Alterations in KIDINS220/ARMS Expression Impact Sensory Processing and Social Behavior in Adult Mice
Abstract
:1. Introduction
2. Results
2.1. Kidins220-Mutant Mice Show Impaired Auditory Response
2.2. Kidins220-Mutant Mice Show Impaired Olfactory Response
2.3. Social Behavior Alterations in Kidins220-Mutant Mice
2.4. Kidins220lox/lox Male Mice Show Increased Aggressive Behavior
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.A.; Hudspeth, A.J. Principles of Neural Science, Fifth Edition (Principles of Neural Science (Kandel)), 5th ed.; McGraw-Hill Education/Medical: New York, NY, USA, 2012; p. 4256. [Google Scholar]
- Zhang, N.K.; Zhang, S.K.; Zhang, L.I.; Tao, H.W.; Zhang, G.-W. Sensory processing deficits and related cortical pathological changes in Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1213379. [Google Scholar] [CrossRef]
- Monday, H.R.; Wang, H.C.; Feldman, D.E. Circuit-level theories for sensory dysfunction in autism: Convergence across mouse models. Front. Neurol. 2023, 14, 1254297. [Google Scholar] [CrossRef]
- Meyyazhagan, A.; Orlacchio, A. Hereditary spastic paraplegia: An update. Int. J. Mol. Sci. 2022, 23, 1697. [Google Scholar] [CrossRef] [PubMed]
- Schady, W.; Sheard, A. A quantitative study of sensory function in hereditary spastic paraplegia. Brain 1990, 113 Pt 3, 709–720. [Google Scholar] [CrossRef]
- Bruyn, R.P.; van Dijk, J.G.; Scheltens, P.; Boezeman, E.H.; Ongerboer de Visser, B.W. Clinically silent dysfunction of dorsal columns and dorsal spinocerebellar tracts in hereditary spastic paraparesis. J. Neurol. Sci. 1994, 125, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Tomberg, T.; Braschinsky, M.; Rannikmäe, K.; Kepler, J.; Kepler, K.; Kõrv, J.; Linnamägi, Ü.; Asser, T. Functional MRI of the cortical sensorimotor system in patients with hereditary spastic paraplegia. Spinal Cord. 2012, 50, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Josifova, D.J.; Monroe, G.R.; Tessadori, F.; de Graaff, E.; van der Zwaag, B.; Mehta, S.G.; The DDD Study; Harakalova, M.; Duran, K.J.; Savelberg, S.M.C.; et al. Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity. Hum. Mol. Genet. 2016, 25, 2158–2167. [Google Scholar] [CrossRef]
- Mero, I.L.; Mørk, H.H.; Sheng, Y.; Blomhoff, A.; Opheim, G.L.; Erichsen, A.; Vigeland, M.D.; Selmer, K.K. Homozygous KIDINS220 loss-of-function variants in fetuses with cerebral ventriculomegaly and limb contractures. Hum. Mol. Genet. 2017, 26, 3792–3796. [Google Scholar] [CrossRef]
- Lam, Z.; Albaba, S.; Study, D.; Balasubramanian, M. Atypical, milder presentation in a child with CC2D2A and KIDINS220 variants. Clin. Dysmorphol. 2020, 29, 10–16. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Y.-J.; Wang, M.-W.; Lin, X.-H.; Dong, E.-L.; Chen, W.-J.; Wang, N.; Lin, X. Genetic and Clinical Profile of Chinese Patients with Autosomal Dominant Spastic Paraplegia. Mol. Diagn. Ther. 2019, 23, 781–789. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, W.; Liu, Y.; Lv, Y.; Hou, D.; Lin, Y.; Xu, W.; Zhao, J.; Gai, Z.; Zhao, S.; et al. SINO syndrome causative KIDINS220/ARMS gene regulates adipocyte differentiation. Front. Cell Dev. Biol. 2021, 9, 619475. [Google Scholar] [CrossRef] [PubMed]
- Brady, L.I.; DeFrance, B.; Tarnopolsky, M. Pre- and Postnatal Characterization of Autosomal Recessive KIDINS220-Associated Ventriculomegaly. Mol. Syndromol. 2022, 13, 419–424. [Google Scholar] [CrossRef]
