Replacing Hydrolyzed Soybean Meal with Recombinant β-Glucosidase Enhances Resistance to Clostridium perfringens in Broilers Through Immune Modulation
Abstract
:1. Introduction
2. Results
2.1. Content of Soybean Isoflavones in Enzymatic Soybean Meal
2.2. The Effect of Enzymatic Soybean Meal on Broiler Growth Performance
2.3. Enzymatic SM Ameliorates the Intestinal Epithelial Barrier Function of Broilers Infected with Clostridium perfringens
2.4. Enzymatic SM Mitigates Intestinal Epithelial Homeostasis in Jejunum of Broilers Infected with Clostridium perfringens
2.5. Enzymatic SM Maintains Immune Homeostasis in Jejunum of Broilers Infected with Clostridium perfringens
3. Discussion
4. Materials and Methods
4.1. Preparation of Enzymatic Soybean Meal Hydrolyzed by β-Glucosidase (EC 3.2.1.21)
4.2. Experimental Design
4.3. Cultivation of Clostridium perfringens
4.4. HE Staining of Jejunum
4.5. RNA Extraction and Relative Quantitative Real-Time PCR
4.6. Separation of Jejunal LPLs
4.7. Flow Cytometry
4.8. Statistics and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jheng, H.F.; Hayashi, K.; Matsumura, Y.; Kawada, T.; Seno, S.; Matsuda, H.; Inoue, K.; Nomura, W.; Takahashi, H.; Goto, T. Anti-inflammatory and antioxidative properties of isoflavones provide renal protective effects distinct from those of dietary soy proteins against diabetic nephropathy. Mol. Nutr. Food Res. 2020, 64, e2000015. [Google Scholar] [CrossRef]
- Nazari-Khanamiri, F.; Ghasemnejad-Berenji, M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview. J. Food Biochem. 2021, 45, e13972. [Google Scholar] [CrossRef]
- Yang, Y.; Nie, W.; Yuan, J.; Zhang, B.; Wang, Z.; Wu, Z.; Guo, Y. Genistein activates endothelial nitric oxide synthase in broiler pulmonary arterial endothelial cells by an Akt-dependent mechanism. Exp. Mol. Med. 2010, 42, 768–776. [Google Scholar] [CrossRef]
- Piroozian, F.; Varkiyani, H.B.; Samiei, A.; Najar, A.B.; Afsa, M.; Malekzadeh, K. The anti-cancer impact of genistein against acute lymphoblastic leukaemia by controlling DICER and AGO2 involved in cytoplasmic microRNAs biogenesis-a possible new clue to mode of action of genistein. J. Herb. Med. 2023, 41, 100731. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, R.; Fan, H.; Zhang, Y. Genistein improves polycystic ovary syndrome by regulating oxidative stress and inflammation via targeting serum amyloid A1. J. Biol. Regul. Homeost. Agents 2023, 37, 3705–3714. [Google Scholar] [CrossRef]
- Chae, H.S.; Xu, R.; Won, J.Y.; Chin, Y.W.; Yim, H. Molecular targets of genistein and its related flavonoids to exert anticancer effects. Int. J. Mol. Sci. 2019, 20, 2420. [Google Scholar] [CrossRef]
- Bernatoniene, J.; Kazlauskaite, J.A.; Kopustinskiene, D.M. Pleiotropic effects of isoflavones in inflammation and chronic degenerative diseases. Int. J. Mol. Sci. 2021, 22, 5656. [Google Scholar] [CrossRef]
- Chen, Y.; Le, T.H.; Du, Q.; Zhao, Z.; Liu, Y.; Zou, J.; Hua, W.; Liu, C.; Zhu, Y. Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling. Int. Immunopharmacol. 2019, 71, 144–154. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, S.; Wu, Y.; Lu, T.; Liu, J.; Cao, X.; Liu, S.; Yan, L.; Shi, X.; Liu, G.; et al. Genistein-derived ros-responsive nanoparticles relieve colitis by regulating mucosal homeostasis. ACS Appl. Mater. Interfaces 2021, 13, 40249–40266. [Google Scholar] [CrossRef]
- Yang, R.; Jia, Q.; Mehmood, S.; Ma, S.; Liu, X. Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice. Eur. J. Nutr. 2021, 60, 2155–2168. [Google Scholar] [CrossRef]
- Andrade, F.O.; Liu, F.; Zhang, X.; Rosim, M.P.; Dani, C.; Cruz, I.; Wang, T.; Helferich, W.; Li, R.W.; Hilakivi-Clarke, L. Genistein reduces the risk of local mammary cancer recurrence and ameliorates alterations in the gut microbiota in the offspring of obese dams. Nutrients 2021, 13, 201. [Google Scholar] [CrossRef]
