The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation
Abstract
:1. Introduction
2. Methods
3. Comprehensive Overview
4. H3K4me3 in Zygotic Genome Activation and Gene Expression Regulation
4.1. H3K4me3 at Promoters and Across Species
4.2. Dynamic Reprogramming of H3K4me3
5. Unveiling H3K9me3: Orchestrating Epigenetic Landscapes in Development
6. H3K27me3 and H3K27ac: Dual Epigenetic Players in Zygotic Genome Activation
6.1. Individual Roles of H3K27me3
6.2. Distinctive Functions of H3K27ac in ZGA
7. Dynamics of Other Histone Modifications in Early Embryonic Development
7.1. H3K36me3 Dynamics Unveiled: Allelic Reprogramming in Early Mouse Embryos
7.2. Histone H3R26me2: Pivotal in Cell Fate Determination in Embryos
8. Functional Diversity of Histone Variants in the Activation of the Zygotic Genome
9. Future Perspectives and Applications of ZGA Histone Modifications
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AML | Acute myeloid leukemia |
BRD2 | Bromodomain-containing protein 2 |
CARM1 | Coactivator-associated arginine methyltransferase 1 |
CHAF1A | Chromatin assembly factor 1 subunit A |
ESCs | Embryonic stem cells |
ESET | ERG-associated protein with SET domain |
EZH2 | Enhancer of zeste homolog 2 |
GV | Germinal vesicle |
HATs | Histone acetyltransferases |
hESCs | Human embryonic stem cells |
ICM | Inner cell mass |
ICRs | Imprinted control regions |
iPSCs | Induced pluripotent stem cells |
KDM4D | Lysine-specific demethylase 4A |
KDM6A | Lysine-specific demethylase 6A |
KDM6B | Lysine-specific demethylase 6B |
KMT2 | Histone–lysine N-methyltransferase 2 |
lncRNA | Non-coding RNA |
LTRs | Long terminal repeats |
mESCs | Mouse embryonic stem cells |
MII | Metaphase II |
MSCs | Mesenchymal stem cells |
MZT | Maternal-to-zygotic transition |
ncRNAs | Non-coding RNAs |
NEAT1 | Nuclear Paraspeckle Assembly Transcript 1 |
NHD | Non-histone domain |
ntESC | Nuclear-transfer embryonic stem cells |
NURF | Nucleosome remodeling factor |
P54NRB | Nuclear RNA-binding protein 54 kDa |
PMDs | Partially methylated domains |
PN | Pronuclei |
PRC2 | Polycomb Repressive Complex 2 |
PRDM14 | PR domain-containing 14 |
RRRs | Regions resistant to reprogramming |
SCNT | Somatic Cell Nuclear Transfer |
SETD2 | SET domain containing 2 |
SNPs | Single-nucleotide polymorphisms |
TE | Trophectoderm |
TSS | Transcription start site |
ZGA | Zygotic genome activation |
References
- Siu, K.K.; Serrão, V.H.B.; Ziyyat, A.; Lee, J.E. The Cell Biology of Fertilization: Gamete Attachment and Fusion. J. Cell Biol. 2021, 220, e202102146. [Google Scholar] [CrossRef]
- Bhakta, H.H.; Refai, F.H.; Avella, M.A. The Molecular Mechanisms Mediating Mammalian Fertilization. Development 2019, 146, dev176966. [Google Scholar] [CrossRef]
- Xu, Q.; Xie, W. Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment. Trends Cell Biol. 2018, 28, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.N.; Harrison, M.M. Mechanisms Regulating Zygotic Genome Activation. Nat. Rev. Genet. 2019, 20, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, L.; Guo, F.; Dai, X.; Zhang, X. Epigenetic Reprogramming during the Maternal-to-Zygotic Transition. MedComm 2023, 4, e331. [Google Scholar] [CrossRef] [PubMed]
- Vastenhouw, N.L.; Cao, W.X.; Lipshitz, H.D. The Maternal-to-Zygotic Transition Revisited. Development 2019, 146, dev161471. [Google Scholar] [CrossRef]
- Lee, M.T.; Bonneau, A.R.; Giraldez, A.J. Zygotic Genome Activation during the Maternal-to-Zygotic Transition. Annu. Rev. Cell Dev. Biol. 2014, 30, 581–613. [Google Scholar] [CrossRef]
- Wu, E.; Vastenhouw, N.L. From Mother to Embryo: A Molecular Perspective on Zygotic Genome Activation. Curr. Top. Dev. Biol. 2020, 140, 209–254. [Google Scholar] [CrossRef]
- Vallot, A.; Tachibana, K. The Emergence of Genome Architecture and Zygotic Genome Activation. Curr. Opin. Cell Biol. 2020, 64, 50–57. [Google Scholar] [CrossRef]
- Hackett, J.A.; Azim Surani, M. Regulatory Principles of Pluripotency: From the Ground State Up. Cell Stem Cell 2014, 15, 416–430. [Google Scholar] [CrossRef]
- Zhou, S.; Li, X.; Liu, Q.; Zhao, Y.; Jiang, W.; Wu, A.; Zhou, D.X. DNA Demethylases Remodel DNA Methylation in Rice Gametes and Zygote and Are Required for Reproduction. Mol. Plant 2021, 14, 1569–1583. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Duan, J.; Gao, X.; Zhu, W.; Lu, X.; Yang, L.; Zhang, J.; Li, G.; Ci, W.; et al. Programming and Inheritance of Parental DNA Methylomes in Mammals. Cell 2014, 157, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhu, P.; Yan, L.; Li, R.; Hu, B.; Lian, Y.; Yan, J.; Ren, X.; Lin, S.; Li, J.; et al. The DNA Methylation Landscape of Human Early Embryos. Nature 2014, 511, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Robert, V.J. Histone Modifications in Germline Development and Maintenance. In Perinatal and Developmental Epigenetics: Volume 32 in Translational Epigenetics; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Hales, B.F.; Grenier, L.; Lalancette, C.; Robaire, B. Epigenetic Programming: From Gametes to Blastocyst. Birth Defects Res. Part A—Clin. Mol. Teratol. 2011, 91, 652–665. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Q.; Tang, F.; Yan, L.; Qiao, J. Epigenetic Regulation and Risk Factors during the Development of Human Gametes and Early Embryos. Annu. Rev. Genom. Hum. Genet. 2019, 20, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, J.; Liu, B.; Yao, G.; Wang, P.; Lin, Z.; Huang, B.; Wang, X.; Li, T.; Shi, S.; et al. Chromatin Analysis in Human Early Development Reveals Epigenetic Transition during ZGA. Nature 2018, 557, 256–260. [Google Scholar] [CrossRef]
- Gorkin, D.U.; Barozzi, I.; Zhao, Y.; Zhang, Y.; Huang, H.; Lee, A.Y.; Li, B.; Chiou, J.; Wildberg, A.; Ding, B.; et al. An Atlas of Dynamic Chromatin Landscapes in Mouse Fetal Development. Nature 2020, 583, 744–751. [Google Scholar] [CrossRef]
- Gao, L.; Wu, K.; Liu, Z.; Yao, X.; Yuan, S.; Tao, W.; Yi, L.; Yu, G.; Hou, Z.; Fan, D.; et al. Chromatin Accessibility Landscape in Human Early Embryos and Its Association with Evolution. Cell 2018, 173, 248–259.e15. [Google Scholar] [CrossRef]
- Bonev, B.; Cavalli, G. Organization and Function of the 3D Genome. Nat. Rev. Genet. 2016, 17, 661–678. [Google Scholar] [CrossRef]
- Ke, Y.; Xu, Y.; Chen, X.; Feng, S.; Liu, Z.; Sun, Y.; Yao, X.; Li, F.; Zhu, W.; Gao, L.; et al. 3D Chromatin Structures of Mature Gametes and Structural Reprogramming during Mammalian Embryogenesis. Cell 2017, 170, 367–381.e20. [Google Scholar] [CrossRef]
- Koyama, M.; Kurumizaka, H. Structural Diversity of the Nucleosome. J. Biochem. 2018, 163, 85–95. [Google Scholar] [CrossRef]
