Eastern Equine Encephalitis Virus: The Importance of Metabolism and Aging
Abstract
:1. Introduction
2. Eastern Equine Encephalitis Virus and the Very Low-Density Lipoprotein Receptor
3. Epidemiology and Clinical Manifestations of Eastern Equine Encephalitis Virus in Humans
4. Treatment Options and Public Health Implications
5. The Relationship Between Human Metabolism and Viral Diseases
6. Role of the NLRP3 Inflammasome in Viral Infections
7. Relevance of Immunosenescence and Inflammaging for the Infection with EEEV
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Morens, D.M.; Folkers, G.K.; Fauci, A.S. Eastern Equine Encephalitis Virus—Another Emergent Arbovirus in the United States. N. Engl. J. Med. 2019, 381, 1989–1992. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Lam, T.T.; Heberlein-Larson, L.A.; Smole, S.C.; Auguste, A.J.; Hennigan, S.; Halpin, R.A.; Fedorova, N.; Puri, V.; Stockwell, T.B.; et al. Large-Scale Complete-Genome Sequencing and Phylodynamic Analysis of Eastern Equine Encephalitis Virus Reveals Source-Sink Transmission Dynamics in the United States. J. Virol. 2018, 92, e00074-18. [Google Scholar] [CrossRef] [PubMed]
- Fagre, A.C.; Soto, R.A.; Magleby, R.; Cuadera, M.K.Q.; Sun, A.; Cervantes, K.; Crans, S.C.; Panella, N.A.; Kenney, J.L.; Angelus, A.; et al. Enhancing Eastern Equine Encephalitis Virus Surveillance in New Jersey: Optimized Collection of Culiseta melanura. J. Am. Mosq. Control Assoc. 2024, 40, 92–101. [Google Scholar] [CrossRef]
- Magalhaes, T.; Hamer, G.L.; de Carvalho-Leandro, D.; Ribeiro, V.M.L.; Turell, M.J. Uncertainties Surrounding Madariaga Virus, a Member of the Eastern Equine Encephalitis Virus Complex. Vector Borne Zoonotic Dis. 2024. [Google Scholar] [CrossRef]
- Bakhiyi, B.; Irace-Cima, A.; Ludwig, A.; Rakotoarinia, M.R.; Therrien, C.; Dusfour, I.; Adam-Poupart, A. Public health contributions of entomological surveillance of West Nile virus (WNV) and other mosquito-borne arboviruses in a context of climate change. Can. Commun. Dis. Rep. 2024, 50, 294–304. [Google Scholar] [CrossRef]
- Sohail, A.; Waqas, F.H.; Braubach, P.; Czichon, L.; Samir, M.; Iqbal, A.; de Araujo, L.; Pleschka, S.; Steinert, M.; Geffers, R.; et al. Differential transcriptomic host responses in the early phase of viral and bacterial infections in human lung tissue explants ex vivo. Respir. Res. 2024, 25, 369. [Google Scholar] [CrossRef] [PubMed]
- Verdin, E.; Hirschey, M.D.; Finley, L.W.; Haigis, M.C. Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling. Trends Biochem. Sci. 2010, 35, 669–675. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Jin, X.; Li, S.; Qiu, H.J. Crosstalk between Dysfunctional Mitochondria and Proinflammatory Responses during Viral Infections. Int. J. Mol. Sci. 2024, 25, 9206. [Google Scholar] [CrossRef] [PubMed]
- Prasada Kabekkodu, S.; Chakrabarty, S.; Jayaram, P.; Mallya, S.; Thangaraj, K.; Singh, K.K.; Satyamoorthy, K. Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion 2023, 69, 43–56. [Google Scholar] [CrossRef]
- Gay, L.; Desquiret-Dumas, V.; Nagot, N.; Rapenne, C.; Van de Perre, P.; Reynier, P.; Molès, J.P. Long-term persistence of mitochondrial dysfunctions after viral infections and antiviral therapies: A review of mechanisms involved. J. Med. Virol. 2024, 96, e29886. [Google Scholar] [CrossRef]
- Jiao, L.; Shao, W.; Quan, W.; Xu, L.; Liu, P.; Yang, J.; Peng, X. iPLA2β loss leads to age-related cognitive decline and neuroinflammation by disrupting neuronal mitophagy. J. Neuroinflamm. 2024, 21, 228. [Google Scholar] [CrossRef] [PubMed]
