees in Nurseries and Reduce Future Yields. Hilgardia 2008, 62, 111–115. [Google Scholar] [CrossRef]
- Mircetich, S.M.; Matheron, M.E. Phytophthora root and crown rot of walnut trees. Phytopathology 1983, 73, 1481–1488. [Google Scholar] [CrossRef]
- Matheron, M.E.; Mircetich, S.M. Pathogenicity and relative virulence of Phytophthora spp. from walnut and other plants to rootstocks of English walnut trees. Phytopathology 1985, 75, 977–981. [Google Scholar] [CrossRef]
- Browne, G.T.; Leslie, C.A.; Grant, J.A.; Bhat, R.G.; Schmidt, L.S.; Hackett, W.P.; Kluepfel, D.A.; Robinson, R.; McGranahan, G.H. Resistance to species of Phytophthora identified among clones of Juglans microcarpa × J. regia. HortScience 2015, 50, 1136–1142. [Google Scholar] [CrossRef]
- McKenry, M.V. Methyl Bromide Altenatives and Improvements—Year Five; Annual Walnut Research Reports; California Walnut Board: Folsom, CA, USA, 1997; pp. 399–403. [Google Scholar]
- Kluepfel, D.; McClean, J.; Leslie, C.A.; Aradhya, M.; Luo, M.; Brown, P.J.; Ramasamy, R.K.; Luo, M.C.; Haisey, D.; Jan, D.; et al. Putting Phenotypic and Genotypic Tools to Work for Improving Walnut Rootstocks; Walnut Research Reports 2019; California Walnut Board: Folsom, CA, USA, 2020; pp. 63–74. [Google Scholar]
- Preece, J.E.; McGranahan, G. Luther Burbank’s contributions to walnuts. HortScience 2015, 50, 201–204. [Google Scholar] [CrossRef]
- McGranahan, G.; Browne, G.; Leslie, C.; Hackett, W.; McKenna, M. Walnut Rootstock ‘RX1. US Plant Patent No. 20,649, 19 January 2010. [Google Scholar]
- Buzo, T.; Mckenna, J.; Kaku, S.; Anwar, S.A.; McKenry, M.V. VX211, A vigorous new walnut hybrid clone with nematode tolerance and a useful resistance mechanism. J. Nematol. 2009, 41, 211–216. [Google Scholar] [PubMed]
- Kluepfel, D.A.; Aradhaya, M.K.; Moersfelder, J.W.; McClean, A.E.; Hackett, W.P.; Dull, A.J. Evaluation of wild walnut Juglans spp. for resistance to crown gall disease. Phytopathology 2011, 101, S92. [Google Scholar]
- Escobar, M.A.; Civerolo, E.L.; Summerfelt, K.R.; Dandekar, A.M. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc. Nat. Acad. Sci. USA 2011, 98, 13437–13442. [Google Scholar] [CrossRef]
- Escobar, M.A.; Leslie, C.A.; McGranahan, G.H.; Dandekar, A.M. Silencing crown gall disease in walnut (Juglans regia L.). Plant Sci. 2002, 163, 591–597. [Google Scholar] [CrossRef]
- Walawage, S.L.; Britton, M.T.; Leslie, C.A.; Uratsu, S.L.; Li, Y.; Dandekar, A.M. Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC Genom. 2013, 14, 668. [Google Scholar] [CrossRef]
- Marrano, A.; Britton, M.; Zaini, P.A.; Zimin, A.V.; Workman, R.E.; Puiu, D.; Bianco, L.; Pierro, E.A.D.; Allen, B.J.; Chakraborty, S.; et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 2020, 9, giaa050. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, L.; You, F.M.; Rodriguez, J.C.; Deal, K.R.; Chen, L.; Li, J.; Chakraborty, S.; Balan, B.; Jiang, C.Z.; et al. Sequencing a Juglans regia × J. microcarpa hybrid yields high-quality genome assemblies of parental species. Hortic. Res. 2019, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, R.K.; Luo, M.C.; Leslie, C.A.; Velasco, D.; Ott, N.; McClean, A.; Dandekar, A.M.; Aradhya, M.; Brown, P.J.; Browne, G.T.; et al. Co-located quantitative trait loci mediate resistance to Agrobacterium tumefaciens, Phytophthora cinnamomi and P. pini in Juglans microcarpa × J. regia hybrids. Hortic. Res. 2021, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Hershberger, J.; Sriema, L.W.; Bipin, B.; Charles, A.L.; Patrick, J.B.; Gregory, T.B.; Daniel, A.K.; Andreas, M.W.; Abhaya, M.D. Transcriptome-wide association and prediction for carotenoids and tocochromanols in fresh sweet corn kernels. Plant Genome 2022, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zhao, H.; Lu, S.; Yu, L.; Zhang, G.; Zhang, Y.; Yang, Q.; Zhou, Y.; Wang, X.; Ma, W.; et al. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol. Plant 2021, 14, 470–487. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mostafa, S.; Zeng, W.; Jin, B. Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses. Int. J. Mol. Sci. 2021, 22, 8568. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef]
