Therapeutic Options for Crigler–Najjar Syndrome: A Scoping Review
Abstract
:1. Introduction
2. Methodology
3. Insights into Crigler–Najjar Syndrome (CNS)
3.1. Epidemiology
3.2. Genetics
3.3. Pathophysiology
3.4. Clinical Features
3.5. Quality of Life
3.6. Pregnancy and Fetal Risks
4. Diagnosis of Crigler–Najjar Syndrome (CNS)
5. Therapeutic Approach to Crigler–Najjar Syndrome (CNS)
5.1. Phototherapy
5.2. Phenobarbital
5.3. Alternative Treatments
6. Liver Transplantation
7. Liver Cell Transplantation
8. Gene Therapy
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kadakol, A.; Ghosh, S.S.; Sappal, B.S.; Sharma, G.; Chowdhury, J.R.; Chowdhury, N.R. Genetic lesions of bilirubin uri-dine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Crigler-Najjar and Gilbert syndromes: Correlation of genotype to phenotype. Hum Mutat. 2000, 16, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Crigler, J.F.J.; Najjar, V.A. Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics 1952, 10, 169–180. [Google Scholar] [PubMed]
- Ebrahimi, A.; Rahim, F. Crigler-Najjar Syndrome: Current Perspectives and the Application of Clinical Genetics. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Strauss, K.A.; Ahlfors, C.E.; Soltys, K.; Mazareigos, G.V.; Young, M.; Bowser, L.E.; Fox, M.D.; Squires, J.E.; McKiernan, P.; Brigatti, K.W.; et al. Crigler-Najjar Syndrome Type 1: Pathophysiology, Natural History, and Therapeutic Frontier. Hepatology 2020, 71, 1923–1939. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, B.; Hu, G.; Yu, J.; Liu, Z. Crigler-Najjar syndrome type II in a Chinese boy resulting from three mutations in the bilirubin uridine 5′-diphosphate-glucuronosyltransferase (UGT1A1) gene and a family genetic analysis. BMC Pediatr. 2014, 14, 267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fretzayas, A.; Moustaki, M.; Liapi, O.; Karpathios, T. Eponym. Eur. J. Pediatr. 2011, 171, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-L.; Li, F.; He, Z.-X.; Jiang, H.-Y.; Ai, R.; Chen, X.-X.; Huang, K. Analysis of bilirubin UDP-glucuronosyltransferase gene mutations in an unusual Crigler-Najjar syndrome patient. Mol. Med. Rep. 2012, 6, 667–669. [Google Scholar] [CrossRef] [PubMed]
- Bosma, P.; Seppen, J.; Goldhoorn, B.; Bakker, C.; Elferink, R.O.; Chowdhury, J.; Chowdhury, N.; Jansen, P. Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man. J. Biol. Chem. 1994, 269, 17960–17964. [Google Scholar] [CrossRef] [PubMed]
- Valmiki, S.; Mandapati, K.K.; Miriyala, L.K.V.; Kelgeri, C.C.; Rela, M.; Shanmugam, N.P.; Vegulada, D.R. A case report of a novel 22 bp duplication within exon 1 of the UGT1A1 in a Sudanese infant with Crigler-Najjar syndrome type I. BMC Gastroenterol. 2020, 20, 62. [Google Scholar] [CrossRef]
- Sun, L.; Li, M.; Zhang, L.; Teng, X.; Chen, X.; Zhou, X.; Ma, Z.; Qi, L.; Wang, P. Differences in UGT1A1 gene mutations and pathological liver changes between Chinese patients with Gilbert syndrome and Crigler-Najjar syndrome type II. Medicine 2017, 96, e8620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, L.; Deng, G.; Tang, Y.; Mao, Q. Spectrum of UGT1A1 Variations in Chinese Patients with Crigler-Najjar Syndrome Type II. PLoS ONE 2015, 10, e0126263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moyer, A.M.; Skierka, J.M.; Kotzer, K.E.; Kluge, M.L.; Black, J.L.; Baudhuin, L.M. Clinical UGT1A1 Genetic Analysis in Pediatric Patients: Experience of a Reference Laboratory. Mol. Diagn. Ther. 2017, 21, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Berk, P.D.; Howe, R.B.; Bloomer, J.R.; Berlin, N.I. Studies of bilirubin kinetics in normal adults. J. Clin. Investig. 