- Raabe, V.; Lai, L.; Xu, Y.; Huerta, C.; Wang, D.; Pouch, S.M.; Burke, C.W.; Piper, A.E.; Gardner, C.L.; Glass, P.J.; et al. The Immune Response to Eastern Equine Encephalitis Virus Acquired Through Organ Transplantation. Front. Microbiol. 2020, 11, 561530. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Ma, B.; Cao, Z.; Xu, X.; Zhang, X.; Xiang, Y. The receptor VLDLR binds Eastern Equine Encephalitis virus through multiple distinct modes. Nat. Commun. 2024, 15, 6866. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.J.; Raju, S.; Ma, H.; Gilliland, T., Jr.; Reed, D.S.; Klimstra, W.B.; Fremont, D.H.; Diamond, M.S. Structural and functional basis of VLDLR usage by Eastern equine encephalitis virus. Cell 2024, 187, 360–374.e19. [Google Scholar] [CrossRef]
- Pouch, S.M.; Katugaha, S.B.; Shieh, W.J.; Annambhotla, P.; Walker, W.L.; Basavaraju, S.V.; Jones, J.; Huynh, T.; Reagan-Steiner, S.; Bhatnagar, J.; et al. Transmission of Eastern Equine Encephalitis Virus from an Organ Donor to Three Transplant Recipients. Clin. Infect. Dis. 2019, 69, 450–458. [Google Scholar] [CrossRef]
- Beddingfield, B.J.; Plante, K.S.; Plante, J.A.; Weaver, S.C.; Bose, S.; Krzykwa, C.; Chirichella, N.; Redmann, R.K.; Seiler, S.Z.; Dufour, J.; et al. MVA-based vaccines are protective against lethal eastern equine encephalitis virus aerosol challenge in cynomolgus macaques. NPJ Vaccines 2024, 9, 47. [Google Scholar] [CrossRef]
- Bristow, C.L. Silencing Very-Low-Density Lipoprotein Receptor Reveals Alpha-1 Antitrypsin Role in HIV Infectivity. Methods Mol. Biol. 2024, 2750, 175–184. [Google Scholar] [CrossRef]
- Echeverría, P.; Guardiola, M.; González, M.; Vallvé, J.C.; Puig, J.; Bonjoch, A.; Clotet, B.; Ribalta, J.; Negredo, E. Association between lipid genetic and immunological status in chronically HIV-infected patients. J. Int. Aids Soc. 2014, 17 (Suppl. S3), 19555. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J.; Wang, J.; Ma, S.; Feng, W.; Wu, Z.; Guo, Y.; Zhou, H.; Mi, W.; Chen, W.; et al. Very-low-density lipoprotein receptor-enhanced lipid metabolism in pancreatic stellate cells promotes pancreatic fibrosis. Immunity 2022, 55, 1185–1199.e8. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. RIG-I-like antiviral protein in flies. Nat. Immunol. 2008, 9, 1327–1328. [Google Scholar] [CrossRef]
- Ouda, R.; Onomoto, K.; Takahasi, K.; Edwards, M.R.; Kato, H.; Yoneyama, M.; Fujita, T. Retinoic acid-inducible gene I-inducible miR-23b inhibits infections by minor group rhinoviruses through down-regulation of the very low density lipoprotein receptor. J. Biol. Chem. 2011, 286, 26210–26219. [Google Scholar] [CrossRef] [PubMed]
- Wu, I.T.; Yeh, W.J.; Huang, W.C.; Yang, H.Y. Very low-carbohydrate diet with higher protein ratio improves lipid metabolism and inflammation in rats with diet-induced nonalcoholic fatty liver disease. J. Nutr. Biochem. 2024, 126, 109583. [Google Scholar] [CrossRef] [PubMed]
- Hill, V.; Koch, R.T.; Bialosuknia, S.M.; Ngo, K.; Zink, S.D.; Koetzner, C.A.; Maffei, J.G.; Dupuis, A.P.; Backenson, P.B.; Oliver, J.; et al. Dynamics of eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States. Curr. Biol. 2023, 33, 2515–2527.e6. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.F.; Whitehead, S.; Barve, N.; Bauer, A.; Guralnick, R.; Allen, J.; Tavares, Y.; Gibson, S.; Linthicum, K.J.; Giordano, B.V.; et al. Co-occurrence probabilities between mosquito vectors of West Nile and Eastern equine encephalitis viruses using Markov Random Fields (MRFcov). Parasites Vectors 2023, 16, 10. [Google Scholar] [CrossRef]
