Optimization of Whole-Genome Resequencing Depth for High-Throughput SNP Genotyping in Litopenaeus vannamei
Abstract
:1. Introduction
2. Results
2.1. Summary of the Whole-Genome Resequencing Data
2.2. Discovery of Variants Based on Different Depth
2.3. SNP Genotyping Accuracy at Different Depths
2.4. Genotyping Errors and Proportions of Heterozygotes and Homozygotes
2.5. Evaluation of SNP Detection by Annotation
3. Discussion
4. Methods
4.1. Whole-Genome Resequencing
4.2. Construction of Samples with Different Sequencing Depths
4.3. SNP Calling
4.4. Filtering
4.5. Relationships
4.6. Variant Annotation
4.7. Comparison of Sequencing Data with Different Depths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ley, T.J.; Mardis, E.R.; Ding, L.; Fulton, B.; McLellan, M.D.; Chen, K.; Dooling, D.; Dunford-Shore, B.H.; McGrath, S.; Hickenbotham, M.; et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008, 456, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Sims, D.; Sudbery, I.; Ilott, N.E.; Heger, A.; Ponting, C.P. Sequencing depth and coverage: Key considerations in genomic analyses. Nat. Rev. Genet. 2014, 15, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.F.; Jiang, Y.; Wang, S.; Zhang, Q.; Ding, X.D. Optimal sequencing depth design for whole genome re-sequencing in pigs. BMC Bioinform. 2019, 20, 556. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Li, T.; Su, M.; Wang, H.; Li, Q.; Lang, X.; Ma, Y. Whole genome sequencing revealed genetic diversity, population structure, and selective signature of Panou Tibetan sheep. BMC Genom. 2023, 24, 50. [Google Scholar] [CrossRef]
- Sá, P.; Santos, D.; Chiaia, H.; Leitao, A.; Cordeiro, J.M.; Gama, L.T.; Amaral, A.J. Lost pigs of Angola: Whole genome sequencing reveals unique regions of selection with emphasis on metabolism and feed efficiency. Front. Genet. 2022, 13, 1003069. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.Y.; Chen, Z.T.; Sun, J.B.; Cao, C.Y.; Wu, F.; Xu, Z.; Zhao, W.; Sun, H.; Guo, L.Y.; et al. PHARP: A pig haplotype reference panel for genotype imputation. Sci. Rep. 2022, 12, 12645. [Google Scholar] [CrossRef]
- Deng, X.L.; Frandsen, P.B.; Dikow, R.B.; Favre, A.; Shah, D.N.; Shah, R.D.T.; Schneider, J.V.; Heckenhauer, J.; Pauls, S.U. The impact of sequencing depth and relatedness of the reference genome in population genomic studies: A case study with two caddisfly species (Trichoptera, Rhyacophilidae, Himalopsyche). Ecol. Evol. 2022, 12, e9583. [Google Scholar] [CrossRef]
- Eusebi, P.G.; Martinez, A.; Cortes, O. Genomic Tools for Effective Conservation of Livestock Breed Diversity. Diversity 2020, 12, 8. [Google Scholar] [CrossRef]
- Xiong, X.; Liu, J.; Rao, Y. Whole Genome Resequencing Helps Study Important Traits in Chickens. Genes 2023, 14, 1198. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, J.; Sun, Y.; Li, S.; Gao, Y.; Yu, Y.; Liu, C.; Wang, Q.; Lv, X.; Zhang, X.; et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat. Commun. 2019, 10, 356. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Teng, M.X.; Liu, P.P.; Zhao, M.Y.; Wang, S.; Hu, J.J.; Bao, Z.M.; Zeng, Q.F. Selection Signatures of Pacific White Shrimp Litopenaeus vannamei Revealed by Whole-Genome Resequencing Analysis. Front. Mar. Sci. 2022, 9, 844597. [Google Scholar] [CrossRef]
- Yuan, J.B.; Zhang, X.J.; Li, F.H.; Xiang, J.H. Genome Sequencing and Assembly Strategies and a Comparative Analysis of the Genomic Characteristics in Penaeid Shrimp Species. Front. Genet. 2021, 12, 658619. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, H.; Zhong, Z.; Jiang, S. A Whole Genome Sequencing-Based Genome-Wide Association Study Reveals the Potential Associations of Teat Number in Qingping Pigs. Animals 2022, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Susmitha, P.; Kumar, P.; Yadav, P.; Sahoo, S.; Kaur, G.; Pandey, M.K.; Singh, V.; Tseng, T.M.; Gangurde, S.S. Genome-wide association study as a powerful tool for dissecting competitive traits in legumes. Front. Plant Sci. 2023, 14, 1123631. [Google Scholar] [CrossRef]