1969, 48, 2176–2190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arias, I.M. Chronic Unconjugated Hyperbilirubinemia Without Overt Signs of Hemolysis in Adolescents And Adults. J. Clin. Investig. 1962, 41, 2233–2245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gollan, J.; Huang, S.; Billing, B.; Sherlock, S. Prolonged Survival in Three Brothers with Severe Type 2 Crigler-Najjar Syndrome. Gastroenterology 1975, 68, 1543–1555. [Google Scholar] [CrossRef] [PubMed]
- Iskander, I.; Gamaleldin, R.; El Houchi, S.; El Shenawy, A.; Seoud, I.; El Gharbawi, N.; Abou-Youssef, H.; Aravkin, A.; Wennberg, R.P. Serum Bilirubin and Bilirubin/Albumin Ratio as Predictors of Bilirubin Encephalopathy. Pediatrics 2014, 134, e1330–e1339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahlfors, E.C.; Wennberg, R.P.; Ostrow, J.D.; Tiribelli, C. Unbound (Free) Bilirubin: Improving the Paradigm for Evaluating Neonatal Jaundice. Clin. Chem. 2009, 55, 1288–1299. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.; Le Pichon, J.B.; Riordan, S.; Watchkoe, J. The Neurological Sequelae of Neonatal Hyperbilirubinemia: Definitions, Diagnosis and Treatment of the Kernicterus Spectrum Disorders (KSDs). Curr. Pediatr. Rev. 2017, 13, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, E.; Ranganathan, S.; McKiernan, P.; Squires, R.H.; Strauss, K.; Soltys, K.; Mazariegos, G.; Squires, J.E. Hepatic Parenchymal Injury in Crigler-Najjar Type I. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Bortolussi, G.; Muro, A.F. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opin. Orphan Drugs 2018, 6, 425–439. [Google Scholar] [CrossRef]
- Stebelova, K.; Kosnacova, J.; Zeman, M. Intense blue light therapy during the night-time does not suppress the rhythmic melatonin biosynthesis in a young boy. Endocr. Regul. 2017, 51, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, A.; Lawlor, M.W.; Mazariegos, G.V.; McKiernan, P.; Squires, J.E.; Strauss, K.A.; Gupta, D.; James, E.; Prasad, S. Disease burden of Crigler–Najjar syndrome: Systematic review and future perspectives. J. Gastroenterol. Hepatol. 2020, 35, 530–543. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.H.; Sinaasappel, M.; Lotgering, F.K.; Langendonk, J.G. Recommendations for pregnancies in patients with crigler-najjar syndrome. JIMD Rep. 2013, 7, 59–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Passuello, V.; Puhl, A.; Wirth, S.; Steiner, E.; Skala, C.; Koelbl, H.; Kohlschmidt, N. Pregnancy Outcome in Maternal Crigler-Najjar Syndrome Type II: A Case Report and Systematic Review of the Literature. Fetal Diagn. Ther. 2009, 26, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Katagir, C.; Ikeno, S.; Takahashi, H.; Nagata, N.; Terakawa, N. Phenobarbital Following Phototherapy for Crigler-Najjar Syndrome Type II with Good Fetal Outcome: A Case Report. J. Obstet. Gynaecol. Res. 2001, 27, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Hannam, S.; Moriaty, P.; O’reilly, H.; Craig, J.S.; Heneghan, M.A.; Baker, A.; Dhawan, A. Normal neurological outcome in two infants treated with exchange transfusions born to mothers with Crigler-Najjar Type 1 disorder. Eur. J. Pediatr. 