- Larkin, T.; Price, W.E.; Astheimer, L. The key importance of soy isoflavone bioavailability to understanding health benefits. Crit. Rev. Food. Sci. Nutr. 2008, 48, 538–552. [Google Scholar] [CrossRef]
- Sorensen, A.; Lubeck, M.; Lubeck, P.S.; Ahring, B.K. Fungal Beta-glucosidases: A bottleneck in industrial use of lignocellulosic materials. Biomolecules 2013, 3, 612–631. [Google Scholar] [CrossRef]
- Zhou, J.; Liang, M.; Lin, Y.; Pang, H.; Wei, Y.; Huang, R.; Du, L. Application of beta-glucosidase in a biphasic system for the efficient conversion of polydatin to resveratrol. Molecules 2022, 27, 1514. [Google Scholar] [CrossRef]
- Renchinkhand, G.; Magsar, U.; Bae, H.C.; Choi, S.H.; Nam, M.S. Identification of beta-glucosidase activity of Lentilactobacillus buchneri URN103l and its potential to convert ginsenoside Rb1 from Panax ginseng. Foods 2022, 11, 529. [Google Scholar] [CrossRef]
- Angelotti, J.; Dias, F.; Sato, H.H.; Fernandes, P.; Nakajima, V.M.; Macedo, J. Improvement of aglycone content in soy isoflavones extract by free and immobilized beta-glucosidase and their effects in lipid accumulation. Appl. Biochem. Biotechnol. 2020, 192, 734–750. [Google Scholar] [CrossRef]
- Yang, W.; Su, Y.; Wang, R.; Zhang, H.; Jing, H.; Meng, J.; Zhang, G.; Huang, L.; Guo, L.; Wang, J.; et al. Microbial production and applications of beta-glucosidase—A review. Int. J. Biol. Macromol. 2024, 256, 127915. [Google Scholar] [CrossRef]
- Kulkarni, R.R.; Gaghan, C.; Mohammed, J.; Sharif, S.; Taha-Abdelaziz, K. Cellular immune responses in lymphoid tissues of broiler chickens experimentally infected with necrotic enteritis-producing Clostridium perfringens strains. Avian Dis. 2023, 67, 186–196. [Google Scholar] [CrossRef]
- Olkowski, A.A.; Wojnarowicz, C.; Chirino-Trejo, M.; Drew, M.D. Responses of broiler chickens orally challenged with Clostridium perfringens isolated from field cases of necrotic enteritis. Res. Vet. Sci. 2006, 81, 99–108. [Google Scholar] [CrossRef]
- Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathol. 2011, 40, 341–347. [Google Scholar] [CrossRef]
- Quan, S.; Huang, J.; Chen, G.; Zhang, A.; Yang, Y.; Wu, Z. Genistein promotes M2 macrophage polarization via aryl hydrocarbon receptor and alleviates intestinal inflammation in broilers with necrotic enteritis. Int. J. Mol. Sci. 2024, 25, 6656. [Google Scholar] [CrossRef]
- Zhang, M.; Kou, J.; Wu, Y.; Wang, M.; Zhou, X.; Yang, Y.; Wu, Z. Dietary genistein supplementation improves intestinal mucosal barrier function in Escherichia coli O78-challenged broilers. J. Nutr. Biochem. 2020, 77, 108267. [Google Scholar] [CrossRef]
- Lv, Z.; Dai, H.; Wei, Q.; Jin, S.; Wang, J.; Wei, X.; Yuan, Y.; Yu, D.; Shi, F. Dietary genistein supplementation protects against lipopolysaccharide-induced intestinal injury through altering transcriptomic profile. Poult. Sci. 2020, 99, 3411–3427. [Google Scholar] [CrossRef]
- Coward, L.; Barnes, N.C.; Setchell, K.; Barnes, S. Genistein, daidzein, and their beta-glycoside conjugates-antitumor isoflavones in soybean foods from american and asian diets. J. Agric. Food. Chem. 1993, 41, 1961–1967. [Google Scholar] [CrossRef]
- Coward, L.; Smith, M.; Kirk, M.; Barnes, S. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 1998, 68, 1486S–1491S. [Google Scholar] [CrossRef]
- Eisen, B.; Ungar, Y.; Shimoni, E. Stability of isoflavones in soy milk stored at elevated and ambient temperatures. J. Agric. Food. Chem. 2003, 51, 2212–2215. [Google Scholar] [CrossRef]
