Increased Levels of hsa-miR-199a-3p and hsa-miR-382-5p in Maternal and Neonatal Blood Plasma in the Case of Placenta Accreta Spectrum
Abstract
:1. Introduction
2. Results
2.1. Deep Sequencing of Neonatal Blood Plasma miRNA
2.2. Validation of miRNAs Sequencing Data by Quantitative Real-Time PCR
- A direct correlation between the levels of hsa-miR-382-5p and hsa-miR-199a-3p in the blood plasma of newborns (r = 0.49; p < 0.001);
- an inverse correlation between the level of hsa-miR-199a-3p in the blood plasma of mothers and their newborns with the depth of trophoblast invasion (r = −0.46; p < 0.001 for mothers and r = −0.29; p = 0.028 for newborns);
- an inverse relationship between hsa-miR-382-5p levels in newborns of women with PAS and their weight (r = −0.39; p = 0.002);
- a direct relationship between the level of hsa-miR-382-5p in the blood plasma of the newborn and the required fraction of oxygen in the NICU (r = 0.41; p = 0.001), duration of stay in the NICU (r = 0.31; p = 0.019), and the severity of the newborn’s condition according to the NEOMOD scale (r = 0.36; p = 0.005).
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Isolation of RNA from Peripheral Blood Plasma Samples
4.3. Deep Sequencing of miRNA
4.4. Reverse Transcription and Quantitative Real-Time PCR
4.5. Statistical Data Processing
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tantbirojn, P.; Crum, C.P.; Parast, M.M. Pathophysiology of Placenta Creta: The Role of Decidua and Extravillous Trophoblast. Placenta 2008, 29, 639–645. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists, and Society for Maternal-Fetal Medicine. Obstetric Care Consensus No. 7: Placenta Accreta Spectrum. Obstet. Gynecol. 2018, 132, e259–e275. [Google Scholar] [CrossRef]
- Jauniaux, E.; Bunce, C.; Grønbeck, L.; Langhoff-Roos, J. Prevalence and Main Outcomes of Placenta Accreta Spectrum: A Systematic Review and Meta-Analysis. Am. J. Obstet. Gynecol. 2019, 221, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Hull, A.D.; Moore, T.R. Multiple Repeat Cesareans and the Threat of Placenta Accreta: Incidence, Diagnosis, Management. Clin. Perinatol. 2011, 38, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, H.J.; Patterson, J.A.; Nippita, T.A.; Torvaldsen, S.; Ibiebele, I.; Simpson, J.M.; Ford, J.B. Antecedents of Abnormally Invasive Placenta in Primiparous Women: Risk Associated with Gynecologic Procedures. Obstet. Gynecol. 2018, 131, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Kocherginsky, M.; Hibbard, J.U. Abnormal Placentation: Twenty-Year Analysis. Am. J. Obstet. Gynecol. 2005, 192, 1458–1461. [Google Scholar] [CrossRef]
- Spillane, N.T.; Zamudio, S.; Alvarez-Perez, J.; Andrews, T.; Nyirenda, T.; Alvarez, M.; Al-Khan, A. Increased Incidence of Respiratory Distress Syndrome in Neonates of Mothers with Abnormally Invasive Placentation. PLoS ONE 2018, 13, e0201266. [Google Scholar] [CrossRef]
- Munoz, J.L.; Kimura, A.M.; Julia, J.; Tunnell, C.; Hernandez, B.; Curbelo, J.; Ramsey, P.S.; Ireland, K.E. Impact of Placenta Accreta Spectrum (PAS) Pathology on Neonatal Respiratory Outcomes in Cesarean Hysterectomies. J. Matern.-Fetal Neonatal Med. 2022, 35, 10692–10697. [Google Scholar] [CrossRef]
- Haram, K.; Mortensen, J.H.S.; Wollen, A.-L. Preterm Delivery: An Overview. Acta Obstet. Gynecol. Scand. 2003, 82, 687–704. [Google Scholar] [CrossRef]
- Patel, R.M. Short- and Long-Term Outcomes for Extremely Preterm Infants. Am. J. Perinatol. 2016, 33, 318–328. [Google Scholar] [CrossRef]
- Doyle, L.W. Outcome at 5 Years of Age of Children 23 to 27 Weeks’ Gestation: Refining the Prognosis. Pediatrics 2001, 108, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Saigal, S.; Doyle, L.W. An Overview of Mortality and Sequelae of Preterm Birth from Infancy to Adulthood. Lancet 2008, 371, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Balashova, E.N.; Ionov, O.V.; Kirtbaya, A.R.; Nikonets, A.D.; Mikheeva, A.A.; Vasilchenko, O.N.; Zubkov, V.V.; Shmakov, R.G.; Degtyarev, D.N. The Features of Respiratory and Cardiovascular Disorders in Preterm Infants Born to Mothers with Abnormally Invasive Placenta. Obstet. Gynegology 2021, 5, 85–93. [Google Scholar] [CrossRef]