- Thomma, B.P.; Eggermont, K.; Tierens, K.F.; Broekaert, W.F. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 1999, 121, 1093–1102. [Google Scholar] [CrossRef]
- van Loon, L.C.; Geraats, B.P.J.; Linthorst, H.J.M. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 2006, 11, 184–191. [Google Scholar] [CrossRef]
- Lievens, L.; Pollier, J.; Goossens, A.; Beyaert, R.; Staal, J. Abscisic Acid as Pathogen Effector and Immune Regulator. Front. Plant Sci. 2017, 8, 587. [Google Scholar] [CrossRef]
- Kavi Kishor, P.B.; Tiozon, R.N., Jr.; Fernie, A.R.; Sreenivasulu, N. Abscisic acid and its role in the modulation of plant growth, development and yield stability. Trends Plant Sci. 2022, 27, 1283–1295. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- The Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gao, Y.; Zhang, L.; Zhou, Y. The plant cell wall: Biosynthesis, construction and functions. J. Integr. Plant Biol. 2021, 63, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Nühse, T.S. Cell wall integrity signaling and innate immunity in plants. Front. Plant Sci. 2012, 3, 280. [Google Scholar] [CrossRef] [PubMed]
- Lampugnani, E.R.; Khan, G.A.; Somssich, M.; Persson, S. Building a plant cell wall at a glance. J. Cell Sci. 2018, 131, jcs207373. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Ferraz, R.; Dupree, P.; Showalter, A.M.; Coimbra, S. Three Decades of Advances in Arabinogalactan-Protein Biosynthesis. Front. Plant Sci. 2020, 11, 610377. [Google Scholar] [CrossRef]
- Malinovsky, F.G.; Fangel, J.U.; Willats, W.G.T. The role of the cell wall in plant immunity. Front. Plant Sci. 2014, 5, 178. [Google Scholar] [CrossRef]
- Cosgrove, D. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 2005, 6, 850–861. [Google Scholar] [CrossRef]
- Maleki, S.S.; Mohammadi, K.; Ji, K. Characterization of Cellulose Synthesis in Plant Cells. Sci. World J. 2016, 2016, 8641373. [Google Scholar] [CrossRef]
- Menna, A.; Dora, S.; Sancho-Andrés, G.; Kashyap, A.; Meena, M.K.; Sklodowski, K.; Gasperini, D.; Coll, N.S.; Sánchez-Rodríguez, C. A primary cell wall cellulose-dependent defense mechanism against vascular pathogens revealed by time-resolved dual transcriptomics. BMC Biol. 2021, 19, 161. [Google Scholar] [CrossRef]
- Fagard, M.; Desnos, T.; Desprez, T.; Goubet, F.; Refregier, G.; Mouille, G.; McCann, M.; Rayon, C.; Vernhettes, S.; Höfte, H. Procuste1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of arabidopsis. Plant Cell 2000, 12, 2409–2423. [Google Scholar] [CrossRef]
- Hernandez-Blanco, C.; Feng, D.X.; Hu, J.; Sanchez-Vallet, A.; Deslandes, L.; Llorente, F.; Berrocal-Lobo, M.; Keller, H.; Barlet, X.; Sánchez-Rodríguez, C.; et al. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 2007, 19, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, C.; Bauer, S.; Hématy, K.; Saxe, F.; Ibáñez, A.B.; Vodermaier, V.; Konlechner, C.; Sampathkumar, A.; Rüggeberg, M.; Aichinger, E.; et al. CHITINASE-LIKE1/POM-POM1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. Plant Cell 2012, 24, 589–607. [Google Scholar] [CrossRef] [PubMed]
- Roudier, F.; Fernandez, A.G.; Fujita, M.; Himmelspach, R.; Borner, G.H.; Schindelman, G.; Song, S.; Baskin, T.I.; Dupree, P.; Wasteneys, G.O.; et al. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 2005, 17, 1749–1763. [Google Scholar] [CrossRef]