- Fukutake, M.; Takahashi, M.; Ishida, K.; Kawamura, H.; Sugimura, T.; Wakabayashi, K. Quantification of genistein and genistin in soybeans and soybean products. Food. Chem. Toxicol. 1996, 34, 457–461. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, M. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perfused rat intestinal model. Drug. Metab. Dispos. 2002, 30, 370–377. [Google Scholar] [CrossRef]
- He, J.; Li, Y.; Sun, X.; Zuo, D.; Wang, M.; Zheng, X.; Yu, P.; Shi, P. Characterization of a novel hyperthermophilic gh1 beta-glucosidase from Acidilobus sp. and its application in the hydrolysis of soybean isoflavone glycosides. Microorganisms 2024, 12, 533. [Google Scholar] [CrossRef]
- He, J.; Duan, J.; Yu, P.; Li, Y.; Wang, M.; Zhang, X.; Chen, Z.; Shi, P. Characterization of a novel cold-adapted GH1 beta-glucosidase from Psychrobacillus glaciei and its application in the hydrolysis of soybean isoflavone glycosides. Curr. Res. Food Sci. 2024, 8, 100777. [Google Scholar] [CrossRef]
- Wu, C.M.; Yang, C.Y. Impacts of ultrasonic treatment for black soybean okara culture medium containing choline chloride on the beta-glucosidase activity of Lactiplantibacillus plantarum BCRC 10357. Foods 2023, 12, 3781. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Liu, L.; Chen, Y.; Li, S.; Jia, Y. Purification and characterization of a novel beta-glucosidase from Aspergillus flavus and its application in saccharification of soybean meal. Prep. Biochem. Biotechnol. 2019, 49, 671–678. [Google Scholar] [CrossRef]
- Kumar, S.; Awana, M.; Rani, K.; Kumari, S.; Sasi, M.; Dahuja, A. Soybean (Glycine max) isoflavone conjugate hydrolysing beta-glucosidase (GmICHG): A promising candidate for soy isoflavone bioavailability enhancement. 3 Biotech 2023, 13, 52. [Google Scholar] [CrossRef]
- Matsuda, H.; Yamazaki, Y.; Moriyoshi, E.; Nakayasu, M.; Yamazaki, S.; Aoki, Y.; Takase, H.; Okazaki, S.; Nagano, A.J.; Kaga, A.; et al. Apoplast-localized beta-glucosidase elevates isoflavone accumulation in the soybean rhizosphere. Plant Cell Physiol. 2023, 64, 486–500. [Google Scholar] [CrossRef]
- Li, X.; Xia, W.; Bai, Y.; Ma, R.; Yang, H.; Luo, H.; Shi, P. A novel thermostable gh3 beta-glucosidase from Talaromyce leycettanus with broad substrate specificity and significant soybean isoflavone glycosides-hydrolyzing capability. Biomed Res. Int. 2018, 2018, 4794690. [Google Scholar] [CrossRef]
- Setchell, K.; Brown, N.M.; Desai, P.; Zimmer-Nechemias, L.; Wolfe, B.E.; Brashear, W.T.; Kirschner, A.S.; Cassidy, A.; Heubi, J.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J. Nutr. 2001, 131, 1362S–1375S. [Google Scholar] [CrossRef]
- Setchell, K.; Brown, N.M.; Desai, P.B.; Zimmer-Nechimias, L.; Wolfe, B.; Jakate, A.S.; Creutzinger, V.; Heubi, J.E. Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. J. Nutr. 2003, 133, 1027–1035. [Google Scholar] [CrossRef]
- Sigowska, P.; Zimoch, M.; Baska, A.; Kazik, J.; Leis, K.; Grzesk, G. Genistein in the treatment of hypertension: A review. Endocr. Metab. Immune Disord.-Drug Targets 2022, 22, 1367–1377. [Google Scholar] [CrossRef]
- Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A Review on its Anti-Inflammatory Properties. Front. Pharmacol. 2022, 13, 820969. [Google Scholar] [CrossRef]
- Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother. 2015, 76, 30–38. [Google Scholar] [CrossRef]
- Raza, A.; Bashir, S.; Pothula, R.; Abdelgaffar, H.; Tabassum, R.; Anwar, M.I.; Awais, M.M.; Akhtar, M.; Jurat-Fuentes, J.L. Expression and functional characterization in yeast of an endoglucanase from Bacillus sonorensis BD92 and its impact as feed additive in commercial broilers. Int. J. Biol. Macromol. 2021, 176, 364–375. [Google Scholar] [CrossRef]
- Qian, L.C.; Sun, J.Y.; Fu, S.J. Effect of beta-glucosidase on the meat quality and digestibility in broilers. J. Anim. Physiol. Anim. Nutr. 2012, 96, 270–274. [Google Scholar] [CrossRef]
