Effect of Nitrogen Fertilizer on the Rhizosphere and Endosphere Bacterial Communities of Rice at Different Growth Stages
Abstract
:1. Introduction
2. Results
2.1. α-Diversity of Bacterial Communities in the Rhizosphere and Endosphere of Rice
2.2. β-Diversity of Bacterial Communities in the Rhizosphere and Endosphere of Rice
2.3. Compositions of Rhizosphere and Endosphere Bacterial Communities
2.4. Effects on the Abundance of Functional Genes for Nitrogen Metabolism
3. Discussion
3.1. The Growth Stage Is the Primary Factor Affecting Rhizosphere and Endosphere Bacterial Communities
3.2. Functional Gene Abundance of Nitrogen Metabolism at Different Growth Stages in Response to Nitrogen Fertilization
4. Materials and Methods
4.1. Experimental Design
4.2. Rice Root Sample and Rhizosphere Soil Sample Collection
4.3. DNA Extraction and Illumina NovaSeq Sequencing
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edwards, J.; Johnson, C.; Santos-Medellín, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V. Structure, Variation, and Assembly of the Root-Associated Microbiomes of Rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Chen, W.; Zong, L.; Yang, J.; Jiao, S.; Lin, Y.; Wang, E.; Wei, G. Two Cultivated Legume Plants Reveal the Enrichment Process of the Microbiome in the Rhizocompartments. Mol. Ecol. 2017, 26, 1641–1651. [Google Scholar] [CrossRef]
- Lu, T.; Ke, M.; Lavoie, M.; Jin, Y.; Fan, X.; Zhang, Z.; Fu, Z.; Sun, L.; Gillings, M.; Peñuelas, J.; et al. Rhizosphere Microorganisms Can Influence the Timing of Plant Flowering. Microbiome 2018, 6, 231. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.A.; Santos-Medellín, C.M.; Liechty, Z.S.; Nguyen, B.; Lurie, E.; Eason, S.; Phillips, G.; Sundaresan, V. Compositional Shifts in Root-Associated Bacterial and Archaeal Microbiota Track the Plant Life Cycle in Field-Grown Rice. PLoS Biol. 2018, 16, e2003862. [Google Scholar] [CrossRef]
- Durán, P.; Thiergart, T.; Garrido-Oter, R.; Agler, M.; Kemen, E.; Schulze-Lefert, P.; Hacquard, S. Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival. Cell 2018, 175, 973–983.e14. [Google Scholar] [CrossRef] [PubMed]
- Hiruma, K.; Gerlach, N.; Sacristán, S.; Nakano, R.T.; Hacquard, S.; Kracher, B.; Neumann, U.; Ramírez, D.; Bucher, M.; O’Connell, R.J.; et al. Root Endophyte Colletotrichum Tofieldiae Confers Plant Fitness Benefits That Are Phosphate Status Dependent. Cell 2016, 165, 464–474. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.-X.; Zhang, N.; Hu, B.; Jin, T.; Xu, H.; Qin, Y.; Yan, P.; Zhang, X.; Guo, X.; et al. NRT1.1B Is Associated with Root Microbiota Composition and Nitrogen Use in Field-Grown Rice. Nat. Biotechnol. 2019, 37, 676–684. [Google Scholar] [CrossRef]
- Kwak, M.-J.; Kong, H.G.; Choi, K.; Kwon, S.-K.; Song, J.Y.; Lee, J.; Lee, P.A.; Choi, S.Y.; Seo, M.; Lee, H.J.; et al. Rhizosphere Microbiome Structure Alters to Enable Wilt Resistance in Tomato. Nat. Biotechnol. 2018, 36, 1100–1109. [Google Scholar] [CrossRef]
- Hu, L.; Robert, C.A.M.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.; Manzo, D.; Chervet, N.; Steinger, T.; Van Der Heijden, M.G.A.; et al. Root Exudate Metabolites Drive Plant-Soil Feedbacks on Growth and Defense by Shaping the Rhizosphere Microbiota. Nat. Commun. 2018, 9, 2738. [Google Scholar] [CrossRef]