- Zhou, K.; Gaullier, G.; Luger, K. Nucleosome Structure and Dynamics Are Coming of Age. Nat. Struct. Mol. Biol. 2019, 26, 3–13. [Google Scholar] [CrossRef]
- Deng, M.; Chen, B.; Liu, Z.; Cai, Y.; Wan, Y.; Zhou, J.; Wang, F. Exchanges of Histone Methylation and Variants during Mouse Zygotic Genome Activation. Zygote 2020, 28, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Bu, G.; Zhu, W.; Liu, X.; Zhang, J.; Yu, L.; Zhou, K.; Wang, S.; Li, Z.; Fan, Z.; Wang, T.; et al. Coordination of Zygotic Genome Activation Entry and Exit by H3K4me3 and H3K27me3 in Porcine Early Embryos. Genome Res. 2022, 32, 1487–1501. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.B.; Ding, H.M.; Gong, A.H. Role of Histone Methylation in Zygotic Genome Activation in the Preimplantation Mouse Embryo. In Vitro Cell Dev. Biol. Anim. 2008, 44, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Darbo, E.; Herrmann, C.; Lecuit, T.; Thieffry, D.; van Helden, J. Transcriptional and Epigenetic Signatures of Zygotic Genome Activation during Early Drosophila Embryogenesis. BMC Genom. 2013, 14, 226. [Google Scholar] [CrossRef] [PubMed]
- Pálfy, M.; Joseph, S.R.; Vastenhouw, N.L. The Timing of Zygotic Genome Activation. Curr. Opin. Genet. Dev. 2017, 43, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.; Lin, R. The Maternal-to-Zygotic Transition in C. Elegans. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 113. [Google Scholar] [CrossRef]
- Blitz, I.L.; Cho, K.W.Y. Control of Zygotic Genome Activation in Xenopus. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 145. [Google Scholar] [CrossRef]
- Laue, K.; Rajshekar, S.; Courtney, A.J.; Lewis, Z.A.; Goll, M.G. The Maternal to Zygotic Transition Regulates Genome-Wide Heterochromatin Establishment in the Zebrafish Embryo. Nat. Commun. 2019, 10, 1551. [Google Scholar] [CrossRef] [PubMed]
- Jukam, D.; Shariati, S.A.M.; Skotheim, J.M. Zygotic Genome Activation in Vertebrates. Dev. Cell 2017, 42, 316–332. [Google Scholar] [CrossRef]
- Colonnetta, M.M.; Schedl, P.; Deshpande, G. Germline/Soma Distinction in Drosophila Embryos Requires Regulators of Zygotic Genome Activation. eLife 2023, 22, 767–778. [Google Scholar] [CrossRef]
- Hamm, D.C.; Harrison, M.M. Regulatory Principles Governing the Maternal-to-Zygotic Transition: Insights from Drosophila Melanogaster. Open Biol. 2018, 8, 180183. [Google Scholar] [CrossRef]
- Li, L.; Lu, X.; Dean, J. The Maternal to Zygotic Transition in Mammals. Mol. Asp. Med. 2013, 34, 919–938. [Google Scholar] [CrossRef] [PubMed]
- Aoki, F. Zygotic Gene Activation in Mice: Profile and Regulation. J. Reprod. Dev. 2022, 68, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Zhan, J.; Zhang, J.; Liu, Z.; Hou, Z.; Zhang, C.; Yi, L.; Gao, L.; Zhao, H.; Chen, Z.J.; et al. Human Zygotic Genome Activation Is Initiated from Paternal Genome. Cell Discov. 2023, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Tesarik, J. Control of Maternal-to-Zygotic Transition in Human Embryos and Other Animal Species (Especially Mouse): Similarities and Differences. Int. J. Mol. Sci. 2022, 23, 8562. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Seller, C.A.; Shermoen, A.W.; O’Farrell, P.H. Timing the Drosophila Mid-Blastula Transition: A Cell Cycle-Centered View. Trends Genet. 2016, 32, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Fan, D.; Zhao, H.; Liu, Z.; Hou, Z.; Tao, W.; Yu, G.; Yuan, S.; Zhu, X.; Kang, M.; et al. Dynamics of Histone Acetylation during Human Early Embryogenesis. Cell Discov. 2023, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, D.; Avvakumov, N.; Côté, J. Histone Phosphorylation. Epigenetics 2012, 7, 1098–1108. [Google Scholar] [CrossRef]
- Talamillo, A.; Barroso-Gomila, O.; Giordano, I.; Ajuria, L.; Grillo, M.; Mayor, U.; Barrio, R. The Role of SUMOylation during Development. Biochem. Soc. Trans. 2020, 48, 463–478. [Google Scholar] [CrossRef]
- Mattiroli, F.; Penengo, L. Histone Ubiquitination: An Integrative Signaling Platform in Genome Stability. Trends Genet. 2021, 37, 566–581. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.; Ding, J.; Yin, T.; Ye, P.; Zhang, Y. The Conceivable Functions of Protein Ubiquitination and Deubiquitination in Reproduction. Front. Physiol. 2022, 13, 886261. [Google Scholar] [CrossRef]
- Millán-Zambrano, G.; Burton, A.; Bannister, A.J.; Schneider, R. Histone Post-Translational Modifications—Cause and Consequence of Genome Function. Nat. Rev. Genet. 2022, 23, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wu, J.; Guo, H.; Yao, W.; Li, S.; Lu, Y.; Jia, Y.; Liang, X.; Tang, J.; Zhang, H. Post-translational Modifications of Histones: Mechanisms, Biological Functions, and Therapeutic Targets. MedComm 2023, 4, e292. [Google Scholar] [CrossRef]
- Artus, J.; Cohen-Tannoudji, M. Cell Cycle Regulation during Early Mouse Embryogenesis. Mol. Cell. Endocrinol. 2008, 282, 78–86. [Google Scholar] [CrossRef]
- Scheffler, K.; Uraji, J.; Jentoft, I.; Cavazza, T.; Mönnich, E.; Mogessie, B.; Schuh, M. Two Mechanisms Drive Pronuclear Migration in Mouse Zygotes. Nat. Commun. 2021, 12, 841. [Google Scholar] [CrossRef] [PubMed]
- Maemura, M.; Taketsuru, H.; Nakajima, Y.; Shao, R.; Kakihara, A.; Nogami, J.; Ohkawa, Y.; Tsukada, Y.I. Totipotency of Mouse Zygotes Extends to Single Blastomeres of Embryos at the Four-Cell Stage. Sci. Rep. 2021, 11, 11167. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.C.; Denu, J.M. Chemical Mechanisms of Histone Lysine and Arginine Modifications. Biochim. Et Biophys. Acta—Gene Regul. Mech. 2009, 1789, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Jambhekar, A.; Dhall, A.; Shi, Y. Roles and Regulation of Histone Methylation in Animal Development. Nat. Rev. Mol. Cell Biol. 2019, 20, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Eberharter, A.; Becker, P.B. Histone Acetylation: A Switch between Repressive and Permissive Chromatin. EMBO Rep. 2002, 3, 224–229. [Google Scholar] [CrossRef]
- Wang, H.; Fan, Z.; Shliaha, P.V.; Miele, M.; Hendrickson, R.C.; Jiang, X.; Helin, K. H3K4me3 Regulates RNA Polymerase II Promoter-Proximal Pause-Release. Nature 2023, 615, 339–348. [Google Scholar] [CrossRef]
- Park, S.; Kim, G.W.; Kwon, S.H.; Lee, J.S. Broad Domains of Histone H3 Lysine 4 Trimethylation in Transcriptional Regulation and Disease. FEBS J. 2020, 287, 2891–2902. [Google Scholar] [CrossRef] [PubMed]