- Jobe, A.H.; Soll, R.F. Choice and Dose of Corticosteroid for Antenatal Treatments. Am. J. Obstet. Gynecol. 2004, 190, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Gyamfi-Bannerman, C.; Thom, E.A.; Blackwell, S.C.; Tita, A.T.N.; Reddy, U.M.; Saade, G.R.; Rouse, D.J.; McKenna, D.S.; Clark, E.A.S.; Thorp, J.M.J.; et al. Antenatal Betamethasone for Women at Risk for Late Preterm Delivery. N. Engl. J. Med. 2016, 374, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Ballard, P.L.; Ballard, R.A. Scientific Basis and Therapeutic Regimens for Use of Antenatal Glucocorticoids. Am. J. Obstet. Gynecol. 1995, 173, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.J.; Ramson, J.A.; Brownfoot, F.C. Different Corticosteroids and Regimens for Accelerating Fetal Lung Maturation for Babies at Risk of Preterm Birth. Cochrane Database Syst. Rev. 2022, 8, CD006764. [Google Scholar] [CrossRef]
- Nikonets, A.D.; Balashova, E.N.; Ionov, O.V.; Kirtbaya, A.R.; Zubkov, V.V.; Shmakov, R.G.; Degtyarev, D.N. Prevention of Respiratory Disorders in Late Preterm Neonates Born to Mothers with Abnormally Invasive Placenta. Obstet. Gynegology 2024, 1, 90–100. [Google Scholar] [CrossRef]
- Timofeeva, A.V.; Fedorov, I.S.; Suhova, Y.V.; Tarasova, A.M.; Ezhova, L.S.; Zabelina, T.M.; Vasilchenko, O.N.; Ivanets, T.Y.; Sukhikh, G.T. Diagnostic Role of Cell-Free MiRNAs in Identifying Placenta Accreta Spectrum during First-Trimester Screening. Int. J. Mol. Sci. 2024, 25, 871. [Google Scholar] [CrossRef]
- Timofeeva, A.V.; Fedorov, I.S.; Pirogova, M.M.; Vasilchenko, O.N.; Chagovets, V.V.; Ezhova, L.S.; Zabelina, T.M.; Shmakov, R.G.; Sukhikh, G.T. Clusterin and Its Potential Regulatory MicroRNAs as a Part of Secretome for the Diagnosis of Abnormally Invasive Placenta: Accreta, Increta, and Percreta Cases. Life 2021, 11, 270. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grässer, F.A.; Lenhof, H.-P.; et al. An Estimate of the Total Number of True Human MiRNAs. Nucleic Acids Res. 2019, 47, 3353–3364. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [PubMed]
- Gebert, L.F.R.; MacRae, I.J. Regulation of MicroRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K. Anatomy of Four Human Argonaute Proteins. Nucleic Acids Res. 2022, 50, 6618–6638. [Google Scholar] [CrossRef]
- Kloosterman, W.P.; Plasterk, R.H.A. The Diverse Functions of MicroRNAs in Animal Development and Disease. Dev. Cell 2006, 11, 441–450. [Google Scholar] [CrossRef]
- Morales-Prieto, D.M.; Ospina-Prieto, S.; Chaiwangyen, W.; Schoenleben, M.; Markert, U.R. Pregnancy-Associated MiRNA-Clusters. J. Reprod. Immunol. 2013, 97, 51–61. [Google Scholar] [CrossRef]
- Reza, A.M.M.T.; Choi, Y.-J.; Han, S.G.; Song, H.; Park, C.; Hong, K.; Kim, J.-H. Roles of MicroRNAs in Mammalian Reproduction: From the Commitment of Germ Cells to Peri-Implantation Embryos. Biol. Rev. Camb. Philos. Soc. 2019, 94, 415–438. [Google Scholar] [CrossRef]
- Hayder, H.; O’Brien, J.; Nadeem, U.; Peng, C. MicroRNAs: Crucial Regulators of Placental Development. Reproduction 2018, 155, R259–R271. [Google Scholar] [CrossRef]
- Timofeeva, A.V.; Fedorov, I.S.; Shamina, M.A.; Chagovets, V.V.; Makarova, N.P.; Kalinina, E.A.; Nazarenko, T.A.; Sukhikh, G.T. Clinical Relevance of Secreted Small Noncoding RNAs in an Embryo Implantation Potential Prediction at Morula and Blastocyst Development Stages. Life 2021, 11, 1328. [Google Scholar] [CrossRef]
- Zhao, Z.; Moley, K.H.; Gronowski, A.M. Diagnostic Potential for MiRNAs as Biomarkers for Pregnancy-Specific Diseases. Clin. Biochem. 2013, 46, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, A.V.; Fedorov, I.S.; Sukhova, Y.V.; Ivanets, T.Y.; Sukhikh, G.T. Prediction of Early- and Late-Onset Pre-Eclampsia in the Preclinical Stage via Placenta-Specific Extracellular MiRNA Profiling. Int. J. Mol. Sci. 2023, 24, 8006. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, A.V.; Fedorov, I.S.; Brzhozovskiy, A.G.; Bugrova, A.E.; Chagovets, V.V.; Volochaeva, M.V.; Starodubtseva, N.L.; Frankevich, V.E.; Nikolaev, E.N.; Shmakov, R.G.; et al. MiRNAs and Their Gene Targets-A Clue to Differentiate Pregnancies with Small for Gestational Age Newborns, Intrauterine Growth Restriction, and Preeclampsia. Diagnostics 2021, 11, 729. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Cheng, H.H.; Tewari, M. MicroRNA Profiling: Approaches and Considerations. Nat. Rev. Genet. 2012, 13, 358–369. [Google Scholar] [CrossRef]