- Iglesias, T.; Cabrera-Poch, N.; Mitchell, M.P.; Naven, T.J.; Rozengurt, E.; Schiavo, G. Identification and cloning of Kidins220, a novel neuronal substrate of protein kinase D. J. Biol. Chem. 2000, 275, 40048–40056. [Google Scholar] [CrossRef]
- Kong, H.; Boulter, J.; Weber, J.L.; Lai, C.; Chao, M.V. An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J. Neurosci. 2001, 21, 176–185. [Google Scholar] [CrossRef] [PubMed]
- López-Benito, S.; Sánchez-Sánchez, J.; Brito, V.; Calvo, L.; Lisa, S.; Torres-Valle, M.; Palko, M.E.; Vicente-García, C.; Fernández-Fernández, S.; Bolaños, J.P.; et al. Regulation of BDNF Release by ARMS/Kidins220 through Modulation of Synaptotagmin-IV Levels. J. Neurosci. 2018, 38, 5415–5428. [Google Scholar] [CrossRef] [PubMed]
- Arévalo, J.C.; Pereira, D.B.; Yano, H.; Teng, K.K.; Chao, M.V. Identification of a switch in neurotrophin signaling by selective tyrosine phosphorylation. J. Biol. Chem. 2006, 281, 1001–1007. [Google Scholar] [CrossRef]
- Arévalo, J.C.; Yano, H.; Teng, K.K.; Chao, M.V. A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membrane-spanning protein. EMBO J. 2004, 23, 2358–2368. [Google Scholar] [CrossRef]
- Cesca, F.; Yabe, A.; Spencer-Dene, B.; Arrigoni, A.; Al-Qatari, M.; Henderson, D.; Phillips, H.; Koltzenburg, M.; Benfenati, F.; Schiavo, G. Kidins220/ARMS is an essential modulator of cardiovascular and nervous system development. Cell Death Dis. 2011, 2, e226. [Google Scholar] [CrossRef]
- Cesca, F.; Yabe, A.; Spencer-Dene, B.; Scholz-Starke, J.; Medrihan, L.; Maden, C.H.; Gerhardt, H.; Orriss, I.R.; Baldelli, P.; Al-Qatari, M.; et al. Kidins220/ARMS mediates the integration of the neurotrophin and VEGF pathways in the vascular and nervous systems. Cell Death Differ. 2012, 19, 194–208. [Google Scholar] [CrossRef]
- Almacellas-Barbanoj, A.; Albini, M.; Satapathy, A.; Jaudon, F.; Michetti, C.; Krawczun-Rygmaczewska, A.; Huang, H.; Manago, F.; Papaleo, F.; Benfenati, F.; et al. Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice. Cell Death Discov. 2022, 8, 58. [Google Scholar] [CrossRef]
- Del Puerto, A.; Pose-Utrilla, J.; Simón-García, A.; López-Menéndez, C.; Jiménez, A.J.; Porlan, E.; Pajuelo, L.S.M.; Cano-García, G.; Martí-Prado, B.; Sebastián-Serrano, Á.; et al. Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation. Mol. Psychiatry 2021, 26, 6411–6426. [Google Scholar] [CrossRef]
- Del Puerto, A.; Lopez-Fonseca, C.; Simón-García, A.; Martí-Prado, B.; Barrios-Muñoz, A.L.; Pose-Utrilla, J.; López-Menéndez, C.; Alcover-Sanchez, B.; Cesca, F.; Schiavo, G.; et al. Kidins220 sets the threshold for survival of neural stem cells and progenitors to sustain adult neurogenesis. Cell Death Dis. 2023, 14, 500. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, J.; Vicente-García, C.; Cañada-García, D.; Martín-Zanca, D.; Arévalo, J.C. ARMS/Kidins220 regulates nociception by controlling brain-derived neurotrophic factor secretion. Pain 2023, 164, 563–576. [Google Scholar] [CrossRef]
- Peter, J.; Kasper, C.; Kaufholz, M.; Buschow, R.; Isensee, J.; Hucho, T.; Herberg, F.; Schwede, F.; Stein, C.; Jordt, S.; et al. Ankyrin-rich membrane spanning protein as a novel modulator of transient receptor potential vanilloid 1-function in nociceptive neurons. Eur. J. Pain 2017, 21, 1072–1086. [Google Scholar] [CrossRef]
- de Moura Oliveira, V.E.; Bakker, J. Neuroendocrine regulation of female aggression. Front. Endocrinol. 2022, 13, 957114. [Google Scholar] [CrossRef]