- Nicol, F.; His, I.; Jauneau, A.; Vernhettes, S.; Canut, H.; Höfte, H. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 1998, 17, 5563–5576. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhang, R.; Tao, Z.; Li, X.; Li, Y.; Huang, J.; Li, X.; Han, X.; Feng, S.; Zhang, G.; et al. Cellulose Synthase Mutants Distinctively Affect Cell Growth and Cell Wall Integrity for Plant Biomass Production in Arabidopsis. Plant Cell Physiol. 2018, 59, 1144–1157. [Google Scholar] [CrossRef]
- Gaspar, Y.M.; Nam, J.; Schultz, C.J.; Lee, L.Y.; Gilson, P.R.; Gelvin, S.B.; Bacic, A. Characterization of the arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of agrobacterium transformation. Plant Physiol. 2004, 135, 2162–2171. [Google Scholar] [CrossRef]
- Hromadová, D.; Soukup, A.; Tylová, E. Arabinogalactan Proteins in Plant Roots—An Update on Possible Functions. Front. Plant Sci. 2021, 12, 674010. [Google Scholar] [CrossRef]
- McGranahan, G.; Leslie, C.; Hackett, W.; Browne, G.; McKenna, J.; Buzo, T.; Kaku, S.; McKenry, M. Walnut Rootstock ‘VX211’. US Plant Patent No. 21,179, 3 August 2010. [Google Scholar]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.r-project.org/ (accessed on 24 July 2023).
- RStudio Team. RStudio: Integrated Development for R. 2022. Available online: https://posit.co/download/rstudio-desktop/ (accessed on 24 July 2023).
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019, 47, D419–D426. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef] [PubMed]
- Savojardo, C.; Martelli, P.L.; Fariselli, P.; Profiti, G.; Casadio, R. BUSCA: An integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 2018, 46, W459–W466. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.I.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Dowle, M.; Srinivasan, A. Data.Table: Extension of ‘Data.Frame’. 2022. Available online: https://cran.r-project.org/package=data.table (accessed on 24 July 2023).
- Fairbanks, M. Tidytable: Tidy Interface to Data.Table. 2022. Available online: https://github.com/markfairbanks/tidytable (accessed on 24 July 2023).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. 2022. Available online: https://cran.r-project.org/package=dplyr (accessed on 24 July 2023).
- Kassambara, A. ggpubr: ggplot2 Based Publication Ready Plots. 2022. Available online: https://rpkgs.datanovia.com/ggpubr/ (accessed on 24 July 2023).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D.; Posit, P. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. 2022. Available online: https://cran.r-project.org/package=ggplot2 (accessed on 24 July 2023).
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. 2022. Available online: https://strengejacke.github.io/sjPlot/ (accessed on 24 July 2023).
- Müller, K.; Wickham, H. Tibble: Simple Data Frames. 2022. Available online: https://cran.r-project.org/package=tibble (accessed on 24 July 2023).
- Wickham, H.; Girlich, M. Tidyr: Tidy Messy Data. 2022. Available online: https://cran.r-project.org/package=tidyr (accessed on 24 July 2023).
- Auguie, B. gridExtra: Miscellaneous Functions for “Grid” Graphics. 2017. Available online: https://cran.r-project.org/package=gridExtra (accessed on 24 July 2023).
- Saxe, H. OmicsAnalyst: Functions to Facilitate the Statistical Analysis of Omics Data. Available online: https://github.com/hsaxe/Omics-Analyst (accessed on 24 July 2023).
- Robinson, D.; Silge, J. tidytext: Text Mining Using dplyr, ggplot2 and Other Tidy Tools. Available online: https://github.com/juliasilge/tidytext (accessed on 24 July 2023).
- Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. 2022. Available online: https://cran.r-project.org/package=stringr (accessed on 24 July 2023).
- Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. 2022. Available online: https://yihui.org/knitr/ (accessed on 24 July 2023).
- Allaire, J.; Xie, Y.; Dervieux, C.; McPherson, J.; Luraschi, J.; Ushey, K.; Atkins, A.; Wickham, H.; Cheng, J.; Chang, W.; et al. rmarkdown: Dynamic Documents for R. 2022. Available online: https://www.r-project.org/ (accessed on 24 July 2023).