- Gantier, M.P.; McCoy, C.E.; Rusinova, I.; Saulep, D.; Wang, D.; Xu, D.; Irving, A.T.; Behlke, M.A.; Hertzog, P.J.; Mackay, F.; et al. Analysis of MicroRNA Turnover in Mammalian Cells Following Dicer1 Ablation. Nucleic Acids Res. 2011, 39, 5692–5703. [Google Scholar] [CrossRef]
- McGoldrick, E.; Stewart, F.; Parker, R.; Dalziel, S.R. Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database Syst. Rev. 2020, 12, CD004454. [Google Scholar] [CrossRef]
- Saccone, G.; Berghella, V. Antenatal Corticosteroids for Maturity of Term or near Term Fetuses: Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMJ 2016, 355, i5044. [Google Scholar] [CrossRef]
- Pan, J.; Ho, M. Role of Glypican-1 in Regulating Multiple Cellular Signaling Pathways. Am. J. Physiol. Cell Physiol. 2021, 321, C846–C858. [Google Scholar] [CrossRef]
- Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted Role of MTOR (Mammalian Target of Rapamycin) Signaling Pathway in Human Health and Disease. Signal Transduct. Target. Ther. 2023, 8, 375. [Google Scholar] [CrossRef]
- Van Acker, T.; Tavernier, J.; Peelman, F. The Small GTPase Arf6: An Overview of Its Mechanisms of Action and of Its Role in Host–Pathogen Interactions and Innate Immunity. Int. J. Mol. Sci. 2019, 20, 2209. [Google Scholar] [CrossRef]
- Shackelford, D.B.; Shaw, R.J. The LKB1-AMPK Pathway: Metabolism and Growth Control in Tumour Suppression. Nat. Rev. Cancer 2009, 9, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, A. Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 6434. [Google Scholar] [CrossRef] [PubMed]
- Toussia-Cohen, S.; Castel, E.; Friedrich, L.; Mor, N.; Ohayon, A.; Levin, G.; Meyer, R. Neonatal Outcomes in Pregnancies Complicated by Placenta Accreta- a Matched Cohort Study. Arch. Gynecol. Obstet. 2024, 310, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Perepelitsa, S.A. Acute Respiratory Distress Syndrome in Preterm Newborns (Morphological Study). Gen. Reanimatol. 2020, 16, 35–44. [Google Scholar] [CrossRef]
- Heidemann, S.M.; Nair, A.; Bulut, Y.; Sapru, A. Pathophysiology and Management of Acute Respiratory Distress Syndrome in Children. Pediatr. Clin. N. Am. 2017, 64, 1017–1037. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.R.; Matthay, M.A. Acute Lung Injury: Epidemiology, Pathogenesis, and Treatment. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 243–252. [Google Scholar] [CrossRef]
- Ragaller, M.; Richter, T. Acute Lung Injury and Acute Respiratory Distress Syndrome. J. Emerg. Trauma. Shock 2010, 3, 43–51. [Google Scholar] [CrossRef]
- Huang, Q.; Le, Y.; Li, S.; Bian, Y. Signaling Pathways and Potential Therapeutic Targets in Acute Respiratory Distress Syndrome (ARDS). Respir. Res. 2024, 25, 30. [Google Scholar] [CrossRef]
- Lu, Q.; Yu, S.; Meng, X.; Shi, M.; Huang, S.; Li, J.; Zhang, J.; Liang, Y.; Ji, M.; Zhao, Y.; et al. MicroRNAs: Important Regulatory Molecules in Acute Lung Injury/Acute Respiratory Distress Syndrome. Int. J. Mol. Sci. 2022, 23, 5545. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Pattarayan, D.; Rajaguru, P.; Sudhakar Gandhi, P.S.; Thimmulappa, R.K. MicroRNA Regulation of Acute Lung Injury and Acute Respiratory Distress Syndrome. J. Cell. Physiol. 2016, 231, 2097–2106. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, H.; Zhang, J.-L.; Zheng, Z.; Wang, H.-T.; Tao, K.; Han, S.-C.; Su, L.-L.; Hu, D. Acute Downregulation of MiR-199a Attenuates Sepsis-Induced Acute Lung Injury by Targeting SIRT1. Am. J. Physiol. Cell Physiol. 2018, 314, C449–C455. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, X.; Dong, X.; Yang, Y.; Liu, L. MiR-199a-3p-Regulated Alveolar Macrophage-Derived Secretory Autophagosomes Exacerbate Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome. Front. Cell. Infect. Microbiol. 2022, 12, 1061790. [Google Scholar] [CrossRef] [PubMed]