2009, 168, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.J.; Moghrabi, N.; Monaghan, G.; Cassidy, A.; Boxer, M.; Hume, R.; Burchell, B. Genetic defects of the UDP-glucuronosyltransferase-1 (UGT1) gene that cause familial non-haemolytic unconjugated hyperbilirubinaemias. Clin. Chim. Acta 1997, 266, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; McKiernan, P.J.; Beath, S.V.; Preece, M.A.; Baty, D.; Kelly, D.A.; Burchell, B.; Clarke, D.J. Bile bilirubin pigment analysis in disorders of bilirubin metabolism in early infancy. Arch. Dis. Child. 2001, 85, 38–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cremer, R.; Perryman, P.; Richards, D. Influence of Light on the Hyperbilirubinæmia of Infants. Lancet 1958, 271, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Onishi, S. Kinetic study of the photochemical changes of (ZZ)-bilirubin IX α bound to human serum albumin. Demonstration of (EZ)-bilirubin IX α as an intermediate in photochemical changes from (ZZ)-bilirubin IX α to (EZ)-cyclobilirubin IX α. Biochem. J. 1985, 226, 251–258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ostrow, J.D. Therapeutic amelioration of jaundice: Old and new strategies. Hepatology 1988, 8, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Aronson, S.; Khan, A.S.; Bosma, P.J. A novel UGT1A1 gene mutation causing severe unconjugated hyperbilirubinemia: A case report. BMC Pediatr. 2019, 19, 173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gailite, L.; Rots, D.; Pukite, I.; Cernevska, G.; Kreile, M. Case report: Multiple UGT1A1 gene variants in a patient with Crigler-Najjar syndrome. BMC Pediatr. 2018, 18, 317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ihara, H.; Shino, Y.; Hashizume, N.; Shimizu, N.; Aoki, T.; Yoshida, M. Removal of protein-bound and unbound unconjugated bilirubin by perfusion of plasma through an anion-exchange resin in a case of Crigler-Najjar syndrome type I. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2003, 40, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Schwegler, U.; May, B.; Müller, K.M. Crigler-Najjar-Syndrom Typ II bei einem 17 jährigen Mädchen [Crigler-Najjar syndrome type II in a 17-year-old girl]. Z Gastroenterol. 1993, 31, 83–84. (In German) [Google Scholar] [PubMed]
- Yilmaz, S.; Dursun, M.; Canoruç, F.; Kidir, V.; Beştaş, R. Fenofibrate treatment in two adults with Crigler-Najjar syndrome type II. Turk. J. Gastroenterol. Off. J. Turk. Soc. Gastroenterol. 2006, 17, 62–65. [Google Scholar] [PubMed]
- Hafkamp, A.M.; Nelisse-Haak, R.; Sinaasappel, M.; Elferink, R.P.J.O.; Verkade, H.J. Orlistat Treatment of Unconjugated Hyperbilirubinemia in Crigler-Najjar Disease: A Randomized Controlled Trial. Pediatr. Res. 2007, 62, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Suresh, G.; Martin, C.L.; Soll, R. Metalloporphyrins for treatment of unconjugated hyperbilirubinemia in neonates. Cochrane Database Syst. Rev. 2003. 2, CD004207. [CrossRef]
- Aono, S.; Yamada, Y.; Keino, H.; Hanada, N.; Nakagawa, T.; Sasaoka, Y.; Yazawa, T.; Sato, H.; Koiwai, O. Identification of Defect in the Genes for Bilirubin UDP-Glucuronosyltransferase in a Patient with Crigler-Najjar Syndrome Type II. Biochem. Biophys. Res. Commun. 1993, 197, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- van der Veere, C.N.; Sinaasappel, M.; McDonagh, A.F.; Rosenthal, P.; Labrune, P.; Odiévre, M.; Fevery, J.; Otte, J.; McClean, P.; Bürk, G.; et al. Current therapy for Crigler-Najjar syndrome type 1: Report of a world registry. Hepatology 1996, 24, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Fagiuoli, S.; Daina, E.; D’antiga, L.; Colledan, M.; Remuzzi, G. Monogenic diseases that can be cured by liver transplantation. J. Hepatol. 