- Wysocka, J.; Swigut, T.; Xiao, H.; Milne, T.A.; Kwon, S.Y.; Landry, J.; Kauer, M.; Tackett, A.J.; Chait, B.T.; Badenhorst, P.; et al. A PHD Finger of NURF Couples Histone H3 Lysine 4 Trimethylation with Chromatin Remodelling. Nature 2006, 442, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, C.; Liu, W.; Li, J.; Li, C.; Kou, X.; Chen, J.; Zhao, Y.; Gao, H.; Wang, H.; et al. Distinct Features of H3K4me3 and H3K27me3 Chromatin Domains in Pre-Implantation Embryos. Nature 2016, 537, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Beacon, T.H.; Delcuve, G.P.; López, C.; Nardocci, G.; Kovalchuk, I.; van Wijnen, A.J.; Davie, J.R. The Dynamic Broad Epigenetic (H3K4me3, H3K27ac) Domain as a Mark of Essential Genes. Clin. Epigenetics 2021, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, L.C.; Andersen, I.S.; Reiner, A.H.; Li, N.; Aanes, H.; Østrup, O.; Winata, C.; Mathavan, S.; Müller, F.; Aleström, P.; et al. Prepatterning of Developmental Gene Expression by Modified Histones before Zygotic Genome Activation. Dev. Cell 2011, 21, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Van Heeringen, S.J.; Akhtar, W.; Jacobi, U.G.; Akkers, R.C.; Suzuki, Y.; Veenstra, G.J.C. Nucleotide Composition-Linked Divergence of Vertebrate Core Promoter Architecture. Genome Res. 2011, 21, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Ardehali, M.B.; Mei, A.; Zobeck, K.L.; Caron, M.; Lis, J.T.; Kusch, T. Drosophila Set1 Is the Major Histone H3 Lysine 4 Trimethyltransferase with Role in Transcription. EMBO J. 2011, 30, 2817–2828. [Google Scholar] [CrossRef]
- Dahl, J.A.; Jung, I.; Aanes, H.; Greggains, G.D.; Manaf, A.; Lerdrup, M.; Li, G.; Kuan, S.; Li, B.; Lee, A.Y.; et al. Broad Histone H3K4me3 Domains in Mouse Oocytes Modulate Maternal-to-Zygotic Transition. Nature 2016, 537, 548–552. [Google Scholar] [CrossRef]
- Zhang, A.; Xu, B.; Sun, Y.; Lu, X.; Gu, R.; Wu, L.; Feng, Y.; Xu, C. Dynamic Changes of Histone H3 Trimethylated at Positions K4 and K27 in Human Oocytes and Preimplantation Embryos. Fertil. Steril. 2012, 98, 1009–1016. [Google Scholar] [CrossRef]
- Sendžikaitė, G.; Kelsey, G. The Role and Mechanisms of DNA Methylation in the Oocyte. Essays Biochem. 2019, 63, 691–705. [Google Scholar] [CrossRef]
- Huang, X.; Gao, X.; Li, W.; Jiang, S.; Li, R.; Hong, H.; Zhao, C.; Zhou, P.; Chen, H.; Bo, X.; et al. Stable H3K4me3 Is Associated with Transcription Initiation during Early Embryo Development. Bioinformatics 2019, 35, 3931–3936. [Google Scholar] [CrossRef] [PubMed]
- Brind’Amour, J.; Lorincz, M.C. Profiling Histone Methylation in Low Numbers of Cells. In Methods in Molecular Biology; Springer: New York, NY, USA, 2022; Volume 2529. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, H.; Huang, B.; Li, W.; Xiang, Y.; Peng, X.; Ming, J.; Wu, X.; Zhang, Y.; Xu, Q.; et al. Allelic Reprogramming of the Histone Modification H3K4me3 in Early Mammalian Development. Nature 2016, 537, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, T.; Griffith, O.W.; Suzuki, S.; Renfree, M.B. Presence of H3K4me3 on Paternally Expressed Genes of the Paternal Genome From Sperm to Implantation. Front. Cell Dev. Biol. 2022, 10, 838684. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Li, C.; Liu, X.; Gao, S. Insights into Epigenetic Patterns in Mammalian Early Embryos. Protein Cell. 2021, 12, 7–28. [Google Scholar] [CrossRef] [PubMed]
- Albert, T.K.; Kerl, K. A Histone Tale That EnCOMPASSes Pausing: New Insights into the Functional Repertoire of H3K4me3. Signal Transduct. Target. Ther. 2023, 8, 270. [Google Scholar] [CrossRef] [PubMed]
- Sha, Q.Q.; Zhang, J.; Fan, H.Y. Function and Regulation of Histone H3 Lysine-4 Methylation During Oocyte Meiosis and Maternal-to-Zygotic Transition. Front. Cell Dev. Biol. 2020, 8, 597498. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Kim, G.W.; Jeon, Y.H.; Kim, J.Y.; Lee, S.W.; Kwon, S.H. Drawing a Line between Histone Demethylase KDM5A and KDM5B: Their Roles in Development and Tumorigenesis. Exp. Mol. Med. 2022, 54, 2107–2117. [Google Scholar] [CrossRef]
- Xhabija, B.; Kidder, B.L. KDM5B Is a Master Regulator of the H3K4-Methylome in Stem Cells, Development and Cancer. Semin. Cancer Biol. 2019, 57, 79–85. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, C.; Li, H. Histone Demethylase KDM5B Catalyzed H3K4me3 Demethylation to Promote Differentiation of Bone Marrow Mesenchymal Stem Cells into Cardiomyocytes. Mol. Biol. Rep. 2022, 49, 7239–7249. [Google Scholar] [CrossRef]
- Kidder, B.L.; Hu, G.; Yu, Z.-X.; Liu, C.; Zhao, K. Extended Self-Renewal and Accelerated Reprogramming in the Absence of Kdm5b. Mol. Cell. Biol. 2013, 33, 4793–4810. [Google Scholar] [CrossRef]
- Peaston, A.E.; Evsikov, A.V.; Graber, J.H.; de Vries, W.N.; Holbrook, A.E.; Solter, D.; Knowles, B.B. Retrotransposons Regulate Host Genes in Mouse Oocytes and Preimplantation Embryos. Dev. Cell 2004, 7, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Xu, J.; Yu, G.; Yao, G.; Xu, K.; Ma, X.; Zhang, N.; Liu, B.; Li, T.; Lin, Z.; et al. Resetting Histone Modifications during Human Parental-to-Zygotic Transition. Science 2019, 365, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Reshetnikov, V.V.; Kisaretova, P.E.; Ershov, N.I.; Merkulova, T.I.; Bondar, N.P. Data of Correlation Analysis between the Density of H3K4me3 in Promoters of Genes and Gene Expression: Data from RNA-Seq and ChIP-Seq Analyses of the Murine Prefrontal Cortex. Data Brief 2020, 33, 106365. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, Y.; Wang, Y.; Ji, F.; Wang, A.; Yang, M.; He, X.; Li, L. Bivalent Regulation and Related Mechanisms of H3K4/27/9me3 in Stem Cells. Stem Cell Rev. Rep. 2022, 18, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, X.; Cui, H.; Xiao, S.; Song, E.; Zong, M.; Ling, S.; Rosenwaks, Z.; Gao, S.; Liu, X.; et al. Maternal H3.3-Mediated Paternal Genome Reprogramming Contributes to Minor Zygotic Genome Activation. bioRxiv 2023. [Google Scholar] [CrossRef]
- Park, K.; Kim, J.A.; Kim, J. Transcriptional Regulation by the KMT2 Histone H3K4 Methyltransferases. Biochim. Biophys. Acta—Gene Regul. Mech. 2020, 1863, 194545. [Google Scholar] [CrossRef] [PubMed]
- Nicetto, D.; Zaret, K.S. Role of H3K9me3 Heterochromatin in Cell Identity Establishment and Maintenance. Curr. Opin. Genet. Dev. 2019, 55, 1–10. [Google Scholar] [CrossRef]
- Ninova, M.; Tóth, K.F.; Aravin, A.A. The Control of Gene Expression and Cell Identity by H3K9 Trimethylation. Development 2019, 146, dev181180. [Google Scholar] [CrossRef]
- Nicetto, D.; Donahue, G.; Jain, T.; Peng, T.; Sidoli, S.; Sheng, L.; Montavon, T.; Becker, J.S.; Grindheim, J.M.; Blahnik, K.; et al. H3K9me3-Heterochromatin Loss at Protein-Coding Genes Enables Developmental Lineage Specification. Science 2019, 363, 294–297. [Google Scholar] [CrossRef]
