Higher Renal Net Acid Excretion, but Not Higher Phosphate Excretion, during Childhood and Adolescence Associates with the Circulating Renal Tubular Injury Marker Interleukin-18 in Adulthood
Abstract
:1. Introduction
2. Results
2.1. Participants’ Characteristics
2.2. Longitudinal Prospective Association of NAE and Phosphate Excretion during Growth with Adulthood IL-18
3. Discussion
Study Limitations and Strengths
4. Materials and Methods
4.1. Study Population
4.2. Anthropometric Measurements
4.3. Urinary Measurements
4.4. Blood Measurements
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirooka, Y.; Nozaki, Y. Interleukin-18 in Inflammatory Kidney Disease. Front. Med. 2021, 8, 639103. [Google Scholar] [CrossRef] [PubMed]
- Zdziechowska, M.; Gluba-Brzózka, A.; Poliwczak, A.R.; Franczyk, B.; Kidawa, M.; Zielinska, M.; Rysz, J. Serum NGAL, KIM-1, IL-18, L-FABP: New biomarkers in the diagnostics of acute kidney injury (AKI) following invasive cardiology procedures. Int. Urol. Nephrol. 2020, 52, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.M.; Ling, Y.H.; Huuskes, B.; Jelinic, M.; Sharma, P.; Saini, N.; Ferens, D.M.; Diep, H.; Krishnan, S.M.; Kemp-Harper, B.K.; et al. IL-18 (Interleukin-18) Produced by Renal Tubular Epithelial Cells Promotes Renal Inflammation and Injury During Deoxycorticosterone/Salt-Induced Hypertension in Mice. Hypertension 2021, 78, 1296–1309. [Google Scholar] [CrossRef] [PubMed]
- Elsherbiny, N.M.; Al-Gayyar, M.M.H. The role of IL-18 in type 1 diabetic nephropathy: The problem and future treatment. Cytokine 2016, 81, 15–22. [Google Scholar] [CrossRef]
- Nakamura, A.; Shikata, K.; Hiramatsu, M.; Nakatou, T.; Kitamura, T.; Wada, J.; Itoshima, T.; Makino, H. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 2005, 28, 2890–2895. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, M.S.; Kashani, K.B. Biomarkers for Early Detection of Acute Kidney Injury. J. Appl. Lab. Med. 2017, 2, 386–399. [Google Scholar] [CrossRef] [PubMed]
- Wesson, D.E.; Buysse, J.M.; Bushinsky, D.A. Mechanisms of Metabolic Acidosis-Induced Kidney Injury in Chronic Kidney Disease. J. Am. Soc. Nephrol. 2020, 31, 469–482. [Google Scholar] [CrossRef]
- Terker, A.S.; Zhang, Y.; Arroyo, J.P.; Cao, S.; Wang, S.; Fan, X.; Denton, J.S.; Zhang, M.-Z.; Harris, R.C. Kir4.2 mediates proximal potassium effects on glutaminase activity and kidney injury. Cell Rep. 2022, 41, 111840. [Google Scholar] [CrossRef]
- Nath, K.A.; Hostetter, M.K.; Hostetter, T.H. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J. Clin. Investig. 1985, 76, 667–675. [Google Scholar] [CrossRef]
- Cervantes, C.E.; Atta, M.G. Chronic Tubulointerstitial Nephritis: Hypokalemia, Hyperoxaluria, and Hyperuricemia. Tubulointerstitial Nephritis; Springer: Berlin/Heidelberg, Germany, 2022; pp. 171–183. [Google Scholar]
- Banerjee, T.; Crews, D.C.; Wesson, D.E.; Tilea, A.; Saran, R.; Rios Burrows, N.; Williams, D.E.; Powe, N.R. Dietary acid load and chronic kidney disease among adults in the United States. BMC Nephrol. 2014, 15, 137. [Google Scholar] [CrossRef]
- Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; Dietary Reference Intakes; National Academies Press (US): Washington, DC, USA, 1997; ISBN 0309064031. [Google Scholar]
- PANEL, O.M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients); National Academics Press: Washington, DC, USA, 2002; ISBN 030908525X. [Google Scholar]
- Alexy, U.; Kersting, M.; Remer, T. Potential renal acid load in the diet of children and adolescents: Impact of food groups, age and time trends. Public Health Nutr. 2008, 11, 300–306. [Google Scholar] [CrossRef]
- Stanbury, S.W. Intestinal absorption of calcium and phosphorus in adult man in health and disease. In Inborn Errors of Calcium and Bone Metabolism; Springer: Berlin/Heidelberg, Germany, 1976; pp. 21–38. ISBN 9401161615. [Google Scholar]
- Am Wingen; Fabian-Bach, C.; Mehls, O. Evaluation of protein intake by dietary diaries and urea-N excretion in children with chronic renal failure. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. Clin. Nephrol. 1993, 40, 208–215. [Google Scholar]
- Mackenzie, T.A.; Clark, N.G.; Bistrian, B.R.; Flatt, J.P.; Hallowell, E.M.; Blackburn, G.L. A simple method for estimating nitrogen balance in hospitalized patients: A review and supporting data for a previously proposed technique. J. Am. Coll. Nutr. 1985, 4, 575–581. [Google Scholar] [CrossRef]
- Duong, C.N.; Akinlawon, O.J.; Gung, J.; Noel, S.E.; Bigornia, S.; Flanagan, K.; Pourafshar, S.; Lin, P.-H.; Davenport, C.A.; Pendergast, J.; et al. Bioavailability of phosphorus and kidney function in the Jackson Heart Study. Am. J. Clin. Nutr. 2022, 116, 541–550. [Google Scholar] [CrossRef]
- Fulgoni, K.; Fulgoni, V.L., III. Trends in Total, Added, and Natural Phosphorus Intake in Adult Americans, NHANES 1988–1994 to NHANES 2015–2016. Nutrients 2021, 13, 2249. [Google Scholar] [CrossRef]
- Dong, G.; Liang, L.; Fu, J.; Zou, C. Serum interleukin-18 levels are raised in diabetic ketoacidosis in Chinese children with type 1 diabetes mellitus. Indian Pediatr. 2007, 44, 732. [Google Scholar]
- Karavanaki, K.; Karanika, E.; Georga, S.; Bartzeliotou, A.; Tsouvalas, M.; Konstantopoulos, I.; Fotinou, A.; Papassotiriou, I.; Karayianni, C. Cytokine response to diabetic ketoacidosis (DKA) in children with type 1 diabetes (T1DM). Endocr. J. 2011, 58, 1045–1053. [Google Scholar] [CrossRef]
- Wei, M.; Feng, L.; Zhao, W. Efficacy of low-dose insulin combined with electrolyte in the treatment of pediatric diabetic ketoacidosis and its effect on serum inflammatory factors. Cell. Mol. Biol. 2020, 66, 98–104. [Google Scholar] [CrossRef]
- Farwell, W.R.; Taylor, E.N. Serum anion gap, bicarbonate and biomarkers of inflammation in healthy individuals in a national survey. CMAJ 2010, 182, 137–141. [Google Scholar] [CrossRef]
- de Nadai, T.R.; de Nadai, M.N.; Albuquerque, A.A.S.; de Carvalho, M.T.M.; Celotto, A.C.; Evora, P.R.B. Metabolic acidosis treatment as part of a strategy to curb inflammation. Int. J. Inflam. 2013, 2013, 601424. [Google Scholar] [CrossRef]
- Wesson, D.E. The continuum of acid stress. Clin. J. Am. Soc. Nephrol. 2021, 16, 1292. [Google Scholar] [CrossRef]
- Kellum, J.A.; Song, M.; Li, J. Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2004, 286, R686–R692. [Google Scholar] [CrossRef]