- Deprez, M.; Zaragosi, L.-E.; Truchi, M.; Becavin, C.; Ruiz García, S.; Arguel, M.-J.; Plaisant, M.; Magnone, V.; Lebrigand, K.; Abelanet, S.; et al. A Single-Cell Atlas of the Human Healthy Airways. Am. J. Respir. Crit. Care Med. 2020, 202, 1636–1645. [Google Scholar] [CrossRef] [PubMed]
- Jardine, L.; Haniffa, M. Human Lung Macrophages: Roll up for the MISTRG Tour. Immunity 2021, 54, 194–196. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Dong, X.; Qiu, H.; Yang, Y.; Liu, L. Secretory Autophagosomes from Alveolar Macrophages Exacerbate Acute Respiratory Distress Syndrome by Releasing IL-1β. J. Inflamm. Res. 2022, 15, 127–140. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, Y.; Li, C.; Zhao, Y.; Wang, Q.; Zhang, X. PAK4 Suppresses TNF-Induced Release of Endothelial Microparticles in HUVECs Cells. Aging 2020, 12, 12740–12749. [Google Scholar] [CrossRef]
- Mishra, R.; Benlhabib, H.; Guo, W.; Lerma Cervantes, C.B.; Mendelson, C.R. Developmental Decline in the MicroRNA 199a (MiR-199a)/MiR-214 Cluster in Human Fetal Lung Promotes Type II Cell Differentiation by Upregulating Key Transcription Factors. Mol. Cell. Biol. 2018, 38, e00037-18. [Google Scholar] [CrossRef]
- Wright, J.R. Immunoregulatory Functions of Surfactant Proteins. Nat. Rev. Immunol. 2005, 5, 58–68. [Google Scholar] [CrossRef]
- Lawson, P.R.; Reid, K.B. The Roles of Surfactant Proteins A and D in Innate Immunity. Immunol. Rev. 2000, 173, 66–78. [Google Scholar] [CrossRef]
- Condon, J.C.; Jeyasuria, P.; Faust, J.M.; Mendelson, C.R. Surfactant Protein Secreted by the Maturing Mouse Fetal Lung Acts as a Hormone That Signals the Initiation of Parturition. Proc. Natl. Acad. Sci. USA 2004, 101, 4978–4983. [Google Scholar] [CrossRef]
- Montalbano, A.P.; Hawgood, S.; Mendelson, C.R. Mice Deficient in Surfactant Protein A (SP-A) and SP-D or in TLR2 Manifest Delayed Parturition and Decreased Expression of Inflammatory and Contractile Genes. Endocrinology 2013, 154, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Rabbitt, E.H.; Condon, J.C.; Renthal, N.E.; Johnston, J.M.; Mitsche, M.A.; Chambon, P.; Xu, J.; O’Malley, B.W.; Mendelson, C.R. Steroid Receptor Coactivators 1 and 2 Mediate Fetal-to-Maternal Signaling That Initiates Parturition. J. Clin. Investig. 2015, 125, 2808–2824. [Google Scholar] [CrossRef] [PubMed]
- Bird, A.D.; Flecknoe, S.J.; Tan, K.H.; Olsson, P.F.; Antony, N.; Mantamadiotis, T.; Mollard, R.; Hooper, S.B.; Cole, T.J. CAMP Response Element Binding Protein Is Required for Differentiation of Respiratory Epithelium during Murine Development. PLoS ONE 2011, 6, e17843. [Google Scholar] [CrossRef] [PubMed]
- Roos, A.B.; Berg, T.; Barton, J.L.; Didon, L.; Nord, M. Airway Epithelial Cell Differentiation during Lung Organogenesis Requires C/EBPα and C/EBPβ. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2012, 241, 911–923. [Google Scholar] [CrossRef]
- Garg, M. Targeting MicroRNAs in Epithelial-to-Mesenchymal Transition-Induced Cancer Stem Cells: Therapeutic Approaches in Cancer. Expert Opin. Ther. Targets 2015, 19, 285–297. [Google Scholar] [CrossRef]
- Greening, D.W.; Gopal, S.K.; Mathias, R.A.; Liu, L.; Sheng, J.; Zhu, H.-J.; Simpson, R.J. Emerging Roles of Exosomes during Epithelial-Mesenchymal Transition and Cancer Progression. Semin. Cell Dev. Biol. 2015, 40, 60–71. [Google Scholar] [CrossRef]
- Bartels, H.C.; Postle, J.D.; Downey, P.; Brennan, D.J. Placenta Accreta Spectrum: A Review of Pathology, Molecular Biology, and Biomarkers. Dis. Markers 2018, 2018, 1507674. [Google Scholar] [CrossRef]
- Das, V.; Bhattacharya, S.; Chikkaputtaiah, C.; Hazra, S.; Pal, M. The Basics of Epithelial–Mesenchymal Transition (EMT): A Study from a Structure, Dynamics, and Functional Perspective. J. Cell. Physiol. 2019, 234, 14535–14555. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The Basics of Epithelial-Mesenchymal Transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, J.; He, L.; Stiles, B.L. PTEN: Tumor Suppressor and Metabolic Regulator. Front. Endocrinol. 2018, 9, 338. [Google Scholar] [CrossRef]