- Xu, R.; Zhu, Q.; Zhao, Y.; Chen, M.; Yang, L.; Shen, S.; Yang, G.; Shi, Z.; Zhang, X.; Shi, Q.; et al. Unreprogrammed H3K9me3 Prevents Minor Zygotic Genome Activation and Lineage Commitment in SCNT Embryos. Nat. Commun. 2023, 14, 4807. [Google Scholar] [CrossRef]
- Matoba, S.; Liu, Y.; Lu, F.; Iwabuchi, K.A.; Shen, L.; Inoue, A.; Zhang, Y. Embryonic Development Following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation. Cell 2014, 159, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Matoba, S.; Zhang, Y. Somatic Cell Nuclear Transfer Reprogramming: Mechanisms and Applications. Cell Stem Cell 2018, 23, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Srirattana, K.; Kaneda, M.; Parnpai, R. Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int. J. Mol. Sci. 2022, 23, 1969. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.T. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. In Methods in Molecular Biology; Springer: New York, NY, USA, 2023; Volume 2647. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Gao, Y.; Yang, L.; Li, C.; Liu, W.; Chen, C.; Kou, X.; Zhao, Y.; Chen, J.; et al. Reprogramming of H3K9me3-Dependent Heterochromatin during Mammalian Embryo Development. Nat. Cell Biol. 2018, 20, 620–631. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, R.V.; Sangalli, J.R.; De Bem, T.H.C.; Ambrizi, D.R.; del Collado, M.; Bridi, A.; de Ávila, A.C.F.C.M.; Macabelli, C.H.; de Jesus Oliveira, L.; da Silveira, J.C.; et al. Catalytic Inhibition of H3K9me2 Writers Disturbs Epigenetic Marks during Bovine Nuclear Reprogramming. Sci. Rep. 2020, 10, 11493. [Google Scholar] [CrossRef] [PubMed]
- Sankar, A.; Lerdrup, M.; Manaf, A.; Johansen, J.V.; Gonzalez, J.M.; Borup, R.; Blanshard, R.; Klungland, A.; Hansen, K.; Andersen, C.Y.; et al. KDM4A Regulates the Maternal-to-Zygotic Transition by Protecting Broad H3K4me3 Domains from H3K9me3 Invasion in Oocytes. Nat. Cell Biol. 2020, 22, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.S.; Nicetto, D.; Zaret, K.S. H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes. Trends Genet. 2016, 32, 29–41. [Google Scholar] [CrossRef]
- Wu, D.Y.; Li, X.; Sun, Q.R.; Dou, C.L.; Xu, T.; He, H.; Luo, H.; Fu, H.; Bu, G.W.; Luo, B.; et al. Defective Chromatin Architectures in Embryonic Stem Cells Derived from Somatic Cell Nuclear Transfer Impair Their Differentiation Potentials. Cell Death Dis. 2021, 12, 1085. [Google Scholar] [CrossRef]
- Chung, Y.G.; Matoba, S.; Liu, Y.; Eum, J.H.; Lu, F.; Jiang, W.; Lee, J.E.; Sepilian, V.; Cha, K.Y.; Lee, D.R.; et al. Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells. Cell Stem Cell 2015, 17, 758–766. [Google Scholar] [CrossRef]
- Geis, F.K.; Goff, S.P. Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses 2020, 12, 884. [Google Scholar] [CrossRef]
- Bulut-Karslioglu, A.; DeLaRosa-Velázquez, I.A.; Ramirez, F.; Barenboim, M.; Onishi-Seebacher, M.; Arand, J.; Galán, C.; Winter, G.E.; Engist, B.; Gerle, B.; et al. Suv39h-Dependent H3K9me3 Marks Intact Retrotransposons and Silences LINE Elements in Mouse Embryonic Stem Cells. Mol. Cell 2014, 55, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.X.; El Farran, C.A.; Guo, H.C.; Yu, T.; Fang, H.T.; Wang, H.F.; Schlesinger, S.; Seah, Y.F.S.; Goh, G.Y.L.; Neo, S.P.; et al. Systematic Identification of Factors for Provirus Silencing in Embryonic Stem Cells. Cell 2015, 163, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhang, Y.; Loh, Y.P.; Tng, J.Q.; Lim, M.C.; Cao, Z.; Raju, A.; Lieberman Aiden, E.; Li, S.; Manikandan, L.; et al. H3K27me3-Rich Genomic Regions Can Function as Silencers to Repress Gene Expression via Chromatin Interactions. Nat. Commun. 2021, 12, 719. [Google Scholar] [CrossRef]
- van Mierlo, G.; Veenstra, G.J.C.; Vermeulen, M.; Marks, H. The Complexity of PRC2 Subcomplexes. Trends Cell Biol. 2019, 29, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Boros, J.; Arnoult, N.; Stroobant, V.; Collet, J.-F.; Decottignies, A. Polycomb Repressive Complex 2 and H3K27me3 Cooperate with H3K9 Methylation To Maintain Heterochromatin Protein 1α at Chromatin. Mol. Cell Biol. 2014, 34, 3662–3674. [Google Scholar] [CrossRef] [PubMed]
- Brumbaugh, J.; Stefano, B.D.; Hochedlinger, K. Reprogramming: Identifying the Mechanisms That Safeguard Cell Identity. Development 2019, 146, dev182170. [Google Scholar] [CrossRef] [PubMed]
- Charlet, J.; Duymich, C.E.; Lay, F.D.; Mundbjerg, K.; Dalsgaard Sørensen, K.; Liang, G.; Jones, P.A. Bivalent Regions of Cytosine Methylation and H3K27 Acetylation Suggest an Active Role for DNA Methylation at Enhancers. Mol. Cell 2016, 62, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.G.; Zhou, Q.; Ma, X.S.; Liu, X.Y.; Meng, Q.R.; Huang, X.J.; Liu, H.L.; Lei, W.L.; Zhao, Z.H.; Ouyang, Y.C.; et al. PRC2 and EHMT1 Regulate H3K27me2 and H3K27me3 Establishment across the Zygote Genome. Nat. Commun. 2020, 11, 6354. [Google Scholar] [CrossRef] [PubMed]
- Pailles, M.; Hirlemann, M.; Brochard, V.; Chebrout, M.; Oudin, J.F.; Marks, H.; Jouneau, A.; Bonnet-Garnier, A. H3K27me3 at Pericentromeric Heterochromatin Is a Defining Feature of the Early Mouse Blastocyst. Sci. Rep. 2022, 12, 13908. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, B.; Zhang, B.; Xiang, Y.; Du, Z.; Xu, Q.; Li, Y.; Wang, Q.; Ma, J.; Peng, X.; et al. Resetting Epigenetic Memory by Reprogramming of Histone Modifications in Mammals. Mol. Cell 2016, 63, 1066–1079. [Google Scholar] [CrossRef]
- Fraser, R.; Lin, C.J. Epigenetic Reprogramming of the Zygote in Mice and Men: On Your Marks, Get Set, Go! Reproduction 2016, 152, R211–R222. [Google Scholar] [CrossRef]
- Rousseaux, S.; Reynoird, N.; Escoffier, E.; Thevenon, J.; Caron, C.; Khochbin, S. Epigenetic Reprogramming of the Male Genome during Gametogenesis and in the Zygote. Reprod. Biomed. Online 2008, 16, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Juan, A.H.; Wang, S.; Ko, K.D.; Zare, H.; Tsai, P.F.; Feng, X.; Vivanco, K.O.; Ascoli, A.M.; Gutierrez-Cruz, G.; Krebs, J.; et al. Roles of H3K27me2 and H3K27me3 Examined during Fate Specification of Embryonic Stem Cells. Cell Rep. 2016, 17, 1369–1382. [Google Scholar] [CrossRef] [PubMed]
- Macrae, T.A.; Fothergill-Robinson, J.; Ramalho-Santos, M. Regulation, Functions and Transmission of Bivalent Chromatin during Mammalian Development. Nat. Rev. Mol. Cell Biol. 2023, 24, 6–26. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Home, P.; Ray, S.; Larson, M.; Paul, A.; Rajendran, G.; Behr, B.; Paul, S. EED and KDM6B Coordinate the First Mammalian Cell Lineage Commitment To Ensure Embryo Implantation. Mol. Cell. Biol. 2013, 33, 2691–2705. [Google Scholar] [CrossRef]