- Rasouli, E.; Jahanian, R. Improved performance and immunological responses as the result of dietary genistein supplementation of broiler chicks. Animal 2015, 9, 1473–1480. [Google Scholar] [CrossRef]
- Qi, N.; Liu, S.; Yan, F.; Chen, B.; Wu, S.; Lin, X.; Yan, Z.; Zhou, Q.; Liao, S.; Li, J.; et al. Study of microencapsulated fatty acid antimicrobial activity in vitro and its prevention ability of Clostridium perfringens induced necrotic enteritis in broiler chicken. Gut Pathog. 2023, 15, 1. [Google Scholar] [CrossRef]
- Gao, M.; Wang, J.; Lv, Z. Supplementing genistein for breeder hens alters the growth performance and intestinal health of offspring. Life 2023, 13, 1468. [Google Scholar] [CrossRef]
- Jia, Q.; Fang, S.; Yang, R.; Ling, Y.; Mehmood, S.; Ni, H.; Gao, Q. Genistein alleviates dextran sulfate sodium-induced colitis in mice through modulation of intestinal microbiota and macrophage polarization. Eur. J. Nutr. 2024, 63, 1877–1888. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, X.; Wang, Y.; Guo, Y.; Zhu, P.; Li, G.; Zhang, J.; Ma, Q.; Zhao, L. Dietary ellagic acid ameliorated Clostridium perfringens-induced subclinical necrotic enteritis in broilers via regulating inflammation and cecal microbiota. J. Anim. Sci. Biotechnol. 2022, 13, 47. [Google Scholar] [CrossRef]
- Gong, L.; Wang, B.; Zhou, Y.; Tang, L.; Zeng, Z.; Zhang, H.; Li, W. Protective Effects of Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 Against Clostridium perfringens Infection in Broilers. Front. Immunol. 2020, 11, 628374. [Google Scholar] [CrossRef]
- Xie, L.; Chen, T.; Qi, X.; Li, H.; Xie, J.; Wang, L.; Xie, J.; Huang, Z. Exopolysaccharides from genistein-stimulated monascus purpureus ameliorate cyclophosphamide-induced intestinal injury via PI3K/AKT-MAPKs/NF-kappaB pathways and regulation of gut microbiota. J. Agric. Food. Chem. 2023, 71, 12986–13002. [Google Scholar] [CrossRef]
- Ritter, M.; Osei-Mensah, J.; Debrah, L.B.; Kwarteng, A.; Mubarik, Y.; Debrah, A.Y.; Pfarr, K.; Hoerauf, A.; Layland, L.E. Wuchereria bancrofti-infected individuals harbor distinct IL-10-producing regulatory B and T cell subsets which are affected by anti-filarial treatment. PLoS Neglect. Trop. Dis. 2019, 13, e7436. [Google Scholar] [CrossRef]
- Reinoso, W.C.; Koboziev, I.; Furr, K.L.; Grisham, M.B. Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology 2016, 23, 67–80. [Google Scholar] [CrossRef]
- Rachon, D.; Rimoldi, G.; Wuttke, W. In vitro effects of genistein and resveratrol on the production of interferon-gamma (IFNgamma) and interleukin-10 (IL-10) by stimulated murine splenocytes. Phytomedicine 2006, 13, 419–424. [Google Scholar] [CrossRef]
- Cong, L.; Xie, X.; Liu, S.; Xiang, L.; Fu, X. Genistein promotes M1 macrophage apoptosis and reduces inflammatory response by disrupting miR-21/TIPE2 pathway. Saudi Pharm. J. 2022, 30, 934–945. [Google Scholar] [CrossRef]
- Lopez, J.; Al-Nakkash, L.; Broderick, T.L.; Castro, M.; Tobin, B.; Plochocki, J.H. Genistein Suppresses IL-6 and MMP-13 to Attenuate Osteoarthritis in Obese Diabetic Mice. Metabolites 2023, 13, 1014. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Y.; Li, G.; Guo, Y.; Zhang, B. Effects of quercetin and genistein on egg quality, lipid profiles, and immunity in laying hens. J. Sci. Food. Agric. 2024, 104, 207–214. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, X.; Li, C.; Wang, S.; Jia, L. Characterization and insight mechanism of an acid-adapted beta-Glucosidase from Lactobacillus paracasei and its application in bioconversion of glycosides. Front. Bioeng. Biotechnol. 2024, 12, 1334695. [Google Scholar] [CrossRef]
- GB/T 23788-2009; Determination of Soybean Isoflavone in Health-Care Food by High-Performance Liquid Chromatography. Standardization Administration of the People’s Republic of China: Beijing, China, 2009.