- Elhady, A.; Adss, S.; Hallmann, J.; Heuer, H. Rhizosphere Microbiomes Modulated by Pre-Crops Assisted Plants in Defense Against Plant-Parasitic Nematodes. Front. Microbiol. 2018, 9, 1133. [Google Scholar] [CrossRef]
- Reinhold-Hurek, B.; Bünger, W.; Burbano, C.S.; Sabale, M.; Hurek, T. Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. Annu. Rev. Phytopathol. 2015, 53, 403–424. [Google Scholar] [CrossRef]
- Finkel, O.M.; Salas-González, I.; Castrillo, G.; Conway, J.M.; Law, T.F.; Teixeira, P.J.P.L.; Wilson, E.D.; Fitzpatrick, C.R.; Jones, C.D.; Dangl, J.L. A Single Bacterial Genus Maintains Root Growth in a Complex Microbiome. Nature 2020, 587, 103–108. [Google Scholar] [CrossRef]
- Jiang, N.; Yan, J.; Liang, Y.; Shi, Y.; He, Z.; Wu, Y.; Zeng, Q.; Liu, X.; Peng, J. Resistance Genes and Their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)—An Updated Review. Rice 2020, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Farrer, E.C.; Suding, K.N. Teasing Apart Plant Community Responses to N Enrichment: The Roles of Resource Limitation, Competition and Soil Microbes. Ecol. Lett. 2016, 19, 1287–1296. [Google Scholar] [CrossRef]
- Wang, J.; Liao, L.; Ye, Z.; Liu, H.; Zhang, C.; Zhang, L.; Liu, G.; Wang, G. Different Bacterial Co-Occurrence Patterns and Community Assembly between Rhizosphere and Bulk Soils under N Addition in the Plant–Soil System. Plant Soil. 2022, 471, 697–713. [Google Scholar] [CrossRef]
- Fan, M.; Li, J.; Yan, W.; Shi, H.; Shangguan, Z. Shifts in the Structure and Function of Wheat Root-Associated Bacterial Communities in Response to Long-Term Nitrogen Addition in an Agricultural Ecosystem. Appl. Soil. Ecol. 2021, 159, 103852. [Google Scholar] [CrossRef]
- Chen, J.; Arafat, Y.; Ud Din, I.; Yang, B.; Zhou, L.; Wang, J.; Letuma, P.; Wu, H.; Qin, X.; Wu, L.; et al. Nitrogen Fertilizer Amendment Alter the Bacterial Community Structure in the Rhizosphere of Rice (Oryza sativa L.) and Improve Crop Yield. Front. Microbiol. 2019, 10, 2623. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.M.; Vollú, R.E.; Coelho, M.R.R.; Fonseca, A.; Gomes Neto, S.C.; Seldin, L. Bacterial Communities within the Rhizosphere and Roots of Vetiver (Chrysopogon zizanioides (L.) Roberty) Sampled at Different Growth Stages. Eur. J. Soil Biol. 2011, 47, 236–242. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Badri, D.V.; Vivanco, J.M. Rhizosphere Microbiome Assemblage Is Affected by Plant Development. ISME J. 2014, 8, 790–803. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, N.; Liu, Y.-X.; Zhang, X.; Hu, B.; Qin, Y.; Xu, H.; Wang, H.; Guo, X.; Qian, J.; et al. Root Microbiota Shift in Rice Correlates with Resident Time in the Field and Developmental Stage. Sci. China Life Sci. 2018, 61, 613–621. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The Importance of the Microbiome of the Plant Holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Okoye, C.O.; Chen, X.; Zhang, F.; Jiang, J. High-Throughput 16S rRNA Gene-Based Amplicon Sequencing Reveals the Functional Divergence of Halophilic Bacterial Communities in the Suaeda Salsa Root Compartments on the Eastern Coast of China. Sci. Total Environ. 2024, 942, 173775. [Google Scholar] [CrossRef]