- Aguilar, P.V.; Robich, R.M.; Turell, M.J.; O’Guinn, M.L.; Klein, T.A.; Huaman, A.; Guevara, C.; Rios, Z.; Tesh, R.B.; Watts, D.M.; et al. Endemic eastern equine encephalitis in the Amazon region of Peru. Am. J. Trop. Med. Hyg. 2007, 76, 293–298. [Google Scholar] [CrossRef]
- Xie, L.; Wu, Y.; Jiang, J.; Zhou, H. An improved alphaviruses-specific RT-qPCR facilitates monitoring and prevention of alphaviruses. J. Med. Virol. 2024, 96, e29788. [Google Scholar] [CrossRef]
- Davis, E.; Velez, J.; Hamik, J.; Fitzpatrick, K.; Haley, J.; Eschliman, J.; Panella, A.; Staples, J.E.; Lambert, A.; Donahue, M.; et al. Evidence of Lineage 1 and 3 West Nile Virus in Person with Neuroinvasive Disease, Nebraska, USA, 2023. Emerg. Infect. Dis. 2024, 30, 2090–2098. [Google Scholar] [CrossRef]
- Ardakani, R.; Jia, L.; Matthews, E.; Thakur, K.T. Therapeutic advances in neuroinfectious diseases. Ther. Adv. Infect. Dis. 2024, 11, 20499361241274246. [Google Scholar] [CrossRef]
- Abu Melha, A.A.; Aldress, A.S.; Alamri, F.; Aljomah, L.S.; Hommady, R.; Al-Rumayyan, A.; Albassam, F. Prognostic factors and treatment outcomes in pediatric autoimmune encephalitis: A multicenter study. Front. Neurol. 2024, 15, 1441033. [Google Scholar] [CrossRef]
- Deresiewicz, R.L.; Thaler, S.J.; Hsu, L.; Zamani, A.A. Clinical and neuroradiographic manifestations of eastern equine encephalitis. N. Engl. J. Med. 1997, 336, 1867–1874. [Google Scholar] [CrossRef]
- Lindsey, N.P.; Martin, S.W.; Staples, J.E.; Fischer, M. Notes from the Field: Multistate Outbreak of Eastern Equine Encephalitis Virus—United States, 2019. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 50–51. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.J.; Wong, J.K.; Henkel, J.; DeJesus, R.O.; Nazario-Lopez, B. Acute Seroconversion of Eastern Equine Encephalitis Coinfection with California Serogroup Encephalitis Virus. Front. Neurol. 2019, 10, 242. [Google Scholar] [CrossRef]
- Silverman, M.A.; Misasi, J.; Smole, S.; Feldman, H.A.; Cohen, A.B.; Santagata, S.; McManus, M.; Ahmed, A.A. Eastern equine encephalitis in children, Massachusetts and New Hampshire, USA, 1970–2010. Emerg. Infect. Dis. 2013, 19, 194–201; quiz 352. [Google Scholar] [CrossRef]
- González, M.A.; Chaskopoulou, A.; Georgiou, L.; Frontera, E.; Cáceres, F.; Masia, M.; Gutiérrez-Climente, R.; Ambert, G.L.; Osório, H.; Seixas, G.; et al. Mosquito management strategies in European rice fields: Environmental and public health perspectives. J. Environ. Manag. 2024, 370, 122534. [Google Scholar] [CrossRef] [PubMed]
- Asadian, A.; Zakeri, A.; Dadras, M.; Mahdavi, S. Investigating knowledge, attitude, and self-care behavior concerning Aedes mosquito bites and the knowledge of dengue fever among Hormozgan residents in the south of Iran. J. Educ. Health Promot. 2024, 13, 219. [Google Scholar] [CrossRef]
- Kalmouni, J.; Will, J.B., Jr.; Townsend, J.; Paaijmans, K.P. Temperature and time of host-seeking activity impact the efficacy of chemical control interventions targeting the West Nile virus vector, Culex tarsalis. PLoS Negl. Trop. Dis. 2024, 18, e0012460. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Han, Q.; Cheng, L.; Song, H.; Qiang, R.; Xu, P.; Gao, F.; Zhu, L.; Xu, J. Altered mitochondrial mass and low mitochondrial membrane potential of immune cells in patients with HBV infection and correlation with liver inflammation. Front. Immunol. 2024, 15, 1477646. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, Q.; Wei, L.; Zhou, X. Double infection of Nicotiana benthamiana with AMV and WCMV increases both virus concentrations and synergistically changes both host organelle ultrastructure and chlorophyll content. Microb. Pathog. 2024, 196, 106956. [Google Scholar] [CrossRef]