- Raas, M.W.D.; Zijlmans, D.W.; Vermeulen, M.; Marks, H. There Is Another: H3K27me3-Mediated Genomic Imprinting. Trends Genet. 2022, 38, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.A.; Reiner, A.H.; Klungland, A.; Wakayama, T.; Collas, P. Histone H3 Lysine 27 Methylation Asymmetry on Developmentally-Regulated Promoters Distinguish the First Two Lineages in Mouse Preimplantation Embryos. PLoS ONE 2010, 5, e9150. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Yu, J. Epigenetic Disruptions of Histone Signatures for the Trophectoderm and Inner Cell Mass in Mouse Parthenogenetic Embryos. Stem Cells Dev. 2015, 24, 550–564. [Google Scholar] [CrossRef]
- Inoue, A.; Jiang, L.; Lu, F.; Suzuki, T.; Zhang, Y. Maternal H3K27me3 Controls DNA Methylation-Independent Imprinting. Nature 2017, 547, 419–424. [Google Scholar] [CrossRef]
- Sato, Y.; Hilbert, L.; Oda, H.; Wan, Y.; Heddleston, J.M.; Chew, T.L.; Zaburdaev, V.; Keller, P.; Lionnet, T.; Vastenhouw, N.; et al. Histone H3K27 Acetylation Precedes Active Transcription during Zebrafish Zygotic Genome Activation as Revealed by Live-Cell Analysis. Development 2019, 146, dev179127. [Google Scholar] [CrossRef]
- Jung, Y.H.; Sauria, M.E.G.; Lyu, X.; Cheema, M.S.; Ausio, J.; Taylor, J.; Corces, V.G. Chromatin States in Mouse Sperm Correlate with Embryonic and Adult Regulatory Landscapes. Cell Rep. 2017, 18, 1366–1382. [Google Scholar] [CrossRef] [PubMed]
- Lavarone, E.; Barbieri, C.M.; Pasini, D. Dissecting the Role of H3K27 Acetylation and Methylation in PRC2 Mediated Control of Cellular Identity. Nat. Commun. 2019, 10, 1679. [Google Scholar] [CrossRef] [PubMed]
- Vavouri, T.; Lehner, B. Human Genes with CpG Island Promoters Have a Distinct Transcription-Associated Chromatin Organization. Genome Biol. 2012, 13, R110. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Z.; Dong, Q.; Xiong, J.; Zhu, B. Histone H3K27 Acetylation Is Dispensable for Enhancer Activity in Mouse Embryonic Stem Cells. Genome Biol. 2020, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- DiFiore, J.V.; Ptacek, T.S.; Wang, Y.; Li, B.; Simon, J.M.; Strahl, B.D. Unique and Shared Roles for Histone H3K36 Methylation States in Transcription Regulation Functions. Cell Rep. 2020, 31, 107751. [Google Scholar] [CrossRef]
- Sen, P.; Dang, W.; Donahue, G.; Dai, J.; Dorsey, J.; Cao, X.; Liu, W.; Cao, K.; Perry, R.; Lee, J.Y.; et al. H3K36 Methylation Promotes Longevity by Enhancing Transcriptional Fidelity. Genes Dev. 2015, 29, 1362–1376. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.S.; Douglass, S.M.; Morselli, M.; Obusan, M.B.; Pavlyukov, M.S.; Pellegrini, M.; Johnson, T.L. H3K36 Methylation and the Chromodomain Protein Eaf3 Are Required for Proper Cotranscriptional Spliceosome Assembly. Cell Rep. 2019, 27, 3760–3769.e4. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, H.; Fong, N.; Erickson, B.; Bentley, D.L. Pre-MRNA Splicing Is a Determinant of Histone H3K36 Methylation. Proc. Natl. Acad. Sci. USA 2011, 108, 13564–13569. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Mao, G.; Tong, D.; Huang, J.; Gu, L.; Yang, W.; Li, G.M. The Histone Mark H3K36me3 Regulates Human DNA Mismatch Repair through Its Interaction with MutSα. Cell 2013, 153, 590–600. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Y.; Jia, J.; Fang, Y.; Tang, Y.; Wu, H.; Fang, D. H3K36me3, Message from Chromatin to DNA Damage Repair. Cell Biosci. 2020, 10, 9. [Google Scholar] [CrossRef]
- Wang, L.; Niu, N.; Li, L.; Shao, R.; Ouyang, H.; Zou, W. H3K36 Trimethylation Mediated by SETD2 Regulates the Fate of Bone Marrow Mesenchymal Stem Cells. PLoS Biol. 2018, 16, e2006522. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Workman, J.L. Regulation of SETD2 Stability Is Important for the Fidelity of H3K36me3 Deposition. Epigenetics Chromatin 2020, 13, 40. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, B. Roles of H3K36-Specific Histone Methyltransferases in Transcription: Antagonizing Silencing and Safeguarding Transcription Fidelity. Biophys. Rep. 2018, 4, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.K.; Strahl, B.D. An RNA Polymerase II-Coupled Function for Histone H3K36 Methylation in Checkpoint Activation and DSB Repair. Nat. Commun. 2014, 5, 3965. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, D.N.; Papillon-Cavanagh, S.; Chen, H.; Yue, Y.; Chen, X.; Rajagopalan, K.N.; Horth, C.; McGuire, J.T.; Xu, X.; Nikbakht, H.; et al. The Histone Mark H3K36me2 Recruits DNMT3A and Shapes the Intergenic DNA Methylation Landscape. Nature 2019, 573, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Ishiuchi, T.; Abe, S.; Namekawa, S.H.; Huang, G.; Ogawa, Y.; Sasaki, H. Histone H3K36me2 and H3K36me3 Form a Chromatin Platform Essential for DNMT3A-Dependent DNA Methylation in Mouse Oocytes. Nat. Commun. 2022, 13, 4440. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Xiang, Y.; Wang, Q.; Wang, L.; Brind’Amour, J.; Bogutz, A.B.; Zhang, Y.; Zhang, B.; Yu, G.; Xia, W.; et al. SETD2 Regulates the Maternal Epigenome, Genomic Imprinting and Embryonic Development. Nat. Genet. 2019, 51, 844–856. [Google Scholar] [CrossRef]
- Hu, M.; Sun, X.J.; Zhang, Y.L.; Kuang, Y.; Hu, C.Q.; Wu, W.L.; Shen, S.H.; Du, T.T.; Li, H.; He, F.; et al. Histone H3 Lysine 36 Methyltransferase Hypb/Setd2 Is Required for Embryonic Vascular Remodeling. Proc. Natl. Acad. Sci. USA 2010, 107, 2956–2961. [Google Scholar] [CrossRef]
- Aoshima, K.; Inoue, E.; Sawa, H.; Okada, Y. Paternal H3K4 Methylation Is Required for Minor Zygotic Gene Activation and Early Mouse Embryonic Development. EMBO Rep. 2015, 16, 803–812. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y. Maternal H3K27me3-Dependent Autosomal and X Chromosome Imprinting. Nat. Rev. Genet. 2020, 21, 555–571. [Google Scholar] [CrossRef]
- Igolkina, A.A.; Zinkevich, A.; Karandasheva, K.O.; Popov, A.A.; Selifanova, M.V.; Nikolaeva, D.; Tkachev, V.; Penzar, D.; Nikitin, D.M.; Buzdin, A. H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 Histone Tags Suggest Distinct Regulatory Evolution of Open and Condensed Chromatin Landmarks. Cells 2019, 8, 1034. [Google Scholar] [CrossRef] [PubMed]
- Lismer, A.; Lambrot, R.; Lafleur, C.; Dumeaux, V.; Kimmins, S. ChIP-Seq Protocol for Sperm Cells and Embryos to Assess Environmental Impacts and Epigenetic Inheritance. STAR Protoc. 2021, 2, 100602. [Google Scholar] [CrossRef] [PubMed]
- Lismer, A.; Kimmins, S. Emerging Evidence That the Mammalian Sperm Epigenome Serves as a Template for Embryo Development. Nat. Commun. 2023, 14, 2142. [Google Scholar] [CrossRef] [PubMed]