- Monteiro, D.A.; Custer, G.F.; Martins, L.F.; Balieiro, F.D.C.; Dini-Andreote, F.; Rachid, C.T.C.D.C. Effects of Soil Type and Salinity Levels on the Performance and Bacteriome of the Halophyte Atriplex Nummularia (Old Man Saltbush). Plant Soil 2024, 499, 621–637. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, Y.; Song, J.; Rensing, C. Assembly of Root-Associated Microbial Community of Typical Rice Cultivars in Different Soil Types. Biol. Fertil. Soils 2020, 56, 249–260. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Wang, H.; Hui, X.; Wang, Z.; Qiu, W. Long-Term Nitrogen Fertilization Impacts Soil Fungal and Bacterial Community Structures in a Dryland Soil of Loess Plateau in China. J. Soils Sediments 2018, 18, 1632–1640. [Google Scholar] [CrossRef]
- Mukhtar, H.; Hao, J.; Xu, G.; Bergmeyer, E.; Ulutas, M.; Yang, J.; Schachtman, D.P. Nitrogen Input Differentially Shapes the Rhizosphere Microbiome Diversity and Composition across Diverse Maize Lines. Biol. Fertil. Soils 2024, 1–12. [Google Scholar] [CrossRef]
- Fan, K.; Cardona, C.; Li, Y.; Shi, Y.; Xiang, X.; Shen, C.; Wang, H.; Gilbert, J.A.; Chu, H. Rhizosphere-Associated Bacterial Network Structure and Spatial Distribution Differ Significantly from Bulk Soil in Wheat Crop Fields. Soil Biol. Biochem. 2017, 113, 275–284. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.; Song, L.; Lin, X.; Zhang, H.; Shen, C.; Chu, H. Nitrogen Fertilization Directly Affects Soil Bacterial Diversity and Indirectly Affects Bacterial Community Composition. Soil Biol. Biochem. 2016, 92, 41–49. [Google Scholar] [CrossRef]
- Lagunas, B.; Richards, L.; Sergaki, C.; Burgess, J.; Pardal, A.J.; Hussain, R.M.F.; Richmond, B.L.; Baxter, L.; Roy, P.; Pakidi, A.; et al. Rhizobial Nitrogen Fixation Efficiency Shapes Endosphere Bacterial Communities and Medicago Truncatula Host Growth. Microbiome 2023, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Nie, J.; Yang, L.; Zhao, J.; Wang, X.; Zhang, Y.; Zang, H.; Yang, Y.; Zeng, Z. Plant Growth Stages Covered the Legacy Effect of Rotation Systems on Microbial Community Structure and Function in Wheat Rhizosphere. Environ. Sci. Pollut. Res. 2023, 30, 59632–59644. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Z.; Li, Q.; Dai, Q.; Hu, J. Responses of Rhizosphere Bacterial Communities in Newly Reclaimed Mudflat Paddies to Rice Genotype and Nitrogen Fertilizer Rate. Environ. Sci. Pollut. Res. 2022, 30, 38761–38774. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Ma, W.; Wu, Z.; Liu, W.; Wu, W. Exploitation Alters Microbial Community and Its Co-Occurrence Patterns in Ionic Rare Earth Mining Sites. Sci. Total Environ. 2023, 898, 165532. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, S.; Semenov, M.V.; Yao, F.; Ye, J.; Bu, R.; Ma, R.; Lin, J.; Kurganova, I.; Wang, X.; et al. Temperature Sensitivity of SOM Decomposition Is Linked with a K-selected Microbial Community. Glob. Change Biol. 2021, 27, 2763–2779. [Google Scholar] [CrossRef]
- Rivas, R.; Willems, A.; Subba-Rao, N.S.; Mateos, P.F.; Dazzo, F.B.; Kroppenstedt, R.M.; Martínez-Molina, E.; Gillis, M.; Velázquez, E. Description of Devosia neptuniae Sp. Nov. That Nodulates and Fixes Nitrogen in Symbiosis with Neptunia Natans, an Aquatic Legume from India. Syst. Appl. Microbiol. 2003, 26, 47–53. [Google Scholar] [CrossRef]