- Makker, A.; Goel, M.M.; Nigam, D.; Mahdi, A.A.; Das, V.; Agarwal, A.; Pandey, A.; Gautam, A. Aberrant Akt Activation During Implantation Window in Infertile Women With Intramural Uterine Fibroids. Reprod. Sci. 2018, 25, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Tao, T.; Yin, Y.; Zhao, L.; Yang, L.; Hu, L. MiR-144 May Regulate the Proliferation, Migration and Invasion of Trophoblastic Cells through Targeting PTEN in Preeclampsia. Biomed. Pharmacother. 2017, 94, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.-X.; Zhou, X.-T.; Tian, Q.-C.; Xie, H.-Q.; Zhang, J.-Y. Low Expression of MicroRNA-21 Inhibits Trophoblast Cell Infiltration Through Targeting PTEN. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 6181–6189. [Google Scholar] [CrossRef]
- Tian, Y.; Li, H.; Qiu, T.; Dai, J.; Zhang, Y.; Chen, J.; Cai, H. Loss of PTEN Induces Lung Fibrosis via Alveolar Epithelial Cell Senescence Depending on NF-ΚB Activation. Aging Cell 2019, 18, e12858. [Google Scholar] [CrossRef]
- Murrieta-Coxca, J.M.; Barth, E.; Fuentes-Zacarias, P.; Gutiérrez-Samudio, R.N.; Groten, T.; Gellhaus, A.; Köninger, A.; Marz, M.; Markert, U.R.; Morales-Prieto, D.M. Identification of Altered MiRNAs and Their Targets in Placenta Accreta. Front. Endocrinol. 2023, 14, 1021640. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Zheng, M.; Diao, Z.; Shen, L.; Liu, M.; Gong, P.; Sun, H.; Hu, Y. MiR-155* Mediates Suppressive Effect of PTEN 3’-Untranslated Region on AP-1/NF-ΚB Pathway in HTR-8/SVneo Cells. Placenta 2013, 34, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Dini, P.; Daels, P.; Loux, S.C.; Esteller-Vico, A.; Carossino, M.; Scoggin, K.E.; Ball, B.A. Kinetics of the Chromosome 14 MicroRNA Cluster Ortholog and Its Potential Role during Placental Development in the Pregnant Mare. BMC Genom. 2018, 19, 954. [Google Scholar] [CrossRef]
- Dini, P.; El-Sheikh Ali, H.; Carossino, M.; Loux, S.C.; Esteller-Vico, A.; E. Scoggin, K.; Daels, P.; A. Ball, B. Expression Profile of the Chromosome 14 MicroRNA Cluster (C14MC) Ortholog in Equine Maternal Circulation throughout Pregnancy and Its Potential Implications. Int. J. Mol. Sci. 2019, 20, 6285. [Google Scholar] [CrossRef]
- Xing, Y.; Fu, J.; Yang, H.; Yao, L.; Qiao, L.; Du, Y.; Xue, X. MicroRNA Expression Profiles and Target Prediction in Neonatal Wistar Rat Lungs During the Development of Bronchopulmonary Dysplasia. Int. J. Mol. Med. 2015, 36, 1253–1263. [Google Scholar] [CrossRef]
- Lv, Y.; Li, Y.; Wang, J.; Li, M.; Zhang, W.; Zhang, H.; Shen, Y.; Li, C.; Du, Y.; Jiang, L. MiR-382-5p Suppresses M1 Macrophage Polarization and Inflammatory Response in Response to Bronchopulmonary Dysplasia through Targeting CDK8: Involving Inhibition of STAT1 Pathway. Genes Cells 2021, 26, 772–781. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, H.; Chen, B. Identification of Macrophage-Related Genes in Sepsis-Induced ARDS Using Bioinformatics and Machine Learning. Sci. Rep. 2023, 13, 9876. [Google Scholar] [CrossRef] [PubMed]
- Dang, W.; Tao, Y.; Xu, X.; Zhao, H.; Zou, L.; Li, Y. The Role of Lung Macrophages in Acute Respiratory Distress Syndrome. Inflamm. Res. 2022, 71, 1417–1432. [Google Scholar] [CrossRef] [PubMed]
- Locati, M.; Curtale, G.; Mantovani, A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu. Rev. Pathol. 2020, 15, 123–147. [Google Scholar] [CrossRef]
- Chen, X.; Tang, J.; Shuai, W.; Meng, J.; Feng, J.; Han, Z. Macrophage Polarization and Its Role in the Pathogenesis of Acute Lung Injury/Acute Respiratory Distress Syndrome. Inflamm. Res. 2020, 69, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.-A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage Plasticity, Polarization, and Function in Health and Disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wei, H.; Sheng, Y.; Peng, T.; Zhao, Q.; Xie, L.; Yang, J. Circ_0006640 Transferred by Bone Marrow-Mesenchymal Stem Cell-Exosomes Suppresses Lipopolysaccharide-Induced Apoptotic, Inflammatory and Oxidative Injury in Spinal Cord Injury. J. Orthop. Surg. Res. 2024, 19, 50. [Google Scholar] [CrossRef]