- Cockrum, C.S.; Strome, S. Maternal H3K36 and H3K27 HMTs Protect Germline Development via Regulation of the Transcription Factor LIN-15B. eLife 2022, 11, e77951. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhang, C.; Zhang, Y. Epigenetic Regulation of Mouse Preimplantation Embryo Development. Curr. Opin. Genet. Dev. 2020, 64, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Hu, B.; Wang, Z.; Wu, X.; Luo, L.; Li, S.; Wang, S.; Zhang, K.; Wang, H. Functional Role of GATA3 and CDX2 in Lineage Specification during Bovine Early Embryonic Development. Reproduction 2023, 165, 325–333. [Google Scholar] [CrossRef]
- Huang, D.; Guo, G.; Yuan, P.; Ralston, A.; Sun, L.; Huss, M.; Mistri, T.; Pinello, L.; Ng, H.H.; Yuan, G.; et al. The Role of Cdx2 as a Lineage Specific Transcriptional Repressor for Pluripotent Network during the First Developmental Cell Lineage Segregation. Sci. Rep. 2017, 7, 17156. [Google Scholar] [CrossRef]
- Home, P.; Ray, S.; Dutta, D.; Bronshteyn, I.; Larson, M.; Paul, S. GATA3 Is Selectively Expressed in the Trophectoderm of Peri-Implantation Embryo and Directly Regulates Cdx2 Gene Expression. J. Biol. Chem. 2009, 284, 28729–28737. [Google Scholar] [CrossRef]
- Rebuzzini, P.; Zuccotti, M.; Garagna, S. Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021, 10, 2049. [Google Scholar] [CrossRef]
- Niwa, H. How Is Pluripotency Determined and Maintained? Development 2007, 134, 635–646. [Google Scholar] [CrossRef]
- Allègre, N.; Chauveau, S.; Dennis, C.; Renaud, Y.; Meistermann, D.; Estrella, L.V.; Pouchin, P.; Cohen-Tannoudji, M.; David, L.; Chazaud, C. NANOG Initiates Epiblast Fate through the Coordination of Pluripotency Genes Expression. Nat. Commun. 2022, 13, 3550. [Google Scholar] [CrossRef]
- Kim, W.; Jho, E.H. The History and Regulatory Mechanism of the Hippo Pathway. BMB Rep. 2018, 51, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Guan, K.L. Hippo Signaling in Embryogenesis and Development. Trends Biochem. Sci. 2021, 46, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jiang, W. Dynamic Changes in Epigenetic Modifications During Mammalian Early Embryo Development. In Handbook of Epigenetics: The New Molecular and Medical Genetics, 3rd ed.; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Torres-Padilla, M.E.; Parfitt, D.E.; Kouzarides, T.; Zernicka-Goetz, M. Histone Arginine Methylation Regulates Pluripotency in the Early Mouse Embryo. Nature 2007, 445, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Bruce, A.W.; Jedrusik, A.; Ellis, P.D.; Andrews, R.M.; Langford, C.F.; Glover, D.M.; Zernicka-Goetz, M. CARM1 Is Required in Embryonic Stem Cells to Maintain Pluripotency and Resist Differentiation. Stem Cells 2009, 27, 2637–2645. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Lyu, X.; Qin, N.; Liu, H.; Zhang, M.; Lai, Y.; Dong, B.; Lu, P. Coactivator-Associated Arginine Methyltransferase 1: A Versatile Player in Cell Differentiation and Development. Genes Dis. 2023, 10, 2383–2392. [Google Scholar] [CrossRef] [PubMed]
- Hupalowska, A.; Jedrusik, A.; Zhu, M.; Bedford, M.T.; Glover, D.M.; Zernicka-Goetz, M. CARM1 and Paraspeckles Regulate Pre-Implantation Mouse Embryo Development. Cell 2018, 175, 1902–1916.e13. [Google Scholar] [CrossRef]
- Franek, M.; Legartová, S.; Suchánková, J.; Milite, C.; Castellano, S.; Sbardella, G.; Kozubek, S.; Bártová, E. CARM1 Modulators Affect Epigenome of Stem Cells and Change Morphology of Nucleoli. Physiol. Res. 2015, 64, 769–782. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Feng, G.; Wang, Y.; Li, Y.; Li, X.; Liu, C.; Jiao, G.; Huang, C.; Shi, J.; et al. Asymmetric Expression of LincGET Biases Cell Fate in Two-Cell Mouse Embryos. Cell 2018, 175, 1887–1901.e18. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, J.; Xu, C.; Wang, Y.; Sun, L.; Guo, X.; Liu, H. MicroRNA-181 Regulates CARM1 and Histone Aginine Methylation to Promote Differentiation of Human Embryonic Stem Cells. PLoS ONE 2013, 8, e53146. [Google Scholar] [CrossRef]
- Goolam, M.; Scialdone, A.; Graham, S.J.L.; MacAulay, I.C.; Jedrusik, A.; Hupalowska, A.; Voet, T.; Marioni, J.C.; Zernicka-Goetz, M. Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos. Cell 2016, 165, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.Y.; Zhang, Y.J.; Dai, H.; Zhang, Y.; Shen, Y.F. CARM1 Mediates Modulation of Sox2. PLoS ONE 2011, 6, e27026. [Google Scholar] [CrossRef]
- Cao, Z.; Tong, X.; Yin, H.; Zhou, N.; Zhang, X.; Zhang, M.; Wang, X.; Liu, Q.; Yan, Y.; Ma, Y.; et al. Histone Arginine Methyltransferase CARM1-Mediated H3R26me2 Is Essential for Morula-to-Blastocyst Transition in Pigs. Front. Cell Dev. Biol. 2021, 9, 678282. [Google Scholar] [CrossRef]
- Burton, A.; Muller, J.; Tu, S.; Padilla-Longoria, P.; Guccione, E.; Torres-Padilla, M.E. Single-Cell Profiling of Epigenetic Modifiers Identifies PRDM14 as an Inducer of Cell Fate in the Mammalian Embryo. Cell Rep. 2013, 5, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Belmonte, J.C.I. The Molecular Harbingers of Early Mammalian Embryo Patterning. Cell 2016, 165, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Nakaki, F.; Saitou, M. PRDM14: A Unique Regulator for Pluripotency and Epigenetic Reprogramming. Trends Biochem. Sci. 2014, 39, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Zhang, W.; Shuai, L. The First Cell Fate Decision in Pre-Implantation Mouse Embryos. Cell Regen. 2019, 8, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Duan, E. LncRNAs and Paraspeckles Predict Cell Fate in Early Mouse Embryo. Biol. Reprod. 2019, 100, 1129–1131. [Google Scholar] [CrossRef]
- Grosch, M.; Ittermann, S.; Shaposhnikov, D.; Drukker, M. Chromatin-Associated Membraneless Organelles in Regulation of Cellular Differentiation. Stem Cell Rep. 2020, 15, 1220–1232. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, T.; Zhao, Z.; Wei, W.; Xin, W.; Yang, X.; Wang, X. Novel Insights into the Emerging Role of Neat1 and Its Effects Downstream in the Regulation of Inflammation. J. Inflamm. Res. 2022, 15, 557–571. [Google Scholar] [CrossRef]
- Henikoff, S.; Smith, M.M. Histone Variants and Epigenetics. Cold Spring Harb. Perspect. Biol. 2015, 7, a019364. [Google Scholar] [CrossRef] [PubMed]
- Talbert, P.B.; Henikoff, S. Histone Variants at a Glance. J. Cell Sci. 2021, 134, jcs244749. [Google Scholar] [CrossRef]
- Martire, S.; Banaszynski, L.A. The Roles of Histone Variants in Fine-Tuning Chromatin Organization and Function. Nat. Rev. Mol. Cell Biol. 2020, 21, 522–541. [Google Scholar] [CrossRef] [PubMed]