- Schmieg, N.; Thomas, C.; Yabe, A.; Lynch, D.S.; Iglesias, T.; Chakravarty, P.; Schiavo, G. Novel kidins220/arms splice isoforms: Potential specific regulators of neuronal and cardiovascular development. PLoS ONE 2015, 10, e0129944. [Google Scholar] [CrossRef]
- Marracci, S.; Giannini, M.; Vitiello, M.; Andreazzoli, M.; Dente, L. Kidins220/ARMS is dynamically expressed during Xenopus laevis development. Int. J. Dev. Biol. 2013, 57, 787–792. [Google Scholar] [CrossRef]
- Castro, A.C.; Monteiro, P. Auditory dysfunction in animal models of autism spectrum disorder. Front. Mol. Neurosci. 2022, 15, 845155. [Google Scholar] [CrossRef] [PubMed]
- Williams, Z.J.; He, J.L.; Cascio, C.J.; Woynaroski, T.G. A review of decreased sound tolerance in autism: Definitions, phenomenology, and potential mechanisms. Neurosci. Biobehav. Rev. 2021, 121, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Rosenhall, U.; Nordin, V.; Sandström, M.; Ahlsén, G.; Gillberg, C. Autism and hearing loss. J. Autism Dev. Disord. 1999, 29, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Wilson, U.S.; Sadler, K.M.; Hancock, K.E.; Guinan, J.J.; Lichtenhan, J.T. Efferent inhibition strength is a physiological correlate of hyperacusis in children with autism spectrum disorder. J. Neurophysiol. 2017, 118, 1164–1172. [Google Scholar] [CrossRef]
- Brennan, P.; Keverne, E.B. Biological complexity and adaptability of simple mammalian olfactory memory systems. Neurosci. Biobehav. Rev. 2015, 50, 29–40. [Google Scholar] [CrossRef]
- Arakawa, H.; Blanchard, D.C.; Arakawa, K.; Dunlap, C.; Blanchard, R.J. Scent marking behavior as an odorant communication in mice. Neurosci. Biobehav. Rev. 2008, 32, 1236–1248. [Google Scholar] [CrossRef]
- Ferguson, J.N.; Young, L.J.; Hearn, E.F.; Matzuk, M.M.; Insel, T.R.; Winslow, J.T. Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 2000, 25, 284–288. [Google Scholar] [CrossRef]
- Bielsky, I.F.; Hu, S.-B.; Szegda, K.L.; Westphal, H.; Young, L.J. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 2004, 29, 483–493. [Google Scholar] [CrossRef]
- Maynard, K.R.; Hobbs, J.W.; Phan, B.N.; Gupta, A.; Rajpurohit, S.; Williams, C.; Rajpurohit, A.; Shin, J.H.; E Jaffe, A.; Martinowich, K. BDNF-TrkB signaling in oxytocin neurons contributes to maternal behavior. eLife 2018, 7, e33676. [Google Scholar] [CrossRef] [PubMed]
- López-Menéndez, C.; Gamir-Morralla, A.; Jurado-Arjona, J.; Higuero, A.M.; Campanero, M.R.; Ferrer, I.; Hernández, F.; Ávila, J.; Díaz-Guerra, M.; Iglesias, T. Kidins220 accumulates with tau in human Alzheimer’s disease and related models: Modulation of its calpain-processing by GSK3β/PP1 imbalance. Hum. Mol. Genet. 2013, 22, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Gamir-Morralla, A.; Belbin, O.; Fortea, J.; Alcolea, D.; Ferrer, I.; Lleó, A.; Iglesias, T. Kidins220 Correlates with Tau in Alzheimer’s Disease Brain and Cerebrospinal Fluid. J. Alzheimers Dis. 2017, 55, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Sebastián-Serrano, Á.; Simón-García, A.; Belmonte-Alfaro, A.; Pose-Utrilla, J.; Santos-Galindo, M.; Del Puerto, A.; García-Guerra, L.; Hernández, I.H.; Schiavo, G.; Campanero, M.R.; et al. Differential regulation of Kidins220 isoforms in Huntington’s disease. Brain Pathol. 2020, 30, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Jeffs, Q.L.; Prather, J.F.; Todd, W.D. Potential neural substrates underlying circadian and olfactory disruptions in preclinical Alzheimer’s disease. Front. Neurosci. 2023, 17, 1295998. [Google Scholar] [CrossRef] [PubMed]