- Hellström, A.; Ley, D.; Hansen-Pupp, I.; Hallberg, B.; Löfqvist, C.; van Marter, L.; van Weissenbruch, M.; Ramenghi, L.A.; Beardsall, K.; Dunger, D.; et al. Insulin-like Growth Factor 1 Has Multisystem Effects on Foetal and Preterm Infant Development. Acta Paediatr. 2016, 105, 576–586. [Google Scholar] [CrossRef]
- Catalucci, D.; Latronico, M.V.G.; Condorelli, G. MicroRNAs Control Gene Expression: Importance for Cardiac Development and Pathophysiology. Ann. N. Y. Acad. Sci. 2008, 1123, 20–29. [Google Scholar] [CrossRef]
- Neppl, R.L.; Wang, D.-Z. The Myriad Essential Roles of MicroRNAs in Cardiovascular Homeostasis and Disease. Genes Dis. 2014, 1, 18–39. [Google Scholar] [CrossRef]
- Joris, V.; Gomez, E.L.; Menchi, L.; Lobysheva, I.; Di Mauro, V.; Esfahani, H.; Condorelli, G.; Balligand, J.-L.; Catalucci, D.; Dessy, C. MicroRNA-199a-3p and MicroRNA-199a-5p Take Part to a Redundant Network of Regulation of the NOS (NO Synthase)/NO Pathway in the Endothelium. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2345–2357. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Gladwin, M.T.; Weitzberg, E. Strategies to Increase Nitric Oxide Signalling in Cardiovascular Disease. Nat. Rev. Drug Discov. 2015, 14, 623–641. [Google Scholar] [CrossRef] [PubMed]
- The R Development Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.r-project.org (accessed on 10 March 2021).
- RStudio Team. RStudio: Integrated Development for R. RStudio. Available online: http://www.rstudio.com/ (accessed on 23 March 2021).
miRNA | BaseMean | log2FoldChange | lfcSE* | p-Value | |
---|---|---|---|---|---|
1 | hsa-miR-215-5p | 98.7 | 5.8 | 1.2 | 4.2 × 10−6 |
2 | hsa-miR-516b-5p | 215.1 | 5.2 | 1.1 | 6.8 × 10−6 |
3 | hsa-miR-182-5p | 55.2 | 4.7 | 1.1 | 2.0 × 10−5 |
4 | hsa-miR-183-5p | 143.4 | 4.1 | 1.0 | 6.6 × 10−5 |
5 | hsa-miR-192-5p | 503.9 | 1.6 | 0.4 | <0.001 |
6 | hsa-miR-1323 | 30.6 | 3.8 | 1.1 | 0.001 |
7 | hsa-miR-760 | 15.0 | −3.2 | 1.0 | 0.001 |
8 | hsa-let-7f-5p | 992.7 | 2.2 | 0.7 | 0.002 |
9 | hsa-miR-26a-5p | 1195.9 | 1.7 | 0.6 | 0.003 |
10 | hsa-miR-199a-3p | 320.7 | −1.8 | 0.6 | 0.004 |
11 | hsa-miR-200c-3p | 121.4 | −4.1 | 1.4 | 0.004 |
12 | hsa-miR-199b-3p | 160.3 | −1.7 | 0.6 | 0.004 |
13 | hsa-let-7g-5p | 1207.6 | 1.8 | 0.6 | 0.005 |
14 | hsa-miR-10a-5p | 1121.6 | 2.7 | 1.0 | 0.006 |
15 | hsa-miR-146b-5p | 130.2 | 1.4 | 0.5 | 0.007 |
16 | hsa-miR-99b-3p | 8.9 | −3.4 | 1.2 | 0.008 |
17 | hsa-miR-218-5p | 9.3 | −4.0 | 1.6 | 0.011 |
18 | hsa-miR-150-5p | 24.7 | 1.4 | 0.6 | 0.019 |
19 | hsa-miR-29a-3p | 35.6 | 1.9 | 0.8 | 0.021 |
20 | hsa-miR-181b-5p | 124.9 | −2.3 | 1.0 | 0.028 |
21 | hsa-miR-378c | 8.8 | 1.8 | 0.8 | 0.029 |
22 | hsa-miR-26b-5p | 102.9 | 1.2 | 0.5 | 0.029 |
23 | hsa-miR-30e-3p | 45.6 | 1.5 | 0.7 | 0.031 |
24 | hsa-miR-483-3p | 37.4 | 2.1 | 0.9 | 0.032 |
25 | hsa-miR-194-5p | 209.4 | 1.6 | 0.7 | 0.033 |
26 | hsa-miR-99a-5p | 1362.0 | −1.4 | 0.7 | 0.037 |
27 | hsa-miR-2110 | 38.6 | −1.9 | 0.9 | 0.038 |
28 | hsa-let-7d-3p | 244.3 | 1.2 | 0.6 | 0.041 |
29 | hsa-miR-382-5p | 125.1 | −2.2 | 1.2 | 0.045 |
Clinical Parameters | Control, Without CT (n = 11), I Group | PAS, Without CT (n = 10), II Group | PAS, CT More Than 14 Days Before Delivery (n = 13), III Group | PAS, CT During 7–14 Days Before Delivery (n = 25), IV Group | PAS, CT During 2–7 Days Before Delivery (n = 21), V Group | Wilcoxon–Mann–Whitney U Test, p-Value | |||
---|---|---|---|---|---|---|---|---|---|
I Group vs. II Group | I Group vs. III Group | I Group vs. IV Group | I Group vs. V Group | ||||||
Weight of newborn, g | 2250.0 (1965.0; 2437.5) | 2795.5 (2542.0; 3042.2) | 2520.0 (2390.0; 2652.0) | 2863.0 (2780.0; 3030.0) | 2850.0 (2730.0; 2960.0) | 0.001 | 0.089 | <0.001 | 0.001 |
Apgar score, 1 min | 8.0 (7.0; 8.0) | 7.0 (7.0; 8.0) | 8.0 (7.0; 8.0) | 8.0 (7.0; 8.0) | 8.0 (7.0; 8.0) | 0.205 | 0.702 | 0.606 | 0.973 |
Apgar score, 5 min | 8.0 (8.0; 9.0) | 8.0 (8.0; 8.0) | 8.0 (8.0; 8.0) | 8.0 (8.0; 9.0) | 8.0 (8.0; 9.0) | 0.084 | 0.067 | 0.425 | 0.447 |
WBC | 11.4 (9.7; 12.6) | 12.2 (9.9; 18.0) | 10.4 (9.3; 13.3) | 14.1 (9.5; 16.9) | 13.2 (10.6; 16.5) | 0.417 | 0.757 | 0.207 | 0.189 |
ACHN | 4225.0 (3806.5; 4561.0) | 4776.5 (3236.2; 8941.0) | 3872.0 (3448.0; 5440.0) | 5664.0 (4323.0; 7874.0) | 6190.0 (4131.0; 7722.0) | 0.475 | 0.937 | 0.148 | 0.155 |