- Buschbeck, M.; Hake, S.B. Variants of Core Histones and Their Roles in Cell Fate Decisions, Development and Cancer. Nat. Rev. Mol. Cell Biol. 2017, 18, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Herchenröther, A.; Wunderlich, T.M.; Lan, J.; Hake, S.B. Spotlight on Histone H2A Variants: From B to X to Z. Semin. Cell Dev. Biol. 2023, 135, 3–12. [Google Scholar] [CrossRef]
- Oberdoerffer, P.; Miller, K.M. Histone H2A Variants: Diversifying Chromatin to Ensure Genome Integrity. Semin. Cell Dev. Biol. 2023, 135, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, S.; Gundimella, S.K.Y.; Caron, C.; Perche, P.-Y.; Pehrson, J.R.; Khochbin, S.; Luger, K. Structural Characterization of the Histone Variant MacroH2A. Mol. Cell Biol. 2005, 25, 7616–7624. [Google Scholar] [CrossRef]
- Buschbeck, M.; Uribesalgo, I.; Wibowo, I.; Rué, P.; Martin, D.; Gutierrez, A.; Morey, L.; Guigó, R.; López-Schier, H.; Di Croce, L. The Histone Variant MacroH2A Is an Epigenetic Regulator of Key Developmental Genes. Nat. Struct. Mol. Biol. 2009, 16, 1074–1079. [Google Scholar] [CrossRef]
- Duthie, S.M. Mechanisms of X-inactivation. In eLS; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Rasmussen, T.P.; Mastrangelo, M.A.; Eden, A.; Pehrson, J.R.; Jaenisch, R. Dynamic Relocalization of Histone MacroH2A1 from Centrosomes to Inactive X Chromosomes during X Inactivation. J. Cell Biol. 2000, 150, 1189–1198. [Google Scholar] [CrossRef]
- Chang, C.C.; Ma, Y.; Jacobs, S.; Tian, X.C.; Yang, X.; Rasmussen, T.P. A Maternal Store of MacroH2A Is Removed from Pronuclei Prior to Onset of Somatic MacroH2A Expression in Preimplantation Embryos. Dev. Biol. 2005, 278, 367–380. [Google Scholar] [CrossRef]
- Angelov, D.; Molla, A.; Perche, P.Y.; Hans, F.; Côté, J.; Khochbin, S.; Bouvet, P.; Dimitrov, S. The Histone Variant MacroH2A Interferes with Transcription Factor Binding and SWI/SNF Nucleosome Remodeling. Mol. Cell 2003, 11, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.J.; Meers, O.; Buschbeck, M.; Heidel, F.H. The Role of Macroh2a Histone Variants in Cancer. Cancers 2021, 13, 3003. [Google Scholar] [CrossRef] [PubMed]
- Mermoud, J.E.; Tassin, A.M.; Pehrson, J.R.; Brockdorff, N. Centrosomal Association of Histone MacroH2A1.2 in Embryonic Stem Cells and Somatic Cells. Exp. Cell Res. 2001, 268, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ma, Y.; Shang, Y.; Huo, R.; Li, W. Post-Translational Regulation of the Maternal-to-Zygotic Transition. Cell. Mol. Life Sci. 2018, 75, 1707–1722. [Google Scholar] [CrossRef] [PubMed]
- Paull, T.T.; Rogakou, E.P.; Yamazaki, V.; Kirchgessner, C.U.; Gellert, M.; Bonner, W.M. A Critical Role for Histone H2AX in Recruitment of Repair Factors to Nuclear Foci after DNA Damage. Curr. Biol. 2000, 10, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.L.; Purman, C.; Porter, S.I.; Nganga, V.; Saini, A.; Hayer, K.E.; Gurewitz, G.L.; Sleckman, B.P.; Bednarski, J.J.; Bassing, C.H.; et al. DNA Double-Strand Breaks Induce H2Ax Phosphorylation Domains in a Contact-Dependent Manner. Nat. Commun. 2020, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.Y.; Guo, S.M.; Cheng, G.P.; Yin, Y.; He, X.; Zhou, L.Q. Cleavage-Embryo Genes and Transposable Elements Are Regulated by Histone Variant H2a.x. J. Reprod. Dev. 2021, 67, 307–312. [Google Scholar] [CrossRef]
- Schmücker, A.; Lei, B.; Lorković, Z.J.; Capella, M.; Braun, S.; Bourguet, P.; Mathieu, O.; Mechtler, K.; Berger, F. Crosstalk between H2A Variant-Specific Modifications Impacts Vital Cell Functions. PLoS Genet. 2021, 17, e1009601. [Google Scholar] [CrossRef]
- Kinner, A.; Wu, W.; Staudt, C.; Iliakis, G. Gamma-H2AX in Recognition and Signaling of DNA Double-Strand Breaks in the Context of Chromatin. Nucleic Acids Res. 2008, 36, 5678–5694. [Google Scholar] [CrossRef]
- Nishiyama, A.; Xin, L.; Sharov, A.A.; Thomas, M.; Mowrer, G.; Meyers, E.; Piao, Y.; Mehta, S.; Yee, S.; Nakatake, Y.; et al. Uncovering Early Response of Gene Regulatory Networks in ESCs by Systematic Induction of Transcription Factors. Cell Stem Cell 2009, 5, 420–433. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Wen, D.; Tseng, Z.; Tahmasian, M.; Zhong, M.; Rafii, S.; Stadtfeld, M.; Hochedlinger, K.; Xiao, A. Histone Variant H2A.X Deposition Pattern Serves as a Functional Epigenetic Mark for Distinguishing the Developmental Potentials of IPSCs. Cell Stem Cell 2014, 15, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.J.; Dong, F.L.; Ma, X.S.; Wang, X.G.; Lin, F.; Liu, H.L. Localization and Expression of Histone H2A Variants during Mouse Oogenesis and Preimplantation Embryo Development. Genet. Mol. Res. 2014, 13, 5929–5939. [Google Scholar] [CrossRef] [PubMed]
- Sugie, K.; Funaya, S.; Kawamura, M.; Nakamura, T.; Suzuki, M.G.; Aoki, F. Expression of Dux Family Genes in Early Preimplantation Embryos. Sci. Rep. 2020, 10, 19396. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Gao, L.; Mou, Y.; Deng, W.; Hua, J.; Yang, F. DUX: One Transcription Factor Controls 2-Cell-like Fate. Int. J. Mol. Sci. 2022, 23, 2067. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Morales, D.; Rauer, M.; Quarato, P.; Rabbani, L.; Zenk, F.; Schulte-Sasse, M.; Cardamone, F.; Gomez-Auli, A.; Cecere, G.; Iovino, N. Histone Variant H2A.Z Regulates Zygotic Genome Activation. Nat. Commun. 2021, 12, 7002. [Google Scholar] [CrossRef] [PubMed]
- Giaimo, B.D.; Ferrante, F.; Herchenröther, A.; Hake, S.B.; Borggrefe, T. The Histone Variant H2A.Z in Gene Regulation. Epigenetics Chromatin 2019, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Semer, M.; Bidon, B.; Larnicol, A.; Caliskan, G.; Catez, P.; Egly, J.M.; Coin, F.; Le May, N. DNA Repair Complex Licenses Acetylation of H2A.Z.1 by KAT2A during Transcription. Nat. Chem. Biol. 2019, 15, 992–1000. [Google Scholar] [CrossRef]
- Tsukii, K.; Takahata, S.; Murakami, Y. Histone Variant H2A.Z Plays Multiple Roles in the Maintenance of Heterochromatin Integrity. Genes Cells 2022, 27, 93–112. [Google Scholar] [CrossRef]
- Cole, L.; Kurscheid, S.; Nekrasov, M.; Domaschenz, R.; Vera, D.L.; Dennis, J.H.; Tremethick, D.J. Multiple Roles of H2A.Z in Regulating Promoter Chromatin Architecture in Human Cells. Nat. Commun. 2021, 12, 2524. [Google Scholar] [CrossRef]
- Rudnizky, S.; Bavly, A.; Malik, O.; Pnueli, L.; Melamed, P.; Kaplan, A. H2A.Z Controls the Stability and Mobility of Nucleosomes to Regulate Expression of the LH Genes. Nat. Commun. 2016, 7, 12958. [Google Scholar] [CrossRef]
- Sales-Gil, R.; Kommer, D.C.; de Castro, I.J.; Amin, H.A.; Vinciotti, V.; Sisu, C.; Vagnarelli, P. Non-redundant Functions of H2A.Z.1 and H2A.Z.2 in Chromosome Segregation and Cell Cycle Progression. EMBO Rep. 2021, 22, e52061. [Google Scholar] [CrossRef] [PubMed]