- Desprez, T.; Vernhettes, S.; Fagard, M.; Refrégier, G.; Desnos, T.; Aletti, E.; Py, N.; Pelletier, S.; Höfte, H. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol. 2002, 128, 482–490. [Google Scholar] [CrossRef]
Cor | PC | p-Value | Trait |
---|---|---|---|
−0.804 | PC2 | 2.94 × 10−2 | CG |
−0.639 | PC5 | 1.22 × 10−1 | PHY |
−0.698 | PC4 | 1.90 × 10−1 | RLN_3Y |
−0.867 | PC1 | 5.69 × 10−2 | length_3Y |
Statistic | CG_Avg | PHY_Avg | RLN_3Y | Height _3Y |
---|---|---|---|---|
Down | 3888 | 1061 | 13 | 3381 |
NotSig | 13,290 | 17,731 | 17,962 | 12,658 |
Up | 2021 | 407 | 7 | 1943 |
Gene ID | Protein Product | Trait | logFC | Start | End |
---|---|---|---|---|---|
121260033 | small nuclear ribonucleoprotein SmD3b | CG | −0.647 | 26,403,410 | 26,405,628 |
121260019 | dolichol-phosphate mannosyltransferase subunit 1 isoform X1 | CG | −0.346 | 26,421,312 | 26,423,874 |
121259960 | pre-rRNA-processing protein TSR1 homolog | CG | −0.295 | 26,449,293 | 26,457,407 |
121260033 | small nuclear ribonucleoprotein SmD3b | Height_3Y | −0.530 | 26,403,410 | 26,405,628 |
121259974 | probable acyl-activating enzyme 1, peroxisomal | Height_3Y | −0.512 | 26,477,730 | 26,481,055 |
121259960 | pre-rRNA-processing protein TSR1 homolog | Height_3Y | −0.256 | 26,449,293 | 26,457,407 |
Relationship | Cor | p-Value | |
---|---|---|---|
Height _3Y | PHY_Avg | 0.983 | 0.003 |
Height _3Y | CG_Avg | 0.936 | 0.019 |
PHY_Avg | CG_Avg | 0.705 | 0.077 |
RLN_3Y | PHY_Avg | 0.663 | 0.222 |
RLN_3Y | Height _3Y | 0.574 | 0.311 |
RLN_3Y | CG_Avg | 0.547 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saxe, H.J.; Walawage, S.L.; Balan, B.; Leslie, C.A.; Brown, P.J.; Browne, G.T.; Kluepfel, D.A.; Westphal, A.; Dandekar, A.M. Transcriptomic Evidence of a Link between Cell Wall Biogenesis, Pathogenesis, and Vigor in Walnut Root and Trunk Diseases. Int. J. Mol. Sci. 2024, 25, 931. https://doi.org/10.3390/ijms25020931
Saxe HJ, Walawage SL, Balan B, Leslie CA, Brown PJ, Browne GT, Kluepfel DA, Westphal A, Dandekar AM. Transcriptomic Evidence of a Link between Cell Wall Biogenesis, Pathogenesis, and Vigor in Walnut Root and Trunk Diseases. International Journal of Molecular Sciences. 2024; 25(2):931. https://doi.org/10.3390/ijms25020931
Chicago/Turabian StyleSaxe, Houston J., Sriema L. Walawage, Bipin Balan, Charles A. Leslie, Patrick J. Brown, Gregory T. Browne, Daniel A. Kluepfel, Andreas Westphal, and Abhaya M. Dandekar. 2024. "Transcriptomic Evidence of a Link between Cell Wall Biogenesis, Pathogenesis, and Vigor in Walnut Root and Trunk Diseases" International Journal of Molecular Sciences 25, no. 2: 931. https://doi.org/10.3390/ijms25020931
APA StyleSaxe, H. J., Walawage, S. L., Balan, B., Leslie, C. A., Brown, P. J., Browne, G. T., Kluepfel, D. A., Westphal, A., & Dandekar, A. M. (2024). Transcriptomic Evidence of a Link between Cell Wall Biogenesis, Pathogenesis, and Vigor in Walnut Root and Trunk Diseases. International Journal of Molecular Sciences, 25(2), 931. https://doi.org/10.3390/ijms25020931