- Hofstadter, W.A.; Cook, K.C.; Tsopurashvili, E.; Gebauer, R.; Pražák, V.; Machala, E.A.; Park, J.W.; Grünewald, K.; Quemin, E.R.J.; Cristea, I.M. Infection-induced peripheral mitochondria fission drives ER encapsulations and inter-mitochondria contacts that rescue bioenergetics. Nat. Commun. 2024, 15, 7352. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, C.; Zhu, Z.; Wang, W.; Wen, W.; Favoreel, H.W.; Li, X. Pseudorabies virus infection triggers mitophagy to dampen the interferon response and promote viral replication. J. Virol. 2024, 98, e0104824. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Liu, Z.; Zhang, N.; Wang, Q. Ursodeoxycholic Acid Platinum(IV) Conjugates as Antiproliferative and Antimetastatic Agents: Remodel the Tumor Microenvironment through Suppressing JAK2/STAT3 Signaling. J. Med. Chem. 2024, 67, 17551–17567. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zhang, X.; Ding, T.; Zhong, Z.; Hu, H.; Xu, Z.; Deng, J. Mitochondrial Dynamics Imbalance: A Strategy for Promoting Viral Infection. Front. Microbiol. 2020, 11, 1992. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dai, X.; Zhou, J.; Wang, Y.; Zhang, S.; Guo, J.; Shen, L.; Yan, H.; Jiang, H. Mitochondrial dynamics in pulmonary disease: Implications for the potential therapeutics. J. Cell. Physiol. 2024, 239, e31370. [Google Scholar] [CrossRef]
- Shin, H.J.; Lee, W.; Ku, K.B.; Yoon, G.Y.; Moon, H.W.; Kim, C.; Kim, M.H.; Yi, Y.S.; Jun, S.; Kim, B.T.; et al. SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics to induce robust virus propagation. Signal Transduct. Target. Ther. 2024, 9, 125. [Google Scholar] [CrossRef]
- Narala, V.R.; Narala, S.R.; Aiya Subramani, P.; Panati, K.; Kolliputi, N. Role of mitochondria in inflammatory lung diseases. Front. Pharmacol. 2024, 15, 1433961. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Deng, H.; Han, Y.; Tong, Y.; Hou, Y.; Huang, T.; Xiao, M.; Deng, L.; Zhao, X.; Chen, Y.; et al. Therapeutic effects of Lianhua Qingke on COPD and influenza virus-induced exacerbation of COPD are associated with the inhibition of NF-κB signaling and NLRP3 inflammasome responses. Int. Immunopharmacol. 2024, 142, 113213. [Google Scholar] [CrossRef]
- de Torre-Minguela, C.; Mesa Del Castillo, P.; Pelegrín, P. The NLRP3 and Pyrin Inflammasomes: Implications in the Pathophysiology of Autoinflammatory Diseases. Front. Immunol. 2017, 8, 43. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Zheng, Y.; Jiang, J.; Wang, L.; Wu, J.; Zhang, C.; Luo, M. Glucose metabolite methylglyoxal induces vascular endothelial cell pyroptosis via NLRP3 inflammasome activation and oxidative stress in vitro and in vivo. Cell. Mol. Life Sci. 2024, 81, 401. [Google Scholar] [CrossRef]
- Kurmangaliyeva, S.; Baktikulova, K.; Tkachenko, V.; Seitkhanova, B.; Shapambayev, N.; Rakhimzhanova, F.; Almagambetova, A.; Kurmangaliyev, K. An Overview of Hexavalent Chromium-Induced Necroptosis, Pyroptosis, and Ferroptosis. Biol. Trace Elem. Res. 2024. [Google Scholar] [CrossRef]
- Hari, A.; Zhang, Y.; Tu, Z.; Detampel, P.; Stenner, M.; Ganguly, A.; Shi, Y. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci. Rep. 2014, 4, 7281. [Google Scholar] [CrossRef]
- Peggion, C.; Calì, T.; Brini, M. Mitochondria Dysfunction and Neuroinflammation in Neurodegeneration: Who Comes First? Antioxidants 2024, 13, 240. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Lakhina, S.; Leong, J.; Rawat, K.; Husain, M. Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape. Pathogens 2024, 13, 561. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Li, H.; Zhang, C.; Huang, Z.; Ye, M.; Zhang, Y.; Li, S.; Peng, K. RVFV virulence factor NSs triggers the mitochondrial MCL-1-BAK axis to activate pathogenic NLRP3 pyroptosis. PLoS Pathog. 2024, 20, e1012387. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, X.; Huo, X.; Schuitemaker, J.H.N.; Faas, M.M. Differential effect of lead and cadmium on mitochondrial function and NLRP3 inflammasome activation in human trophoblast. J. Physiol. 2024. [Google Scholar] [CrossRef]