- Kon, T.; Pei, L.; Ichikawa, R.; Chen, C.; Wang, P.; Takemura, I.; Ye, Y.; Yan, X.; Guo, B.; Li, W.; et al. Whole-genome resequencing of large yellow croaker (Larimichthys crocea) reveals the population structure and signatures of environmental adaptation. Sci. Rep. 2021, 11, 11235. [Google Scholar] [CrossRef]
- Wang, H.; Lv, J.; Zeng, Q.F.; Liu, Y.R.; Xing, Q.; Wang, S.; Hu, J.J.; Bao, L.S. Genetic differentiation and selection signatures in two bay scallop (Argopecten irradians) breeds revealed by whole-genome resequencing analysis. Aquaculture 2021, 543, 736944. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, X.L.; Li, Y.X.; Xie, J.H.; Gao, P.P.; Hao, P.F.; Han, L.S.; Zhang, J.Y.; Wang, W.P.; Liu, P.; et al. Whole-genome resequencing reveals genetic differences and the genetic basis of parapodium number in Russian and Chinese. BMC Genom. 2023, 24, 25. [Google Scholar] [CrossRef]
- Bertolini, F.; Ribani, A.; Capoccioni, F.; Buttazzoni, L.; Utzeri, V.J.; Bovo, S.; Schiavo, G.; Caggiano, M.; Fontanesi, L.; Rothschild, M.F. Identification of a major locus determining a pigmentation defect in cultivated gilthead seabream (Sparus aurata). Anim. Genet. 2020, 51, 319–323. [Google Scholar] [CrossRef]
- Bertolini, F.; Ribani, A.; Capoccioni, F.; Buttazzoni, L.; Utzeri, V.J.; Bovo, S.; Schiavo, G.; Caggiano, M.; Rothschild, M.F.; Fontanesi, L. A comparative whole genome sequencing analysis identified a candidate locus for lack of operculum in cultivated gilthead seabream (Sparus aurata). Anim. Genet. 2021, 52, 365–370. [Google Scholar] [CrossRef]
- Hu, B.Y.; Tian, Y.; Li, Q.; Liu, S.K. Genomic signatures of artificial selection in the Pacific oyster. Evol. Appl. 2022, 15, 618–630. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wu, F.C.; Qi, H.G.; Meng, J.; Wang, W.; Liu, M.K.; Li, L.; Zhang, G.F. Whole-genome resequencing reveals the single nucleotide polymorphisms associated with shell shape in Crassostrea gigas. Aquaculture 2022, 547, 737502. [Google Scholar] [CrossRef]
- Gao, G.T.; Pietrak, M.R.; Burr, G.S.; Rexroad, C.E.; Peterson, B.C.; Palti, Y. A New Single Nucleotide Polymorphism Database for North American Atlantic Salmon Generated Through Whole Genome Resequencing. Front. Genet. 2020, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Rashkin, S.; Jun, G.; Chen, S.; Abecasis, G.R.; GECCO. Optimal sequencing strategies for identifying disease-associated singletons. PLoS Genet. 2017, 13, e1006811. [Google Scholar] [CrossRef]
- Le, S.Q.; Durbin, R. SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples. Genome Res. 2011, 21, 952–960. [Google Scholar] [CrossRef]
- Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; Gabriel, S.B.; et al. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef]
- Sun, L.; Liu, S.; Wang, R.; Jiang, Y.; Zhang, Y.; Zhang, J.; Bao, L.; Kaltenboeck, L.; Dunham, R.; Waldbieser, G.; et al. Identification and analysis of genome-wide SNPs provide insight into signatures of selection and domestication in channel catfish (Ictalurus punctatus). PLoS ONE 2014, 9, e109666. [Google Scholar] [CrossRef]
- Kim, H.; Caetano-Anolles, K.; Seo, M.; Kwon, Y.J.; Cho, S.; Seo, K.; Kim, H. Prediction of Genes Related to Positive Selection Using Whole-Genome Resequencing in Three Commercial Pig Breeds. Genom. Inf. 2015, 13, 137–145. [Google Scholar] [CrossRef]