2013, 59, 595–612. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, G.; Varotto, S.; Strom, S.C.; Guariso, G.; Franchin, E.; Miotto, D.; Caenazzo, L.; Basso, S.; Carraro, P.; Valente, M.L.; et al. Isolated Hepatocyte Transplantation for Crigler-Najjar Syndrome Type 1. Cell Transplant. 2005, 14, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Akdur, A.; Kirnap, M.; Soy, E.H.A.; Ozcay, F.; Moray, G.; Arslan, G.; Haberal, M. Unusual Indications for a Liver Transplant: A Single-Center Experience. Exp. Clin. Transplant. 2017, 15, 128–132. [Google Scholar] [PubMed]
- Özçay, F.; Alehan, F.; Sevmiş, S.; Karakayali, H.; Moray, G.; Torgay, A.; Arslan, G.; Haberal, M. Living Related Liver Transplantation in Crigler-Najjar Syndrome Type 1. Transplant. Proc. 2009, 41, 2875–2877. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.-H.; Shang, D.-S.; Jiang, J.-C.; Zhang, W.; Zhang, M.; Wang, W.-L.; Lou, H.-Y.; Zheng, S.-S. Liver transplantation in Crigler-Najjar syndrome type I disease. Hepatobiliary Pancreat. Dis. Int. 2012, 11, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Schauer, R.; Stangl, M.; Lang, T.; Zimmermann, A.; Chouker, A.; Gerbes, A.L.; Schildberg, F.W.; Rau, H.G. Treatment of Crigler-Najjar type 1 disease: Relevance of early liver transplantation. J. Pediatr. Surg. 2003, 38, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Al Shurafa, H.; Wali, S.; Chehab, M.S.; Al Shahed, M.; Jawdat, M.; Djurberg, H.; Bassas, A. Living-related liver transplantation for Crigler–Najjar syndrome in Saudi Arabia. Clin. Transplant. 2002, 16, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Schauer, R.; Lang, T.; Zimmermann, A.; Stangl, M.; Da Silva, L.; Schildberg, F.W.; Rau, H.G. Successful Liver Transplantation of Two Brothers with Crigler-Najjar Syndrome Type 1 Using a Single Cadaveric Organ. Transplantation 2002, 73, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Govil, S.; Shanmugam, N.P.; Reddy, M.S.; Narasimhan, G.; Rela, M. A metabolic chimera: Two defective genotypes make a normal phenotype. Liver Transplant. 2015, 21, 1453–1454. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Song, Z.; Meng, X.; Sun, C.; Wang, K.; Yang, Y.; Qin, H.; Han, C.; Zhang, F.; Zheng, W.; et al. Successful living donor liver transplantation plus domino-auxiliary partial orthotopic liver transplantation for pediatric patients with metabolic disorders. Pediatr. Surg. Int. 2020, 36, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Matas, A.J.; Sutherland, D.E.; Steffes, M.W.; Mauer, S.M.; Sowe, A.; Simmons, R.L.; Najarian, J.S. Hepatocellular transplantation for metabolic deficiencies: Decrease of plasms bilirubin in Gunn rats. Science 1976, 192, 892–894. [Google Scholar] [CrossRef] [PubMed]
- Asonuma, K.; Gilbert, J.C.; Stein, J.E.; Takeda, T.; Vacanti, J.P. Quantitation of transplanted hepatic mass necessary to cure the gunn rat model of hyperbilirubinemia. J. Pediatr. Surg. 1992, 27, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Muraca, M.; Ferraresso, C.; Vilei, M.T.; Granato, A.; Quarta, M.; Cozzi, E.; Rugge, M.; Pauwelyn, K.A.; Caruso, M.; Avital, I.; et al. Liver repopulation with bone marrow derived cells improves the metabolic disorder in the Gunn rat. Gut 2007, 56, 1725–1735. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strom, S.C.; Fisher, R.A.; Thompson, M.T.; Sanyal, A.J.; Cole, P.E.; Ham, J.M.; Posner, M.P. Hepatocyte Transplantation as a Bridge to Orthotopic Liver Transplantation in Terminal Liver Failure. Transplantation 1997, 63, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Fox, I.J.; Chowdhury, J.R.; Kaufman, S.S.; Goertzen, T.C.; Chowdhury, N.R.; Warkentin, P.I.; Dorko, K.; Sauter, B.V.; Strom, S.C. Treatment of the Crigler–Najjar Syndrome Type I with Hepatocyte Transplantation. N. Engl. J. Med. 1998, 338, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- Quaglia, A.; Lehec, S.C.; Hughes, R.D.; Mitry, R.R.; Knisely, A.S.; Devereaux, S.; Richards, J.; Rela, M.; Heaton, N.D.; Portmann, B.C.; et al. Liver after Hepatocyte Transplantation for Liver-Based Metabolic Disorders in Children. Cell Transplant. 2008, 17, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, A.; Mitry, R.R.; Hughes, R.D. Hepatocyte transplantation for liver-based metabolic disorders. J. Inherit. Metab. Dis. 2006, 29, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Ribes-Koninckx, C.; Ibars, E.P.; Agrasot, M.C.; Centelles, A.B.; Miquel, B.P.; Carbó, J.J.V.; Aliaga, E.D.; Pallardó, J.M.; Gómez-Lechón, M.J.; Castell, J.V. Clinical Outcome of Hepatocyte Transplantation in Four Pediatric Patients with Inherited Metabolic Diseases. Cell Transplant. 2012, 21, 2267–2282. [Google Scholar] [CrossRef] [PubMed]
- Jorns, C.; Nowak, G.; Nemeth, A.; Zemack, H.; Mörk, L.-M.; Johansson, H.; Gramignoli, R.; Watanabe, M.; Karadagi, A.; Alheim, M.; et al. De Novo Donor-Specific HLA Antibody Formation in Two Patients with Crigler-Najjar Syndrome Type I Following Human Hepatocyte Transplantation with Partial Hepatectomy Preconditioning. Am. J. Transplant. 2016, 16, 1021–1030. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allen, K.; Buck, N.; Williamson, R. Stem cells for the treatment of liver disease. Transpl. Immunol. 2005, 15, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Stéphenne, X.; Vosters, O.; Najimi, M.; Beuneu, C.; Ngoc, D.K.; Wijns, W.; Goldman, M.; Sokal, E.M. Tissue factor-dependent procoagulant activity of isolated human hepatocytes: Relevance to liver cell transplantation. Liver Transplant. 2007, 13, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Parveen, N.; Mahaboob, V.; Rajendraprasad, A.; Ravindraprakash, H.; Venkateswarlu, J.; Rao, P.; Pande, G.; Narusu, M.L.; Khaja, M.; et al. Treatment of Crigler-Najjar Syndrome Type 1 by Hepatic Progenitor Cell Transplantation: A Simple Procedure for Management of Hyperbilirubinemia. Transplant. Proc. 2008, 40, 1148–1150. [Google Scholar] [CrossRef] [PubMed]
- Lysy, P.A.; Najimi, M.; Stéphenne, X.; Bourgois, A.; Smets, F.; Sokal, E.M. Liver cell transplantation for Crigler-Najjar syndrome type I: Update and perspectives. World J. Gastroenterol. 2008, 14, 3464–3470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seppen, J.; Bakker, C.; de Jong, B.; Kunne, C.; Oever, K.v.D.; Vandenberghe, K.; de Waart, R.; Twisk, J.; Bosma, P. Adeno-associated Virus Vector Serotypes Mediate Sustained Correction of Bilirubin UDP Glucuronosyltransferase Deficiency in Rats. Mol. Ther. 2006, 13, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Junge, N.; Mingozzi, F.; Ott, M.; Baumann, U. Adeno-Associated Virus Vector–Based Gene Therapy for Monogenetic Metabolic Diseases of the Liver. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Collaud, F.; Bortolussi, G.; Guianvarc’h, L.; Aronson, S.J.; Bordet, T.; Veron, P.; Charles, S.; Vidal, P.; Sola, M.S.; Rundwasser, S.; et al. Preclinical Development of an AAV8-hUGT1A1 Vector for the Treatment of Crigler-Najjar Syndrome. Mol. Ther.Methods Clin. Dev. 2018, 12, 157–174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’antiga, L.; Beuers, U.; Ronzitti, G.; Brunetti-Pierri, N.; Baumann, U.; Di Giorgio, A.; Aronson, S.; Hubert, A.; Romano, R.; Junge, N.; et al. Gene Therapy in Patients with the Crigler–Najjar Syndrome. N. Engl. J. Med. 2023, 389, 620–631. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Birraux, J.; Wildhaber, B.; Myara, A.; Trivin, F.; Le Coultre, C.; Trono, D.; Chardot, C. Ex Vivo Lentivirus Transduction and Immediate Transplantation of Uncultured Hepatocytes for Treating Hyperbilirubinemic Gunn Rat. Transplantation 2006, 82, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Birraux, J.; Menzel, O.; Wildhaber, B.; Jond, C.; Nguyen, T.H.; Chardot, C. A Step Toward Liver Gene Therapy: Efficient Correction of the Genetic Defect of Hepatocytes Isolated from a Patient with Crigler-Najjar Syndrome Type 1 With Lentiviral Vectors. Transplantation 2009, 87, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
Treatment | Indication | Duration/Dose | Efficacy |
---|---|---|---|
Phototherapy | Soon after birth | 12.4 ± 0.8 h | Temporary, most patients need daily cycles |
Phenobarbital | First-line therapy in CNS2 patients | 2 mg/kg/dose two–three times per day | Good response if taken lifelong |
Orlistat | CNS1, CNS2 | 33–66 mg/m2 during meals for 4–6 weeks | Patients with lower dietary fat intake and low body mass index |
Mesoporphyrin | CNS1, CNS2 | Mesoporphyrin in a single dose of six micromoles per kilogram body weight, given intramuscularly | Lower plasma bilirubin level, lower frequency of severe hyperbilirubinemia, decreased need for phototherapy, shorter duration of hospitalization |
Article | Study Population | Diagnosis | Treatment: First and Second Line | Outcome |
---|---|---|---|---|
Ihara et al. [34] | 19-year-old Japanese man with CNS1 | CNS1 diagnosed on liver biopsy (total absence of enzymatic activity) and at the age of 15 y sequencing UGT gene | -Phototherapy (>10 h every night) from a few days of life to 16 y. -Plasmapheresis performed with an anion-exchange resin (bilirubin-adsorbent column) from 16 y, for 6 months, two times/week (duration: 3 h). | Plasma perfusion could barely remove plasma the bilirubin synthesized each day. At 17 y, the patient received liver transplantation. |
Yilmaz et al. [36] | 15-year-old male | CNS2 | -Phenobarbital (2 mg/kg/day) for 3 days p.o. produced 27% decrease in indirect bilirubin level. -Fenofibrate (250 mg/day os) for 1 month. | At the end of treatment with fenofibrate serum, indirect bilirubin was found to be unchanged. |
Hafkamp et al. [37] | 16 patients (pediatric > 7 years old and adult) | 7 CNS1, 9 CNS2 | Adults: 60–120 mg during meals; children: 33–66 mg/m2 during meals. | The decrease was clinically relevant (more than 10% decrease) in six patients (40%). |
Shi et al. [32] | 14-year-old female patient from Bangladesh | CNS2 | Heterozygous for two different UGT1A1 mutations: (1) Three nucleotide insertion in the HNF-1α binding site. (2) Two nucleotide deletion in exon 1 of UGT1A1 gene (novel) results in a premature stop codon. | Not responsive to treatment with phenobarbital. |