Ni | 0.07 (0.04; 0.08) | 0.05 (0.02; 0.11) | 0.06 (0.03; 0.09) | 0.07 (0.03; 0.11) | 0.06 (0.05; 0.09) | 0.659 | 0.781 | 0.714 | 0.979 |
RBC | 4.5 (4.3; 4.8) | 4.7 (4.1; 4.9) | 4.7 (4.4; 4.8) | 4.4 (4.0; 4.8) | 4.6 (4.4; 4.8) | 1.000 | 0.938 | 0.48 | 0.75 |
RDW-CV | 16.0 (15.3; 17.2) | 15.7 (15.2; 16.2) | 15.8 (15.4; 16.6) | 15.8 (15.4; 16.1) | 15.8 (15.3; 16.5) | 0.769 | 0.721 | 0.437 | 0.652 |
RDW-SD | 63.1 (61.9; 67.9) | 57.4 (51.8; 59.3) | 58.8 (55.9; 60.4) | 58.9 (56.7; 59.7) | 60.1 (57.7; 62.9) | 0.007 | 0.047 | 0.009 | 0.08 |
MCV | 105.8 (105.0; 108.3) | 98.0 (95.3; 102.1) | 101.4 (99.4; 103.2) | 102.2 (98.5; 103.3) | 101.9 (100.4; 105.6) | 0.001 | 0.008 | 0.002 | 0.027 |
HGB, g/L | 163.0 (155.5; 180.5) | 161.0 (145.5; 167.7) | 168.0 (158.0; 179.0) | 158.0 (146.0; 173.0) | 168.0 (161.0; 171.0) | 0.806 | 0.936 | 0.583 | 0.121 |
MCH | 36.6 (35.8; 38.2) | 35.0 (34.0; 35.4) | 36.2 (35.2; 36.7) | 35.5 (35.1; 36.5) | 35.9 (35.1; 36.6) | 0.010 | 0.427 | 0.068 | 0.185 |
MCHC | 34.6 (34.5; 34.9) | 35.4 (35.0; 36.2) | 35.7 (35.2; 36.1) | 35.4 (35.0; 35.7) | 35.1 (34.6; 35.6) | 0.050 | 0.039 | 0.079 | 0.287 |
HTC | 47.3 (45.1; 52.1) | 42.7 (40.0; 49.5) | 47.2 (45.1; 49.8) | 44.8 (41.2; 50.6) | 47.7 (46.4; 48.9) | 0.130 | 0.606 | 0.171 | 0.958 |
Platelets | 324.0 (288.0; 356.0) | 323.0 (280.2; 399.0) | 281.0 (224.0; 335.0) | 354.0 (317.0; 402.0) | 339.0 (296.0; 413.0) | 0.696 | 0.428 | 0.092 | 0.533 |
MPV | 9.7 (9.0; 9.9) | 9.4 (9.2; 9.6) | 9.8 (9.4; 10.0) | 9.5 (8.9; 10.0) | 9.6 (9; 10.1) | 0.302 | 0.720 | 1.000 | 0.811 |
PTC | 0.3 (0.2; 0.3) | 0.3 (0.2; 0.3) | 0.2 (0.2; 0.3) | 0.3 (0.3; 0.4) | 0.3 (0.2; 0.4) | 0.883 | 0.341 | 0.283 | 0.594 |
PDW | 10.4 (9.5; 10.5) | 9.7 (8.9; 10.8) | 10.2 (9.5; 10.7) | 9.1 (8.6; 10.0) | 9.8 (9; 10.1) | 0.807 | 0.873 | 0.273 | 0.381 |
PLCR | 22.3 (17.6; 24.0) | 19.9 (18.5; 23.1) | 22.8 (19.2; 24.5) | 19.7 (15.9; 24.2) | 21.0 (17.8; 25.1) | 0.660 | 0.751 | 0.789 | 1.000 |
DHR | 2.0 (1.0; 4.0) | 4.5 (3.0; 6.0) | 5.0 (2.0; 6.0) | 2.0 (2.0; 4.0) | 2.0 (2.0; 3.0) | 0.115 | 0.118 | 0.591 | 0.978 |
HD | 13.0 (9.0; 14.5) | 10.0 (8.0; 14.0) | 11.0 (11.0; 13.0) | 10.0 (7.0; 15.0) | 9.0 (7.0; 11.0) | 0.305 | 0.937 | 0.315 | 0.770 |
miR-382-5p | |||
---|---|---|---|
ID Group | Group Name | RT-PCR Data | Control Group (1) vs. Groups (2–7) |
Me (Q1; Q3) | Wilcoxon-Mann-Whitney U Test, p-Value * | ||
1 | Control, wo CT | −13.2 (−13.3; −12.9) | 1.000 |
2 | Accreta, wo CT | −11.1 (−11.4; −10.1) | 0.006 |
3 | Accreta, 2 < CT < 14 days | −11.9 (−12.8; −11.4) | 0.148 |
4 | Increta, wo CT | −10.5 (−10.9; −9.9) | 0.005 |
5 | Increta, 2 < CT < 14 days | −11.6 (−12.1; −11.1) | 0.036 |
6 | Percreta, wo CT | −11.3 (−12.3; −10.8) | 0.075 |
7 | Percreta, 2 < CT < 14 days | −11.9 (−12.5; −11.6) | 0.061 |
miR-199a-3p | |||
1 | Control, wo CT | −11.4 (−11.8; −10.9) | 1.000 |
2 | Accreta, wo CT | −9.8 (−9.9; −9.7) | 0.006 |
3 | Accreta, 2 < CT < 14 days | −10.0 (−10.4; −9.9) | 0.106 |
4 | Increta, wo CT | −9.5 (−10.0; −9.0) | 0.005 |
5 | Increta, 2 < CT < 14 days | −10.1 (−10.4; −9.7) | 0.062 |
6 | Percreta, wo CT | −11.0 (−11.4; −10.3) | 0.330 |
7 | Percreta, 2 < CT < 14 days | −10.5 (−11.7; −10.1) | 0.470 |
miR-382-5p | |||
---|---|---|---|
ID Group | Group Name | RT-PCR Data | Control Group (1) vs. Groups (2–7) |
Me (Q1; Q3) | Wilcoxon-Mann-Whitney U test, p-Value * | ||
1 | Control, wo CT | −19.2 (−19.3; −19.0) | 1.000 |
2 | Accreta, wo CT | −18.0 (−19.1; −17.0) | 0.180 |
3 | Accreta, 2 < CT < 14 days | −18.9 (−19.1; −18.2) | 0.070 |
4 | Increta, wo CT | −19.0 (−19.2; −18.8) | 0.110 |
5 | Increta, 2 < CT < 14 days | −18.7 (−19.0; −16.2) | 0.020 |
6 | Percreta, wo CT | −19.1 (−19.2; −18.9) | 0.470 |
7 | Percreta, 2 < CT < 14 days | −18.9 (−19.0; −16.5) | 0.024 |
miR-199a-3p | |||
1 | Control, wo CT | −15.5 (−15.8; −15.3) | 1.000 |
2 | Accreta, wo CT | −13.3 (−13.8; −12.9) | <0.001 |
3 | Accreta, 2 < CT < 14 days | −13.3 (−13.8; −13.1) | <0.001 |
4 | Increta, wo CT | −13.0 (−14.0; −12.3) | <0.001 |
5 | Increta, 2 < CT < 14 days | −14.0 (−14.9; −13.3) | 0.002 |
6 | Percreta, wo CT | −14.3 (−14.8; −13.6) | <0.001 |
7 | Percreta, 2 < CT < 14 days | −14.2 (−15.1; −13.8) | 0.015 |