- Rubin, C.J.; Megens, H.J.; Barrio, A.M.; Maqbool, K.; Sayyab, S.; Schwochow, D.; Wang, C.; Carlborg, Ö.; Jern, P.; Jorgensen, C.B.; et al. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA 2012, 109, 19529–19536. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Keel, B.N.; Nonneman, D.J.; Rohrer, G.A. A survey of single nucleotide polymorphisms identified from whole-genome sequencing and their functional effect in the porcine genome. Anim. Genet. 2017, 48, 404–411. [Google Scholar] [CrossRef]
- Baes, C.F.; Dolezal, M.A.; Koltes, J.E.; Bapst, B.; Fritz-Waters, E.; Jansen, S.; Flury, C.; Signer-Hasler, H.; Stricker, C.; Fernando, R.; et al. Evaluation of variant identification methods for whole genome sequencing data in dairy cattle. BMC Genom. 2014, 15, 948. [Google Scholar] [CrossRef] [PubMed]
- Bainbridge, M.N.; Wang, M.; Wu, Y.; Newsham, I.; Muzny, D.M.; Jefferies, J.L.; Albert, T.J.; Burgess, D.L.; Gibbs, R.A. Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities. Genome Biol. 2011, 12, R68. [Google Scholar] [CrossRef]
- Yang, Z.; Nielsen, R. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J. Mol. Evol. 1998, 46, 409–418. [Google Scholar] [CrossRef]
- Bell, D.A.; Stephens, E.A.; Castranio, T.; Umbach, D.M.; Watson, M.; Deakin, M.; Elder, J.; Hendrickse, C.; Duncan, H.; Strange, R.C. Polyadenylation polymorphism in the acetyltransferase 1 gene (NAT1) increases risk of colorectal cancer. Cancer Res. 1995, 55, 3537–3542. [Google Scholar] [PubMed]
- He, Z.; Li, X.; Ling, S.; Fu, Y.X.; Hungate, E.; Shi, S.; Wu, C.I. Estimating DNA polymorphism from next generation sequencing data with high error rate by dual sequencing applications. BMC Genom. 2013, 14, 535. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R.; Paul, J.S.; Albrechtsen, A.; Song, Y.S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 2011, 12, 443–451. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, X.; Guo, X.; Li, L.; Luo, R.; Xu, F.; Yang, P.; Zhang, L.; Wang, X.; Qi, H.; et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490, 49–54. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Zhang, G. Coverage recommendation for genotyping analysis of highly heterologous species using next-generation sequencing technology. Sci. Rep. 2016, 6, 35736. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, W.; Zhang, F.; Ma, C.; Liu, Z.; Yang, M.H.; Chen, W.; Li, Q.; Cui, M.; Jiang, K.; et al. A chromosome-level genome of the mud crab (Scylla paramamosain estampador) provides insights into the evolution of chemical and light perception in this crustacean. Mol. Ecol. Resour. 2021, 21, 1299–1317. [Google Scholar] [CrossRef] [PubMed]
- Sea Urchin Genome Sequencing, C.; Sodergren, E.; Weinstock, G.M.; Davidson, E.H.; Cameron, R.A.; Gibbs, R.A.; Angerer, R.C.; Angerer, L.M.; Arnone, M.I.; Burgess, D.R.; et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006, 314, 941–952. [Google Scholar] [CrossRef]
- Davies, R.W.; Flint, J.; Myers, S.; Mott, R. Rapid genotype imputation from sequence without reference panels. Nat. Genet. 2016, 48, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Nicod, J.; Davies, R.W.; Cai, N.; Hassett, C.; Goodstadt, L.; Cosgrove, C.; Yee, B.K.; Lionikaite, V.; McIntyre, R.E.; Remme, C.A.; et al. Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing. Nat. Genet. 2016, 48, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Guo, X.; Zhu, D.; Bian, C.; Zhao, Y.; Tan, C.; Wu, Z.; Wang, Y.; Hu, X.; Li, N. Genome-wide association analyses of multiple traits in Duroc pigs using low-coverage whole-genome sequencing strategy. bioRxiv 2019, 754671. [Google Scholar] [CrossRef]
- Ros-Freixedes, R.; Battagin, M.; Johnsson, M.; Gorjanc, G.; Mileham, A.J.; Rounsley, S.D.; Hickey, J.M. Impact of index hopping and bias towards the reference allele on accuracy of genotype calls from low-coverage sequencing. Genet. Sel. Evol. 2018, 50, 64. [Google Scholar] [CrossRef]