Before Enzymatic Digestion (mg/kg) | After Enzymatic Digestion (mg/kg) | Conversion Rate (%) | |
---|---|---|---|
Daidzin | 45.06 ± 4.43 | 0.21 ± 0.00 | - |
Daidzein | 11.89 ± 0.37 | 48.88 ± 2.15 | 82.31 ± 3.94 |
Glycitin | 24.82 ± 0.79 | 0.80 ± 0.04 | - |
Glycitein | 2.77 ± 0.29 | 21.06 ± 1.68 | 73.84 ± 7.92 |
Genistin | 58.23 ± 2.95 | 2.32 ± 0.61 | - |
Genistein | 14.94 ± 0.74 | 67.94 ± 3.12 | 91.03 ± 3.43 |
Ctrl | 50% ESM | 100% ESM | p-Value | |
---|---|---|---|---|
8–21 d | ||||
BW (g) | 659.68 ± 15.21 | 628.68 ± 24.38 | 630.64 ± 43.23 | 0.168 |
ADG (g) | 41.19 ± 1.21 | 38.50 ± 2.21 | 38.59 ± 3.81 | 0.114 |
ADFI (g) | 65.11 ± 1.72 | 63.25 ± 2.35 | 61.94 ± 2.75 | 0.090 |
FCR (g/g) | 1.58 ± 0.03 | 1.65 ± 0.09 | 1.61 ± 0.09 | 0.366 |
22–35 d | ||||
BW (g) | 1816.58 ± 65.18 | 1725.67 ± 47.83 | 1744.12 ± 74.96 | 0.052 |
ADG (g) | 91.51 ± 5.16 | 86.72 ± 3.72 | 88.16 ± 3.48 | 0.160 |
ADFI (g) | 157.96 ± 6.12 | 143.88 ± 3.90 * | 144.08 ± 7.45 * | 0.043 |
FCR (g/g) | 1.94 ± 0.05 | 1.87 ± 0.05 ** | 1.84 ± 0.06 ** | 0.009 |
35 d | ||||
ADG (g) | 67.51 ± 2.91 | 63.86 ± 2.03 | 64.57 ± 3.09 | 0.077 |
ADFI (g) | 123.49 ± 4.09 | 114.39 ± 3.34 ** | 113.87 ± 5.46 ** | 0.003 |
FCR (g/g) | 1.83 ± 0.03 | 1.79 ± 0.02 ** | 1.76 ± 0.03 ** | 0.004 |
Ingredients | 7–21 d | 22–35 d |
---|---|---|
Corn | 59.63 | 66.03 |
Soybean meal (43%) | 30.05 | 24.22 |
Soybean oil | 1.46 | 1.26 |
Corn gluten meal | 4.69 | 4.69 |
Calcium hydrophosphate | 1.90 | 1.57 |
Limestone | 0.91 | 0.94 |
NaCl | 0.35 | 0.35 |
L-lysine HCl (78%) | 0.20 | 0.20 |
DL-Methionine | 0.16 | 0.09 |
Choline chloride (50%) | 0.30 | 0.30 |
Multimineral 1 | 0.20 | 0.20 |
Multivitamin 2 | 0.02 | 0.02 |
Antioxidants | 0.13 | 0.13 |
Total | 100.00 | 100.00 |
Nutrient levels 3 | ||
Metabolizable Energy/(MJ/kg) | 12.68 | 12.65 |
Crude Protein | 23.08 | 20.46 |
Lys | 1.15 | 1.01 |
Met | 0.50 | 0.41 |
Ca | 1.00 | 0.90 |
AP | 0.45 | 0.40 |
Gene | Primer Sequences (5′-3′) | Accession NO. |
---|---|---|
β-actin | F: GAGAAATTGTGCGTGACATCA | NM_205518.1 |
R: CCTGAACCTCTCATTGCCA | ||
Occludin | F: AGTTCGACACCGACCTGAAG | NM_205128.1 |
R: TCCTGGTATTGAGGGCTGTC | ||
Claudin-1 | F: GGTATGGCAACAGAGTGGCT | NM_001013611 |
R: CAGCCAATGAAGAGGGCTGA | ||
Muc2 | F: TTCATGATGCCTGCTCTTGTG | XM_040673077.1 |