miR-199a-3p | Control Group (1) vs. Groups (2,3) | ||
---|---|---|---|
ID Group | Group Name | Me (Q1; Q3) | p-Value * |
1 | Control, wo CT | 4.3 (3.8; 5.3) | 1.000 |
2 | PAS, wo CT | 3.5 (2.9; 4.0) | 0.007 |
3 | PAS, 2 < CT < 14 days | 3.6 (2.9; 4.4) | 0.122 |
miR-382-5p | miR-199a-3p | |||||||
---|---|---|---|---|---|---|---|---|
RT-PCR Data, −ΔCt | p-Value *, Mann-Whitney U Test | RT-PCR Data, −ΔCt | p-Value *, Mann-Whitney U Test | |||||
Groups According to the Neomod Scale | Me | Q1 | Q3 | Neomod, 0 | Me | Q1 | Q3 | Neomod, 0 |
Neomod, 0 | −12.1 | −12.8 | −11.8 | 1.000 | −10.3 | −11.0 | −10.1 | 1.000 |
Neomod, 1 | −11.7 | −12.8 | −11.0 | 0.251 | −10.3 | −11.1 | −9.6 | 0.672 |
Neomod, 2 | −11.2 | −11.5 | −10.1 | 0.073 | −9.7 | −10.1 | −9.3 | 0.180 |
Neomod, 4 | −11.2 | −11.6 | −10.8 | 0.013 | −10.2 | −10.5 | −9.8 | 0.886 |
Neomod, 5 | −11.4 | −11.6 | −10.8 | 0.050 | −10.1 | −10.9 | −9.4 | 0.927 |
Neomod, >4 | −11.2 | −11.6 | −10.8 | 0.009 | −10.2 | −10.5 | −9.8 | 0.855 |
Group | miR-181a-5p | miR-199a-3p | miR-382-5p | ||||
---|---|---|---|---|---|---|---|
ID Group | Group Name | Me (Q1; Q3) | Control Group (1) vs. Groups (2,3), p-Value * | Me (Q1; Q3) | Control Group (1) vs. Groups (2,3), p-Value * | Me (Q1; Q3) | Control Group (1) vs. Groups (2,3), p-Value * |
1 | Control, wo CT | −16.1 (−17.0; −15.9) | 1.000 | −15.5 (−15.8; −15.3) | 1.000 | −19.2 (−19.3; −19.0) | 1.000 |
2 | PAS, wo CT | −15.6 (−19.0; −14.3) | 0.340 | −13.7 (−14.7; −12.9) | <0.001 | −18.3 (−19.0; −17.1) | <0.001 |
3 | PAS, 2 < CT < 14 days | −17.9 (−19.0; −15.0) | 0.690 | −14.1 (−14.9; −13.3) | <0.001 | −18.9 (−19.0; −17.9) | 0.011 |
Figure 6A | Wald | p-Value | Coefficients | Threshold | Sensitivity | Specificity |
---|---|---|---|---|---|---|
1 Model | 0.642 | 0.42 | 1.00 | |||
(Intercept) | 1.879 | 0.060 | 0.974 | |||
miR-199a-3p | −3.281 | 0.001 | −0.548 | |||
2 Model | 0.202 | 1.00 | 0.44 | |||
(Intercept) | 1.706 | 0.088 | 1.540 | |||
miR-382-5p | 0.796 | 0.426 | 0.119 | |||
miR-199a-3p | −2.662 | 0.008 | −0.699 | |||
3 Model | 0.422 | 0.63 | 0.76 | |||
(Intercept) | −2.616 | 0.009 | −0.804 | |||
miR-382-5p | −2.049 | 0.040 | −0.206 | |||
Figure 6B | Wald | p-Value | Coefficients | Threshold | Sensitivity | Specificity |
1 Model | 0.160 | 0.95 | 0.49 | |||
(Intercept) | 1.887 | 0.050 | 1.046 | |||
miR-199a-3p | −3.473 | 0.001 | −0.635 | |||
2 Model | 0.150 | 1.00 | 0.47 | |||
(Intercept) | 2.005 | 0.045 | 2.127 | |||
miR-382-5p | 1.282 | 0.200 | 0.217 | |||
miR-199a-3p | −2.940 | 0.003 | −0.924 | |||
3 Model | 0.380 | 0.62 | 0.74 | |||
(Intercept) | −3.092 | 0.002 | −1.002 | |||
miR-382-5p | −2.031 | 0.042 | −0.217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeeva, A.V.; Fedorov, I.S.; Nikonets, A.D.; Tarasova, A.M.; Balashova, E.N.; Degtyarev, D.N.; Sukhikh, G.T. Increased Levels of hsa-miR-199a-3p and hsa-miR-382-5p in Maternal and Neonatal Blood Plasma in the Case of Placenta Accreta Spectrum. Int. J. Mol. Sci. 2024, 25, 13309. https://doi.org/10.3390/ijms252413309
Timofeeva AV, Fedorov IS, Nikonets AD, Tarasova AM, Balashova EN, Degtyarev DN, Sukhikh GT. Increased Levels of hsa-miR-199a-3p and hsa-miR-382-5p in Maternal and Neonatal Blood Plasma in the Case of Placenta Accreta Spectrum. International Journal of Molecular Sciences. 2024; 25(24):13309. https://doi.org/10.3390/ijms252413309
Chicago/Turabian StyleTimofeeva, Angelika V., Ivan S. Fedorov, Anastasia D. Nikonets, Alla M. Tarasova, Ekaterina N. Balashova, Dmitry N. Degtyarev, and Gennady T. Sukhikh. 2024. "Increased Levels of hsa-miR-199a-3p and hsa-miR-382-5p in Maternal and Neonatal Blood Plasma in the Case of Placenta Accreta Spectrum" International Journal of Molecular Sciences 25, no. 24: 13309. https://doi.org/10.3390/ijms252413309
APA StyleTimofeeva, A. V., Fedorov, I. S., Nikonets, A. D., Tarasova, A. M., Balashova, E. N., Degtyarev, D. N., & Sukhikh, G. T. (2024). Increased Levels of hsa-miR-199a-3p and hsa-miR-382-5p in Maternal and Neonatal Blood Plasma in the Case of Placenta Accreta Spectrum. International Journal of Molecular Sciences, 25(24), 13309. https://doi.org/10.3390/ijms252413309