Copper(II)-Assisted Degradation of Pheophytin a by Reactive Oxygen Species
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiedor, L.; Zbyradowski, M.; Pilch, M. Tetrapyrrole pigments of photosynthetic antennae and reaction centers of higher plants: Structures, biophysicis, functions, biochemistry, mechanisms of regulation, applications. In Metabolism, Structure and Function of Plant Tetrapyrroles: Introduction, Microbial and Eukaryotic Chlorophyll Synthesis and Catabolism, 1st ed.; Grimm, B., Ed.; Advances in Botanical Research; Academic Press: London, UK, 2019; Volume 90, pp. 1–33. [Google Scholar]
- Masuda, T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth. Res. 2008, 96, 121–143. [Google Scholar] [CrossRef]
- Scheer, H. (Ed.) Chlorophylls; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Kotkowiak, M.; Dudkowiak, A.; Fiedor, L. Intrinsic photoprotective mechanisms in chlorophylls. Angew. Chem. Int. Ed. 2017, 56, 10457–10461. [Google Scholar] [CrossRef]
- Kania, A.; Pilch, M.; Rutkowska-Zbik, D.; Susz, A.; Heriyanto; Stochel, G.; Fiedor, L. High-pressure and theoretical studies reveal significant differences in the electronic structure and bonding of magnesium, zinc and nickel ions in metalloporphyrinoids. Inorg. Chem. 2014, 53, 8473–8484. [Google Scholar] [CrossRef] [PubMed]
- Küpper, H.; Küpper, F.; Spiller, M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J. Exp. Bot. 1996, 47, 259–266. [Google Scholar] [CrossRef]
- Küpper, H.; Küpper, F.; Spiller, M. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth. Res. 1998, 58, 123–133. [Google Scholar] [CrossRef]
- Küpper, H.; Setlik, I.; Spiller, M.; Küpper, F.; Prasil, O. Heavy metal-induced inhibition of photosynthesis—Targets of in vivo heavy metal chlorophyll formation. J. Phycol. 2002, 38, 429–441. [Google Scholar]
- Orzeł, Ł.; van Eldik, R.; Fiedor, L.; Stochel, G. Mechanistic information on Cu(II) metalation and transmetalation of chlorophylls. Eur. J. Inorg. Chem. 2009, 2009, 2393–2406. [Google Scholar] [CrossRef]
- Brandis, A.S.; Salomon, Y.; Scherz, A. Chlorophyll sensitizers in photodynamic therapy. In Chlorophylls and Bacteriochlorophylls. Biochemistry, Biophysics, Functions and Applications; Grimm, B., Porra, R.J., Rudiger, W., Scheer, H., Eds.; Advances in Photosynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2006; pp. 462–483. [Google Scholar]
- Lu, H.; Zada, S.; Tang, S.; Yaru, C.; Wei, W.; Yuchun, Q.; Yang, Q.; Du, J.; Fu, P.; Dong, H.; et al. Artificial photoactive chlorophyll conjugated vanadium carbide nanostructure for synergistic photothermal/photodynamic therapy of cancer. J. Nanobiotechnol. 2022, 20, 121. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.; Barros, A.N.; Rosa, E.; Antunes, L. Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Molecules 2023, 28, 5344. [Google Scholar] [CrossRef] [PubMed]
- Irodia, R.; Mîndroiu, M.; Bîru, J.; Ioniţă, G.; Mihai, G.V.; Enăchescu, M.; Orbeci, C.; Pîrvu, C. Double S-scheme polydopamine/TiO2/chlorophyll as stable and efficient green photoelectrocatalyst. ChemElectroChem 2023, 10, e202300277. [Google Scholar] [CrossRef]
- Krishnan, S.; Shriwastav, A. Application of TiO2 nanoparticles sensitized with natural chlorophyll pigments as catalyst for visible light photocatalytic degradation of methylene blue. J. Environ. Chem. Eng. 2021, 9, 104699. [Google Scholar] [CrossRef]
- Banua, S.; Yadav, P.P. Chlorophyll: The ubiquitous photocatalyst of nature and its potential as an organo-photocatalyst in organic syntheses. Org. Biomol. Chem. 2022, 20, 8584. [Google Scholar] [CrossRef]
- Orzeł, Ł.; Szmyd, B.; Rutkowska-Żbik, D.; Fiedor, L.; van Eldik, R.; Stochel, G. Fine tuning of copper(II)–chlorophyll interactions in organic media. Metalation versus oxidation of the macrocycle. Dalton Trans. 2015, 44, 6012–6022. [Google Scholar] [CrossRef]
- Orzeł, Ł.; Rutkowska-Zbik, D.; van Eldik, R.; Fiedor, L.; Stochel, G. Chlorophyll a π-cation radical as redox mediator in superoxide dismutase (SOD) mimetics. ChemPhysChem 2021, 22, 344–348. [Google Scholar] [CrossRef]