- Nath, K.A.; Hostetter, M.K.; Hostetter, T.H. Increased ammoniagenesis as a determinant of progressive renal injury. Am. J. Kidney Dis. 1991, 17, 654–657. [Google Scholar] [CrossRef]
- Zhu, A.; Whitlock, R.H.; Ferguson, T.W.; Nour-Mohammadi, M.; Komenda, P.; Rigatto, C.; Collister, D.; Bohm, C.; Reaven, N.L.; Funk, S.E. Metabolic acidosis is associated with acute kidney injury in patients with CKD. Kidney Int. Rep. 2022, 7, 2219–2229. [Google Scholar] [CrossRef]
- Kraut, J.A.; Madias, N.E. Adverse Effects of the Metabolic Acidosis of Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2017, 24, 289–297. [Google Scholar] [CrossRef]
- Remer, T.; Manz, F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am. J. Clin. Nutr. 1994, 59, 1356–1361. [Google Scholar] [CrossRef]
- Weiner, I.D.; Mitch, W.E.; Sands, J.M. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin. J. Am. Soc. Nephrol. 2015, 10, 1444. [Google Scholar] [CrossRef]
- Lee, H.-W.; Osis, G.; Handlogten, M.E.; Guo, H.; Verlander, J.W.; Weiner, I.D. Effect of dietary protein restriction on renal ammonia metabolism. Am. J. Physiol. Ren. Physiol. 2015, 308, F1463–F1473. [Google Scholar] [CrossRef]
- Remer, T. Influence of nutrition on acid-base balance–metabolic aspects. Eur. J. Nutr. 2001, 40, 214–220. [Google Scholar] [CrossRef]
- Clark, E.C.; Nath, K.A.; Hostetter, M.K.; Hostetter, T.H. Role of ammonia in tubulointerstitial injury. Miner. Electrolyte Metab. 1990, 16, 315–321. [Google Scholar]
- Goraya, N.; Simoni, J.; Jo, C.-H.; Wesson, D.E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin. J. Am. Soc. Nephrol. 2013, 8, 371. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Wesson, D.E. Kidney response to the spectrum of diet-induced acid stress. Nutrients 2018, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Munoz-Maldonado, Y.; Simoni, J.; Wesson, D.E. Fruit and vegetable treatment of chronic kidney disease-related metabolic acidosis reduces cardiovascular risk better than sodium bicarbonate. Am. J. Nephrol. 2019, 49, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Weiner, I.D.; Verlander, J.W. Ammonia Transporters and Their Role in Acid-Base Balance. Physiol. Rev. 2017, 97, 465–494. [Google Scholar] [CrossRef] [PubMed]
- Remer, T.; Neubert, A.; Maser-Gluth, C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am. J. Clin. Nutr. 2002, 75, 561–569. [Google Scholar] [CrossRef]
- Lüthy, C.; Moser, C.; Oetliker, O. Acid-base determination of urine in 3 steps. Med. Lab. 1977, 30, 174–181. [Google Scholar]
- Hua, Y.; Herder, C.; Kalhoff, H.; Buyken, A.E.; Esche, J.; Krupp, D.; Wudy, S.A.; Remer, T. Inflammatory mediators in the adipo-renal axis: Leptin, adiponectin, and soluble ICAM-1. Am. J. Physiol. Renal Physiol. 2020, 319, F469–F475. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
Childhood and Adolescence | Longitudinal Overview b | |
---|---|---|
First Assessment | Last Assessment c | |
n (male/female) | 277 (134/143) | 277 (134/143) |
Age, y | 4.0 (3.4, 5.0) | 17.0 (15.3, 17.0) |
Weight, kg | 17.4 (15.6, 19.6) | 64.6 ± 13.0 |
Height, cm | 105.6 (100.8, 111.8) | 172.9 ± 10.4 |