Strauss et al. [4] | 20 patients diagnosed by sequencing the UGTA1A gene 19 patients had CNS1 phenotype (8 moths to 21 yo) | Seventeen patients (Amish or Mennonite descent) homozygous for a 222C→A mutation in exon 1 of UGT1A1 that resulted in a stop codon (Y74X) and complete absence of transferase activity | Continuous high-intensity phototherapy. Four patients treated with orthotopic liver transplantation. | A systematic approach to neonatal screening, light dosing, and kernicterus prevention can assure that children and adults proceed to transplantation in good neurological health. |
Liu et al. [7] | 4-month-old Chinese boy | Compound heterozygous mutations: a missense mutation c.211G>A (p.G71R) in the first exon and a synonymous mutation c.1470C>T (p.D490D) in the fifth exon | Phototherapy (66 h) for 7 days and phenobarbital (5 mg/kg/day) for 3 days. | Followed until 4 months of age, no more treatment needed. |
Gailite et al. [33] | 17-year-old Caucasian male | Four different variants in the UGT1A1 gene: g.3664A > C; g.4963_4964TA; g.5884G > T; g.11895_11898del. | Phenobarbital | The rs3755319 variant explains neonatal hyperbilirubinemia, the A(TA)7TAA variant explains hyperbilirubinemia, and two other variants are reported in a compound heterozygous state in patients with CNS2. |
Suresh et al. [38] | 84 cases 86 controls (from three single center studies) | Neonatal unconjugated hyperbilirubinemia | Mesporphyrin in a single dose of six micromoles per kilogram body weight, given intramuscularly. | Lower plasma bilirubin level, lower frequency of severe hyperbilirubinemia, decreased need for phototherapy, shorter duration of hospitalization. |
Reference Study | Age/Weight at LCT | Hepatocytes Transplanted | Decrease in Bilirubin | Final Outcome |
---|---|---|---|---|
Fox et al. [55] | 10 y/37 kg | 7.5 × 109 (0.2 × 109/kg) | 50% | LT after 4 years |
Darwish et al. [57] | 8 y/NA | 7.5 × 109 (NA) | 40% | LT after 20 months |
Allen et al. [60] | 7 y/23 kg | 1.4 × 109 (0.06 × 109/kg) | 40% | LT after 11 months |
Ambrosino et al. [42] | 9 y/30 kg | 7.5 × 109 (0.25 × 109/kg) | 50% | LT after 5 months |
Dhawan et al. [22] | 18 m/NA | 4.3 × 109 (NA) | 50% | LT after 8 months |
3 y/7 kg | 2.1 × 109 (0.29 × 109/kg) | 30% | LT not performed | |
Stéphenne et al. [61] | 9 m/NA | NA (033 × 109/kg) | NA | NA |
Khan et al. [62] | 2 y/NA | 0.015 × 109 (NA) | NA | NA |
Quaglia et al. [56] | 1 y/NA | 4.34 × 109 (NA) | NA | LT after 6 months |
Lysy et al. [63] | 9 y/38 kg | 6 × 109 (0.16 × 109/kg) | 35% | LT after 6 months |
1 y/7.4 kg | 2.6 × 109 (0.35 × 109/kg) | 65% | LT after 4 months | |
Ribes-Koninckx et al. [58] | 7 m/NA | 6.7 × 109 (NA) | NA | LT not performed |
Jorns et al. [59] | 13 y | 11.2 × 109 | 50% | LT after 19 months |
11 y | 5.3 × 109 | 50% | LT after 31 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sambati, V.; Laudisio, S.; Motta, M.; Esposito, S. Therapeutic Options for Crigler–Najjar Syndrome: A Scoping Review. Int. J. Mol. Sci. 2024, 25, 11006. https://doi.org/10.3390/ijms252011006
Sambati V, Laudisio S, Motta M, Esposito S. Therapeutic Options for Crigler–Najjar Syndrome: A Scoping Review. International Journal of Molecular Sciences. 2024; 25(20):11006. https://doi.org/10.3390/ijms252011006
Chicago/Turabian StyleSambati, Vanessa, Serena Laudisio, Matteo Motta, and Susanna Esposito. 2024. "Therapeutic Options for Crigler–Najjar Syndrome: A Scoping Review" International Journal of Molecular Sciences 25, no. 20: 11006. https://doi.org/10.3390/ijms252011006
APA StyleSambati, V., Laudisio, S., Motta, M., & Esposito, S. (2024). Therapeutic Options for Crigler–Najjar Syndrome: A Scoping Review. International Journal of Molecular Sciences, 25(20), 11006. https://doi.org/10.3390/ijms252011006