- Hynninen, P.H.; Hyvarinen, K. Tracing the Allomerization Pathways of Chlorophylls by 18O-Labeling and Mass Spectrometry. J. Org. Chem. 2002, 67, 4055–4061. [Google Scholar] [CrossRef] [PubMed]
- Hynninen, P.H.; Leppakases, T.S.; Mesilaakso, M. The enolate anions of chlorophylls a and b as ambident nucleophiles in oxidations with (−)- or (+)-(10-camphorsulfonyl)oxaziridine. Synthesis of 132(S/R)-hydroxychlorophylls a and b. Tetrahedron 2006, 62, 3412–3422. [Google Scholar] [CrossRef]
- Ulrich, M.; Moser, S.; Mueller, T.; Kräutler, B. How the colourless nonfluorescent chlorophyll catabolites rust. Chem. Eur. J. 2011, 17, 2330–2334. [Google Scholar] [CrossRef]
- Kräutler, B. Phyllobilins—The abundant bilin-type tetrapyrrolic catabolites of the green plant pigment chlorophyll. Chem. Soc. Rev. 2014, 43, 6227. [Google Scholar] [CrossRef]
- Oberhuber, M.; Berghold, J.; Breuker, K.; Hörtensteiner, S.; Kräutler, B. Breakdown of chlorophyll: A nonenzymatic reaction accounts for the formation of the colorless, “nonfluorescent” chlorophyll catabolites. Proc. Natl. Acad. Sci. USA 2003, 10, 6910–6915. [Google Scholar] [CrossRef] [PubMed]
- Kräutler, B. Unravelling chlorophyll catabolism in higher plants. Biochem. Soc. Trans. 2002, 30, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Kräutler, B. Chlorophyll Breakdown—How Chemistry Has Helped to Decipher a Striking Biological Enigma. Synlett 2019, 30, 263–274. [Google Scholar] [CrossRef]
- Frankenberg-Dinkel, N.; Terry, M.J. Synthesis and Role of Bilins in Photosynthetic Organisms. In Tetrapyrroles: Birth, Life and Death; Warren, M.J., Smith, A.G., Eds.; Springer: New York, NY, USA, 2009; pp. 208–220. [Google Scholar]
- Becker, S.; Dürr, M.; Miska, A.; Becker, J.; Gawlig, C.; Behrens, U.; Ivanović-Burmazović, I.; Schindler, S. Copper Chloride Catalysis: Do μ4-Oxido Copper Clusters Play a Significant Role? Inorg. Chem. 2016, 55, 3759–3766. [Google Scholar] [CrossRef]
- Löw, S.; Becker, J.; Würtele, C.; Miska, A.; Kleeberg, C.; Behrens, U.; Walter, O.; Schindler, S. Reactions of Copper(II) Chloride in Solution: Facile Formation of Tetranuclear Copper Clusters and Other Complexes That Are Relevant in Catalytic Redox Processes. Chem. Eur. J. 2013, 19, 5342–5351. [Google Scholar] [CrossRef]
- Lesiów, M.K.; Pietrzyk, P.; Kyzioł, A.; Komarnicka, U.K. Cu(II) complexes with FomA protein fragments of Fusobacterium nucleatum increase oxidative stress and malondialdehyde level. Chem. Res. Toxical. 2019, 32, 2227–2237. [Google Scholar] [CrossRef]
- Thornalley, P.J.; Trotta, R.J.; Stern, A. Free radical involvement in the oxidative phenomena induced by tert-butyl hydroperoxide in erythrocytes. Biochim. Biophys. Acta 1983, 759, 13–22. [Google Scholar]
- Huang, Y.F.; Huang, Y.H. Behavioral evidence of the dominant radicals and intermediates involved in bisphenol A degradation using an efficient Co2+/PMS oxidation process. J. Hazard. Mater. 2009, 167, 418–426. [Google Scholar] [CrossRef]
- Bastos, E.L.; Farahani, P.; Bechara, E.J.H.; Baader, W.J. Four-membered cyclic peroxides: Carriers of chemical energy. J. Phys. Org. Chem. 2017, 30, 3725. [Google Scholar] [CrossRef]
- Iriyama, K.; Ogura, N.; Takamiya, A. A simple method for extraction and partial purification of chlorophyll from plant material, using dioxane. J. Biochem. 1974, 76, 901–904. [Google Scholar] [PubMed]
- Omata, T.; Murata, N. Preparation of chlorophyll a, chlorophyll b and bacteriochlorophyll a by column chromatography with DEAE-sepharose CL-6B and sepharose CL-6B. Plant Cell Physiol. 1983, 24, 1093–1100. [Google Scholar]
- Fiedor, L.; Rosenbach-Belkin, V.; Scherz, A. The stereospecific interaction between chlorophylls and chlorophyllase. J. Biol. Chem. 1992, 267, 22043–22047. [Google Scholar] [CrossRef] [PubMed]
- Spałek, T.; Pietrzyk, P.S.; Sojka, Z. Application of the Genetic Algorithm Joint with the Powell Method to Nonlinear Least-Squares Fitting of Powder EPR Spectra. J. Chem. Inf. Model. 2005, 45, 18–29. [Google Scholar] [CrossRef]
- TURBOMOLE V7.0.1 2015, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, Since 2007. Available online: http://www.turbomole.com (accessed on 9 August 2022).