BMI, kg/m2 | 15.5 (14.8, 16.4) | 21.1 (19.4, 23.1) |
Urine pH | 6.4 ± 0.5 | 6.3 ± 0.5 |
NAE, mEq/d | 23.5 ± 12.0 | 53.7 ± 26.2 |
Ammonium, mmol/d | 19.0 ± 5.8 | 42.1 ± 14.5 |
TA, mEq/d | 8.5 ± 4.9 | 18.9 ± 10.2 |
PO4, mmol/d | 13.3 ± 4.1 | 26.6 ± 8.6 |
Phosphorus intake (mg/d) d, e | 654.9 ± 201.9 | 1309.8 ± 423.5 |
Urea-N, mmol/d | 158.4 (130.6, 193.8) | 336.3 (271.1, 408.4) |
Protein intake (g/d) f, g | 40.5 (35.6, 46.8) | 71.9 (60.4, 84.7) |
Creatinine, mmol/d | 2.6 ± 0.7 | 11.7 ± 3.4 |
Adulthood | ||
Adults’ age, y | 21.4 ± 3.9 | |
Glucose, mg/dL | 92.4 ± 17 | |
Insulin, µIU/mL | 12.6 ± 5.7 | |
HOMA-IR | 1.6 ± 0.7 | |
GFR (mL/min/1.73 m2) | 104.7 ± 19.5 | |
Uric acid (mg/dL) | 5.3 ± 1.2 | |
IL-18, pg/mL | 260.3 ± 95.8 | |
hsCRP, mg/dL | 0.2 ± 0.7 | |
IL-1RA, pg/mL | 257.5 ± 156.1 | |
sE-Selectin, ng/mL | 33.4 ± 12.6 | |
sICAM1, ng/mL | 193.8 ± 41.5 |
Β (95% CI) | R2 | p | ||
---|---|---|---|---|
NAE-SDS | ||||
Model I b | 40.64 (−5.46, 86.75) | 0.03 | 0.08 | |
Model II c | 54.02 (7.27, 100.77) | 0.11 | 0.02 | |
Model III d | 54.25 (11.28, 97.23) | 0.26 | 0.01 | |
PO4-SDS | ||||
Model I b | 23.47 (−9.68, 56.62) | 0.02 | 0.16 | |
Model II c | 20.84 (−12.88, 54.56) | 0.10 | 0.22 | |
Model III d | 8.32 (−23.14, 39.78) | 0.24 | 0.60 | |
NH4-SDS | ||||
Model I b | 17.13 (−10.73, 44.99) | 0.02 | 0.23 | |
Model II c | 26.94 (−1.64, 55.52) | 0.10 | 0.06 | |
Model III d | 30.93 (4.69, 57.16) | 0.26 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derakhshandeh-Rishehri, S.-M.; Franco, L.P.; Hua, Y.; Herder, C.; Kalhoff, H.; Frassetto, L.A.; Wudy, S.A.; Remer, T. Higher Renal Net Acid Excretion, but Not Higher Phosphate Excretion, during Childhood and Adolescence Associates with the Circulating Renal Tubular Injury Marker Interleukin-18 in Adulthood. Int. J. Mol. Sci. 2024, 25, 1408. https://doi.org/10.3390/ijms25031408
Derakhshandeh-Rishehri S-M, Franco LP, Hua Y, Herder C, Kalhoff H, Frassetto LA, Wudy SA, Remer T. Higher Renal Net Acid Excretion, but Not Higher Phosphate Excretion, during Childhood and Adolescence Associates with the Circulating Renal Tubular Injury Marker Interleukin-18 in Adulthood. International Journal of Molecular Sciences. 2024; 25(3):1408. https://doi.org/10.3390/ijms25031408
Chicago/Turabian StyleDerakhshandeh-Rishehri, Seyedeh-Masomeh, Luciana Peixoto Franco, Yifan Hua, Christian Herder, Hermann Kalhoff, Lynda A. Frassetto, Stefan A. Wudy, and Thomas Remer. 2024. "Higher Renal Net Acid Excretion, but Not Higher Phosphate Excretion, during Childhood and Adolescence Associates with the Circulating Renal Tubular Injury Marker Interleukin-18 in Adulthood" International Journal of Molecular Sciences 25, no. 3: 1408. https://doi.org/10.3390/ijms25031408
APA StyleDerakhshandeh-Rishehri, S. -M., Franco, L. P., Hua, Y., Herder, C., Kalhoff, H., Frassetto, L. A., Wudy, S. A., & Remer, T. (2024). Higher Renal Net Acid Excretion, but Not Higher Phosphate Excretion, during Childhood and Adolescence Associates with the Circulating Renal Tubular Injury Marker Interleukin-18 in Adulthood. International Journal of Molecular Sciences, 25(3), 1408. https://doi.org/10.3390/ijms25031408