- Iouzalen, N.; Moreau, J.; Méchali, M. H2A.ZI, a New Variant Histone Expressed during Xenopus Early Development Exhibits Several Distinct Features from the Core Histone H2A. Nucleic Acids Res. 1996, 24, 3947–3952. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, M.J.; Wells, J.R.E.; Gibson, F.; Saint, R.; Tremethick, D.J. Regions of Variant Histone His2AvD Required for Drosophila Development. Nature 1999, 399, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Ji, F.; Wang, Y.; Lei, X.; Zhang, D.; Jiao, J. Brain-Specific Deletion of Histone Variant H2A.z Results in Cortical Neurogenesis Defects and Neurodevelopmental Disorder. Nucleic Acids Res. 2018, 46, 2290–2307. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Zhou, J.; Bu, G.; Zhu, W.; He, H.; Sun, Q.; Yu, Z.; Xiong, W.; Wang, L.; et al. Hierarchical Accumulation of Histone Variant H2A.Z Regulates Transcriptional States and Histone Modifications in Early Mammalian Embryos. Adv. Sci. 2022, 9, e2200057. [Google Scholar] [CrossRef] [PubMed]
- Dryhurst, D.; Ishibashi, T.; Rose, K.L.; Eirín-López, J.M.; McDonald, D.; Silva-Moreno, B.; Veldhoen, N.; Helbing, C.C.; Hendzel, M.J.; Shabanowitz, J.; et al. Characterization of the Histone H2A.Z-1 and H2A.Z-2 Isoforms in Vertebrates. BMC Biol. 2009, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Mylonas, C.; Lee, C.; Auld, A.L.; Cisse, I.I.; Boyer, L.A. A Dual Role for H2A.Z.1 in Modulating the Dynamics of RNA Polymerase II Initiation and Elongation. Nat. Struct. Mol. Biol. 2021, 28, 435–442. [Google Scholar] [CrossRef]
- Scacchetti, A.; Schauer, T.; Reim, A.; Apostolou, Z.; Sparr, A.C.; Krause, S.; Heun, P.; Wierer, M.; Becker, P.B. Drosophila SWR1 and NuA4 Complexes Are Defined by DOMINO Isoforms. eLife. 2020, 9, e56325. [Google Scholar] [CrossRef]
- Scacchetti, A.; Becker, P.B. Variation on a Theme: Evolutionary Strategies for H2A.Z Exchange by SWR1-Type Remodelers. Curr. Opin. Cell Biol. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Fujii, T.; Ueda, T.; Nagata, S.; Fukunaga, R. Essential Role of P400/MDomino Chromatin-Remodeling ATPase in Bone Marrow Hematopoiesis and Cell-Cycle Progression. J. Biol. Chem. 2010, 285, 30214–30223. [Google Scholar] [CrossRef]
- Dickinson, M.E.; Flenniken, A.M.; Ji, X.; Teboul, L.; Wong, M.D.; White, J.K.; Meehan, T.F.; Weninger, W.J.; Westerberg, H.; Adissu, H.; et al. High-Throughput Discovery of Novel Developmental Phenotypes. Nature 2016, 537, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Faast, R.; Thonglairoam, V.; Schulz, T.C.; Beall, J.; Wells, J.R.E.; Taylor, H.; Matthaei, K.; Rathjen, P.D.; Tremethick, D.J.; Lyons, I. Histone Variant H2A.Z Is Required for Early Mammalian Development. Curr. Biol. 2001, 537, 508–514. [Google Scholar] [CrossRef] [PubMed]
- McHaourab, Z.F.; Perreault, A.A.; Venters, B.J. ChIP-Seq and ChIP-Exo Profiling of Pol II, H2A.Z, and H3K4me3 in Human K562 Cells. Sci. Data 2018, 5, 180030. [Google Scholar] [CrossRef]
- Loppin, B.; Berger, F. Histone Variants: The Nexus of Developmental Decisions and Epigenetic Memory. Annu. Rev. Genet. 2020, 54, 121–149. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.C.; Pai, R. Genes of the Month: H3.3 Histone Genes: H3F3A and H3F3B. J. Clin. Pathol. 2021, 74, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Ishiuchi, T.; Abe, S.; Inoue, K.; Yeung, W.K.A.; Miki, Y.; Ogura, A.; Sasaki, H. Reprogramming of the Histone H3.3 Landscape in the Early Mouse Embryo. Nat. Struct. Mol. Biol. 2021, 28, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Banaszynski, L.A.; Geng, F.; Zhang, X.; Zhang, J.; Zhang, H.; O’Neill, C.L.; Yan, P.; Liu, Z.; Shido, K.; et al. Histone Variant H3.3–Mediated Chromatin Remodeling Is Essential for Paternal Genome Activation in Mouse Preimplantation Embryos. J. Biol. Chem. 2018, 293, 3829–3838. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Rosenwaks, Z. Activation of the Maternal Genome Through Asymmetric Distribution of Oocyte-Genome-Associated Histone H3.3. bioRxiv 2023. [Google Scholar] [CrossRef]
- Bao, J.; Bedford, M.T. Epigenetic Regulation of the Histone-to-Protamine Transition during Spermiogenesis. Reproduction 2016, 151, R55–R70. [Google Scholar] [CrossRef]
- Wen, D.; Banaszynski, L.A.; Liu, Y.; Geng, F.; Noh, K.M.; Xiang, J.; Elemento, O.; Rosenwaks, Z.; David Allis, C.; Rafii, S. Histone Variant H3.3 Is an Essential Maternal Factor for Oocyte Reprogramming. Proc. Natl. Acad. Sci. USA 2014, 111, 7325–7330. [Google Scholar] [CrossRef]
- Guenther, M.G.; Frampton, G.M.; Soldner, F.; Hockemeyer, D.; Mitalipova, M.; Jaenisch, R.; Young, R.A. Chromatin Structure and Gene Expression Programs of Human Embryonic and Induced Pluripotent Stem Cells. Cell Stem Cell 2010, 7, 249–257. [Google Scholar] [CrossRef]
- Rada-Iglesias, A.; Wysocka, J. Epigenomics of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells: Insights into Pluripotency and Implications for Disease. Genome Med. 2011, 3, 36. [Google Scholar] [CrossRef]
- Yang, H.; Ma, Z.; Peng, L.; Kuhn, C.; Rahmeh, M.; Mahner, S.; Jeschke, U.; von Schönfeldt, V. Comparison of Histone H3k4me3 between Ivf and Icsi Technologies and between Boy and Girl Offspring. Int. J. Mol. Sci. 2021, 22, 8574. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotomayor-Lugo, F.; Iglesias-Barrameda, N.; Castillo-Aleman, Y.M.; Casado-Hernandez, I.; Villegas-Valverde, C.A.; Bencomo-Hernandez, A.A.; Ventura-Carmenate, Y.; Rivero-Jimenez, R.A. The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation. Int. J. Mol. Sci. 2024, 25, 1459. https://doi.org/10.3390/ijms25031459
Sotomayor-Lugo F, Iglesias-Barrameda N, Castillo-Aleman YM, Casado-Hernandez I, Villegas-Valverde CA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Rivero-Jimenez RA. The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation. International Journal of Molecular Sciences. 2024; 25(3):1459. https://doi.org/10.3390/ijms25031459
Chicago/Turabian StyleSotomayor-Lugo, Francisco, Nataly Iglesias-Barrameda, Yandy Marx Castillo-Aleman, Imilla Casado-Hernandez, Carlos Agustin Villegas-Valverde, Antonio Alfonso Bencomo-Hernandez, Yendry Ventura-Carmenate, and Rene Antonio Rivero-Jimenez. 2024. "The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation" International Journal of Molecular Sciences 25, no. 3: 1459. https://doi.org/10.3390/ijms25031459
APA StyleSotomayor-Lugo, F., Iglesias-Barrameda, N., Castillo-Aleman, Y. M., Casado-Hernandez, I., Villegas-Valverde, C. A., Bencomo-Hernandez, A. A., Ventura-Carmenate, Y., & Rivero-Jimenez, R. A. (2024). The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation. International Journal of Molecular Sciences, 25(3), 1459. https://doi.org/10.3390/ijms25031459