- Tonomura, M.; Ehara, A.; Suzuki, H.; Amachi, S. Draft Genome Sequence of Anaeromyxobacter Sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil. Genome Announc. 2015, 3, e00472-e15. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, L.; Singh, R.P.; Meng, C.; Ma, S.; Jing, C.; Li, Y.; Zhang, C. Nodule and Root Zone Microbiota of Salt-Tolerant Wild Soybean in Coastal Sand and Saline-Alkali Soil. Front. Microbiol. 2020, 11, 2178. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, X.; Baer, M.; Lami, K.; Yu, B.; Tassinari, A.; Salvi, S.; Schaaf, G.; Hochholdinger, F.; Yu, P. Lateral Root Enriched Massilia Associated with Plant Flowering in Maize. Microbiome 2024, 12, 124. [Google Scholar] [CrossRef]
- Kearl, J.; McNary, C.; Lowman, J.S.; Mei, C.; Aanderud, Z.T.; Smith, S.T.; West, J.; Colton, E.; Hamson, M.; Nielsen, B.L. Salt-Tolerant Halophyte Rhizosphere Bacteria Stimulate Growth of Alfalfa in Salty Soil. Front. Microbiol. 2019, 10, 1849. [Google Scholar] [CrossRef]
- Liu, Y.; Xun, W.; Chen, L.; Xu, Z.; Zhang, N.; Feng, H.; Zhang, Q.; Zhang, R. Rhizosphere Microbes Enhance Plant Salt Tolerance: Toward Crop Production in Saline Soil. Comput. Struct. Biotechnol. J. 2022, 20, 6543–6551. [Google Scholar] [CrossRef]
- Ye, B.; Saito, A.; Minamisawa, K. Effect of Inoculation with Anaerobic Nitrogen-Fixing Consortium on Salt Tolerance of Miscanthus sinensis. Soil Sci. Plant Nutr. 2005, 51, 243–249. [Google Scholar] [CrossRef]
- Sodhi, G.K.; Saxena, S. Plant Growth Promotion and Abiotic Stress Mitigation in Rice Using Endophytic Fungi: Advances Made in the Last Decade. Environ. Exp. Bot. 2023, 209, 105312. [Google Scholar] [CrossRef]
- Ku, Y.; Lei, Y.; Han, X.; Peng, J.; Zhu, Y.; Zhao, Z. Spatial Patterns and Composition Traits of Soil Microbial Nitrogen-Metabolism Genes in the Robinia Pseudoacacia Forests at a Regional Scale. Front. Microbiol. 2022, 13, 918134. [Google Scholar] [CrossRef]
- Wang, R.; Sun, C.; Cai, S.; Liu, F.; Xie, H.; Xiong, Q. Research Progress in Crop Root Biology and Nitrogen Uptake and Use, with Emphasis on Cereal Crops. Agronomy 2023, 13, 1678. [Google Scholar] [CrossRef]
- Tang, Q.; Ma, Y.; Zhao, L.; Song, Z.; Yin, Y.; Wang, G.; Li, Y. Effects of Water and Nitrogen Management on Root Morphology, Nitrogen Metabolism Enzymes, and Yield of Rice under Drip Irrigation. Agronomy 2023, 13, 1118. [Google Scholar] [CrossRef]
- Huergo, L.F.; Chandra, G.; Merrick, M. P II Signal Transduction Proteins: Nitrogen Regulation and Beyond. FEMS Microbiol. Rev. 2013, 37, 251–283. [Google Scholar] [CrossRef] [PubMed]
- Huergo, L.F.; Dixon, R. The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite. Microbiol. Mol. Biol. Rev. 2015, 79, 419–435. [Google Scholar] [CrossRef]