- Gaensbauer, J.T.; Lindsey, N.P.; Messacar, K.; Staples, J.E.; Fischer, M. Neuroinvasive arboviral disease in the United States: 2003 to 2012. Pediatrics 2014, 134, e642–e650. [Google Scholar] [CrossRef]
- Mukhopadhyay, K.; Sengupta, M.; Misra, S.C.; Majee, K. Trends in emerging vector-borne viral infections and their outcome in children over two decades. Pediatr. Res. 2024, 95, 464–479. [Google Scholar] [CrossRef] [PubMed]
- García-de la Rosa, M.T.; Wong-Baeza, I.; Arriaga-Pizano, L.A. Participación de la inmunosenescencia y del inflammaging en enfermedades asociadas al envejecimiento [The role of immunosenescence and inflammaging in aging-associated diseases]. Rev. Médica Inst. Mex. Seguro Soc. 2024, 62, 1–8. (In Spanish) [Google Scholar] [CrossRef]
- Chang, S.T.; Chuang, Y.F.; Li, A.H.; Fan, Y.T.; Liao, M.R.; Chen, I.Y.; Hung, R.W.; Yang, T.O.; Chiu, Y.L. Age-dependent immune profile in healthy individuals: An original study, systematic review and meta-analysis. Immun. Ageing 2024, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Ginefra, P.; Hope, H.C.; Lorusso, G.; D’Amelio, P.; Vannini, N. The immunometabolic roots of aging. Curr. Opin. Immunol. 2024, 91, 102498. [Google Scholar] [CrossRef]
- Pawelec, G. Age and Immunity: What Is “Immunosenescence”? Exp. Gerontol. 2018, 105, 4–9. [Google Scholar] [CrossRef]
- Chen, S.; Liao, Z.; Xu, P. Mitochondrial Control of Innate Immune Responses. Front. Immunol. 2023, 14, 1166214. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular Mechanisms and Diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging: An Evolutionary Perspective on Immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Freund, A.; Orjalo, A.V.; Desprez, P.-Y.; Campisi, J. Inflammatory Networks during Cellular Senescence: Causes and Consequences. Trends Mol. Med. 2010, 16, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.W.; Erwin-Cohen, R.A.; Goodson, A.I.; Wilhelmsen, C.; Edmundson, J.A.; White, C.E.; Glass, P.J. Efficacy of Western, Eastern, and Venezuelan Equine Encephalitis (WEVEE) Virus-Replicon Particle (VRP) Vaccine against WEEV in a Non-Human Primate Animal Model. Viruses 2022, 14, 1502. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Kim, H. Designing a Multiepitope Vaccine against Eastern Equine Encephalitis Virus: Immunoinformatics and Computational Approaches. ACS Omega 2023, 9, 1092–1105. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordowitzki, P. Eastern Equine Encephalitis Virus: The Importance of Metabolism and Aging. Int. J. Mol. Sci. 2024, 25, 13318. https://doi.org/10.3390/ijms252413318
Kordowitzki P. Eastern Equine Encephalitis Virus: The Importance of Metabolism and Aging. International Journal of Molecular Sciences. 2024; 25(24):13318. https://doi.org/10.3390/ijms252413318
Chicago/Turabian StyleKordowitzki, Pawel. 2024. "Eastern Equine Encephalitis Virus: The Importance of Metabolism and Aging" International Journal of Molecular Sciences 25, no. 24: 13318. https://doi.org/10.3390/ijms252413318
APA StyleKordowitzki, P. (2024). Eastern Equine Encephalitis Virus: The Importance of Metabolism and Aging. International Journal of Molecular Sciences, 25(24), 13318. https://doi.org/10.3390/ijms252413318