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Dirac, P.A.M. Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. Lond. Ser. A 1929, 123, 714–733. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Auxiliary Basis Sets to Approximate Coulomb Potentials. Chem. Phys. Lett. 1995, 240, 283–289. [Google Scholar] [CrossRef]
- Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Park, J.M.; Hong, K.I.; Lee, H.; Jang, W.D. Bioinspired applications of porphyrin derivatives. Acc. Chem. Res. 2021, 54, 2249–2260. [Google Scholar] [CrossRef]
- Lee, H.; Park, H.; Ryu, D.Y.; Jang, W.D. Porphyrin-based supramolecular polymers. Chem. Soc. Rev. 2023, 52, 1947–1974. [Google Scholar] [CrossRef]
- Wang, P.; Grimm, B. Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus. Trends Plant Sci. 2021, 26, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Bechaieb, R.; Akacha, A.B.; Gerard, H. Quantum chemistry insight into Mg-substitution in chlorophyll by toxic heavy metals: Cd, Hg and Pb. Chem. Phys. Lett. 2016, 663, 27–32. [Google Scholar] [CrossRef]
Bond | Pheoa | Pheoa2+ |
---|---|---|
C10–C27 | 1.392 | 1.375 |
C27–C7 | 1.407 | 1.431 |
C9–C68 | 1.402 | 1.410 |
C68–C5 | 1.397 | 1.385 |
C4–C26 | 1.391 | 1.445 |
C2–C19 | 1.399 | 1.415 |
C19–C6 | 1.403 | 1.385 |
Parameter | k1 | k2 |
---|---|---|
k298K | (1.536 ± 0.318) × 103 M−1s−1 | 5.309 ± 1.049 s−1 |
ΔH‡ (kJmol−1) | 58 ± 4 | 71 ± 2 |
ΔS‡ (Jmol−1K−1) | +10 ± 12 | +7 ± 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzeł, Ł.; Drzewiecka-Matuszek, A.; Rutkowska-Zbik, D.; Krasowska, A.; Fiedor, L.; van Eldik, R.; Stochel, G. Copper(II)-Assisted Degradation of Pheophytin a by Reactive Oxygen Species. Int. J. Mol. Sci. 2024, 25, 1831. https://doi.org/10.3390/ijms25031831
Orzeł Ł, Drzewiecka-Matuszek A, Rutkowska-Zbik D, Krasowska A, Fiedor L, van Eldik R, Stochel G. Copper(II)-Assisted Degradation of Pheophytin a by Reactive Oxygen Species. International Journal of Molecular Sciences. 2024; 25(3):1831. https://doi.org/10.3390/ijms25031831
Chicago/Turabian StyleOrzeł, Łukasz, Agnieszka Drzewiecka-Matuszek, Dorota Rutkowska-Zbik, Aneta Krasowska, Leszek Fiedor, Rudi van Eldik, and Grażyna Stochel. 2024. "Copper(II)-Assisted Degradation of Pheophytin a by Reactive Oxygen Species" International Journal of Molecular Sciences 25, no. 3: 1831. https://doi.org/10.3390/ijms25031831
APA StyleOrzeł, Ł., Drzewiecka-Matuszek, A., Rutkowska-Zbik, D., Krasowska, A., Fiedor, L., van Eldik, R., & Stochel, G. (2024). Copper(II)-Assisted Degradation of Pheophytin a by Reactive Oxygen Species. International Journal of Molecular Sciences, 25(3), 1831. https://doi.org/10.3390/ijms25031831