- Noskova, A.; Bhati, M.; Kadri, N.K.; Crysnanto, D.; Neuenschwander, S.; Hofer, A.; Pausch, H. Characterization of a haplotype-reference panel for genotyping by low-pass sequencing in Swiss Large White pigs. BMC Genom. 2021, 22, 290. [Google Scholar] [CrossRef]
- Yang, R.; Xu, Z.; Wang, Q.; Zhu, D.; Bian, C.; Ren, J.; Huang, Z.; Zhu, X.; Tian, Z.; Wang, Y.; et al. Genome-wide association study and genomic prediction for growth traits in yellow-plumage chicken using genotyping-by-sequencing. Genet. Sel. Evol. 2021, 53, 82. [Google Scholar] [CrossRef]
- Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R.; et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456, 53–59. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.Y.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
Population | Sample | Clean Base (G) | Effective Rate (%) | Depth (×) | Q20 (%) | Q30 (%) | GC Content (%) |
---|---|---|---|---|---|---|---|
GT | s3442M | 54.33 | 99.10 | 33.96 | 90.72 | 86.80 | 44.84 |
GT | s3416F | 51.81 | 99.54 | 32.38 | 91.36 | 88.17 | 47.58 |
GT | s3391M | 62.91 | 99.43 | 39.32 | 91.57 | 88.37 | 45.85 |
GT | s3389M | 55.26 | 99.54 | 34.54 | 91.72 | 88.62 | 44.27 |
GT | s3389F | 58.09 | 99.54 | 36.31 | 91.18 | 87.95 | 44.17 |
GT | s3357F | 56.36 | 99.52 | 35.23 | 91.67 | 88.56 | 44.49 |
GT | s3352M | 63.62 | 99.62 | 39.76 | 90.59 | 86.86 | 45.00 |
GT | s3351M2 | 50.50 | 99.61 | 31.56 | 91.56 | 88.47 | 47.58 |
GT | s3351F2 | 70.57 | 98.84 | 44.11 | 87.75 | 83.67 | 54.67 |
GT | s3351F1 | 69.71 | 99.60 | 43.57 | 89.65 | 85.88 | 43.57 |
GT | s3332F2 | 63.09 | 99.63 | 39.43 | 89.32 | 85.38 | 44.56 |
SIS | s16SISM1 | 81.20 | 99.14 | 50.75 | 92.12 | 86.75 | 43.12 |
SIS | s16SISF1 | 74.93 | 99.07 | 46.83 | 92.43 | 87.17 | 43.01 |
SIS | 828-2 | 52.65 | 99.94 | 32.91 | 92.73 | 85.00 | 39.59 |
Mex | Mex21F | 53.32 | 99.50 | 33.33 | 91.47 | 87.93 | 43.64 |
Mex | Mex14M | 55.06 | 99.09 | 34.41 | 91.42 | 87.84 | 43.73 |
Mex | s3M | 56.85 | 100.00 | 35.53 | 88.41 | 79.34 | 45.95 |
Mex | s5M | 45.77 | 100.00 | 28.61 | 88.95 | 80.14 | 44.41 |
Mex | s6F | 58.67 | 100.00 | 36.67 | 90.46 | 83.36 | 46.81 |
Mex | s7F | 56.93 | 100.00 | 35.58 | 90.70 | 83.81 | 46.55 |
E | EM14 | 86.70 | 99.73 | 54.19 | 91.82 | 85.57 | 42.84 |
E | EM13 | 78.42 | 99.16 | 49.01 | 92.60 | 87.40 | 42.42 |
E | EM12 | 84.96 | 99.73 | 53.10 | 91.56 | 85.65 | 41.96 |
E | EF11 | 79.82 | 99.39 | 49.89 | 92.41 | 87.11 | 42.61 |
E | EF9 | 79.32 | 99.05 | 49.58 | 92.55 | 87.32 | 42.45 |
E | EF8 | 74.40 | 99.04 | 46.50 | 92.60 | 87.39 | 42.45 |
CP | s16ZDM1 | 72.81 | 99.03 | 45.51 | 92.15 | 86.70 | 42.97 |
CP | s16ZDF1 | 57.31 | 99.15 | 35.82 | 88.84 | 75.91 | 43.03 |
CP | HYZD-2 | 62.80 | 93.34 | 39.22 | 95.86 | 87.39 | 40.20 |
CP | ZDWC-2F | 51.93 | 92.34 | 32.46 | 95.54 | 86.55 | 41.41 |
CP | ZDWC-1F | 61.05 | 90.43 | 38.16 | 95.62 | 86.76 | 41.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.; Yu, Y.; Bao, Z.; Li, F. Optimization of Whole-Genome Resequencing Depth for High-Throughput SNP Genotyping in Litopenaeus vannamei. Int. J. Mol. Sci. 2024, 25, 12083. https://doi.org/10.3390/ijms252212083
Lin P, Yu Y, Bao Z, Li F. Optimization of Whole-Genome Resequencing Depth for High-Throughput SNP Genotyping in Litopenaeus vannamei. International Journal of Molecular Sciences. 2024; 25(22):12083. https://doi.org/10.3390/ijms252212083
Chicago/Turabian StyleLin, Pengfei, Yang Yu, Zhenning Bao, and Fuhua Li. 2024. "Optimization of Whole-Genome Resequencing Depth for High-Throughput SNP Genotyping in Litopenaeus vannamei" International Journal of Molecular Sciences 25, no. 22: 12083. https://doi.org/10.3390/ijms252212083
APA StyleLin, P., Yu, Y., Bao, Z., & Li, F. (2024). Optimization of Whole-Genome Resequencing Depth for High-Throughput SNP Genotyping in Litopenaeus vannamei. International Journal of Molecular Sciences, 25(22), 12083. https://doi.org/10.3390/ijms252212083