- Sánchez-Cañizares, C.; Prell, J.; Pini, F.; Rutten, P.; Kraxner, K.; Wynands, B.; Karunakaran, R.; Poole, P.S. Global Control of Bacterial Nitrogen and Carbon Metabolism by a PTSNtr-Regulated Switch. Proc. Natl. Acad. Sci. USA 2020, 117, 10234–10245. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.T.; Zheng, J.Q.; Han, S.J.; Zhang, F.L.; Wang, X.X. Responses of soil nitrogen transformation to long-term nitrogen fertilization and precipitation changes in a broad-leaved Korean pine forest in Changbai Mountains, China. Ying Yong Sheng Tai Xue Bao 2018, 29, 2797–2807. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, F.; Yao, H. Response of Symbiotic and Asymbiotic Nitrogen-Fixing Microorganisms to Nitrogen Fertilizer Application. J. Soils Sediments 2019, 19, 1948–1958. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Hu, J.; Dai, Q. Response of Bacterial Communities and Nitrogen-Cycling Genes in Newly Reclaimed Mudflat Paddy Soils to Nitrogen Fertilizer Gradients. Environ. Sci. Pollut. Res. 2022, 29, 71113–71123. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Yu, M.; Shen, A. Research Progress on Effects of Straw Returning on Nitrogen Cycling Microbes and Functional Genes in Paddy Soil. Acta Agric. Zhejiangensis 2019, 31, 333. [Google Scholar] [CrossRef]
- Zhu, S.; Vivanco, J.M.; Manter, D.K. Nitrogen Fertilizer Rate Affects Root Exudation, the Rhizosphere Microbiome and Nitrogen-Use-Efficiency of Maize. Appl. Soil Ecol. 2016, 107, 324–333. [Google Scholar] [CrossRef]
- Wang, X.; Sun, R.; Tian, Y.; Guo, K.; Sun, H.; Liu, X.; Chu, H.; Liu, B. Long-Term Phytoremediation of Coastal Saline Soil Reveals Plant Species-Specific Patterns of Microbial Community Recruitment. mSystems 2020, 5, e00741-e19. [Google Scholar] [CrossRef]
- Zheng, Y.; Cao, X.; Zhou, Y.; Ma, S.; Wang, Y.; Li, Z.; Zhao, D.; Yang, Y.; Zhang, H.; Meng, C.; et al. Purines Enrich Root-Associated Pseudomonas and Improve Wild Soybean Growth under Salt Stress. Nat. Commun. 2024, 15, 3520. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, Y.; Huang, L. ImageGP: An Easy-to-use Data Visualization Web Server for Scientific Researchers. iMeta 2022, 1, e5. [Google Scholar] [CrossRef]
Root Region | Factor | R2 (%) | p |
---|---|---|---|
Rhizosphere | Growth stage | 51.4% | 0.001 *** |
Nitrogen fertilizer | 7.6% | 0.01 ** | |
Growth stage * nitrogen fertilizer | 14.3% | 0.003 ** | |
Endosphere | Growth stage | 65.9% | 0.001 *** |
Nitrogen fertilizer | 14.0% | 0.001 *** | |
Growth stage * nitrogen fertilizer | 14.5% | 0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Miao, W.; Li, S.; Yang, M.; Gao, X. Effect of Nitrogen Fertilizer on the Rhizosphere and Endosphere Bacterial Communities of Rice at Different Growth Stages. Int. J. Mol. Sci. 2024, 25, 13702. https://doi.org/10.3390/ijms252413702
Wang J, Miao W, Li S, Yang M, Gao X. Effect of Nitrogen Fertilizer on the Rhizosphere and Endosphere Bacterial Communities of Rice at Different Growth Stages. International Journal of Molecular Sciences. 2024; 25(24):13702. https://doi.org/10.3390/ijms252413702
Chicago/Turabian StyleWang, Jinjun, Wang Miao, Shiyu Li, Mingliang Yang, and Xinru Gao. 2024. "Effect of Nitrogen Fertilizer on the Rhizosphere and Endosphere Bacterial Communities of Rice at Different Growth Stages" International Journal of Molecular Sciences 25, no. 24: 13702. https://doi.org/10.3390/ijms252413702
APA StyleWang, J., Miao, W., Li, S., Yang, M., & Gao, X. (2024). Effect of Nitrogen Fertilizer on the Rhizosphere and Endosphere Bacterial Communities of Rice at Different Growth Stages. International Journal of Molecular Sciences, 25(24), 13702. https://doi.org/10.3390/ijms252413702