R: CCTGAGCCTTGGTACATTCTTGT | ||
iNOS | F: CCTGTACTGAAGGTGGCTATTGG | NM_204961.1 |
R: AGGCCTGTGAGAGTGTGCAA | ||
PCNA | F: AATGCGGATACGTTGGCTCT | NM_204170.3 |
R: CACCAATGTGGCTGAGGTCT | ||
Caspase-1 | F: AGTACGGTGGTGTTCTCCTT | XM_015295935.4 |
R: GATCTCATCCGTCATGCTGC | ||
Caspase-3 | F: CAGCTGAAGGCTCCTGGTTT | XM_015276122.4 |
R: GCCACTCTGCGATTTACACG | ||
Tlr-2 | F: CGGTCATCTCAGCTACACCA | NM_204278 |
R: GCATCGCATGAAAGACAGGC | ||
Tlr-4 | F: GATGCATCCCCAGTCCGTG | NM_001030693 |
R: CCAGGGTGGTGTTTGGGATT | ||
NFκB | F: TGGAGAAGGCTATGCAGCTT | NM_205134.1 |
R: CATCCTGGACAGCAGTGAGA | ||
Myd88 | F: TGCAAGACCATGAAGAACGA | NM_001030962.4 |
R: TCACGGCAGCAAGAGAGATT | ||
Il-10 | F: CGCTGTCACCGCTTCTTCA | NM_000572.2 |
R: TCCCGTTCTCATCCATCTTCTC | ||
Il-1β | F: GCCTGCAGAAGAAGCCTCG | NM_204524.2 |
R: GGAAGGTGACGGGCTCAAAA | ||
Il-6 | F: CTCCTCGCCAATCTGAAGTC | NM_204628.1 |
R: GGCACTGAAACTCCTGGTCT | ||
Il-8 | F: TTGCCAAGGAGTGCTAAAGAA | NM_000584.3 |
R: GCCCTCTTCAAAAACTTCTCC | ||
Tnf-α | F: GAGCGTTGACTTGGCTGTC | NM_000594.3 |
R: AAGCAACAACCAGCTATGCAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Hou, Q.; Yang, Y. Replacing Hydrolyzed Soybean Meal with Recombinant β-Glucosidase Enhances Resistance to Clostridium perfringens in Broilers Through Immune Modulation. Int. J. Mol. Sci. 2024, 25, 11700. https://doi.org/10.3390/ijms252111700
Huang J, Hou Q, Yang Y. Replacing Hydrolyzed Soybean Meal with Recombinant β-Glucosidase Enhances Resistance to Clostridium perfringens in Broilers Through Immune Modulation. International Journal of Molecular Sciences. 2024; 25(21):11700. https://doi.org/10.3390/ijms252111700
Chicago/Turabian StyleHuang, Jingxi, Qihang Hou, and Ying Yang. 2024. "Replacing Hydrolyzed Soybean Meal with Recombinant β-Glucosidase Enhances Resistance to Clostridium perfringens in Broilers Through Immune Modulation" International Journal of Molecular Sciences 25, no. 21: 11700. https://doi.org/10.3390/ijms252111700
APA StyleHuang, J., Hou, Q., & Yang, Y. (2024). Replacing Hydrolyzed Soybean Meal with Recombinant β-Glucosidase Enhances Resistance to Clostridium perfringens in Broilers Through Immune Modulation. International Journal of Molecular Sciences, 25(21), 11700. https://doi.org/10.3390/ijms252111700