- Patino, J.; Karagas, N.E.; Chandra, S.; Thakur, N.; Stimming, E.F. Olfactory dysfunction in huntington’s disease. J. Huntingt. Dis. 2021, 10, 413–422. [Google Scholar] [CrossRef]
- Pérez-González, D.; Schreiner, T.G.; Llano, D.A.; Malmierca, M.S. Alzheimer’s disease, hearing loss, and deviance detection. Front. Neurosci. 2022, 16, 879480. [Google Scholar] [CrossRef] [PubMed]
- Profant, O.; Roth, J.; Bureš, Z.; Balogová, Z.; Lišková, I.; Betka, J.; Syka, J. Auditory dysfunction in patients with Huntington’s disease. Clin. Neurophysiol. 2017, 128, 1946–1953. [Google Scholar] [CrossRef] [PubMed]
- El-Dessouky, S.H.; Issa, M.Y.; Aboulghar, M.M.; Gaafar, H.M.; Elarab, A.E.; Ateya, M.I.; Omar, H.H.; Beetz, C.; Zaki, M.S. Prenatal delineation of a distinct lethal fetal syndrome caused by a homozygous truncating KIDINS220 variant. Am. J. Med. Genet. Part A 2020, 182, 2867–2876. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, W.; Peng, J.; Yin, F. Heterozygous KIDINS220 mutation leads to spastic paraplegia and obesity in an Asian girl. Eur. J. Neurol. 2018, 25, e53–e54. [Google Scholar] [CrossRef] [PubMed]
- Jacquemin, V.; Antoine, M.; Duerinckx, S.; Massart, A.; Desir, J.; Perazzolo, C.; Cassart, M.; Thomas, D.; Segers, V.; Lecomte, S.; et al. TrkA mediates effect of novel KIDINS220 mutation in human brain ventriculomegaly. Hum. Mol. Genet. 2021, 29, 3757–3764. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Shang, Q.; Cheng, Y.; Su, Y.; Zhang, J.; Wang, T.; Ding, J.; Li, Y.; Xie, Y.; et al. Gain-of-Function KIDINS220 Variants Disrupt Neuronal Development and Cause Cerebral Palsy. Mov. Disord. 2023. [Google Scholar] [CrossRef]
- Papaleo, F.; Erickson, L.; Liu, G.; Chen, J.; Weinberger, D.R. Effects of sex and COMT genotype on environmentally modulated cognitive control in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 20160–20165. [Google Scholar] [CrossRef]
- Yang, M.; Crawley, J.N. Simple behavioral assessment of mouse olfaction. Curr. Protoc. Neurosci. 2009, 48, 8.24.1–8.24.12. [Google Scholar] [CrossRef]
- Huang, H.; Michetti, C.; Busnelli, M.; Managò, F.; Sannino, S.; Scheggia, D.; Giancardo, L.; Sona, D.; Murino, V.; Chini, B.; et al. Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology 2014, 39, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Michetti, C.; Romano, E.; Altabella, L.; Caruso, A.; Castelluccio, P.; Bedse, G.; Gaetani, S.; Canese, R.; Laviola, G.; Scattoni, M.L. Mapping pathological phenotypes in reelin mutant mice. Front. Pediatr. 2014, 2, 95. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albini, M.; Almacellas-Barbanoj, A.; Krawczun-Rygmaczewska, A.; Ciano, L.; Benfenati, F.; Michetti, C.; Cesca, F. Alterations in KIDINS220/ARMS Expression Impact Sensory Processing and Social Behavior in Adult Mice. Int. J. Mol. Sci. 2024, 25, 2334. https://doi.org/10.3390/ijms25042334
Albini M, Almacellas-Barbanoj A, Krawczun-Rygmaczewska A, Ciano L, Benfenati F, Michetti C, Cesca F. Alterations in KIDINS220/ARMS Expression Impact Sensory Processing and Social Behavior in Adult Mice. International Journal of Molecular Sciences. 2024; 25(4):2334. https://doi.org/10.3390/ijms25042334
Chicago/Turabian StyleAlbini, Martina, Amanda Almacellas-Barbanoj, Alicja Krawczun-Rygmaczewska, Lorenzo Ciano, Fabio Benfenati, Caterina Michetti, and Fabrizia Cesca. 2024. "Alterations in KIDINS220/ARMS Expression Impact Sensory Processing and Social Behavior in Adult Mice" International Journal of Molecular Sciences 25, no. 4: 2334. https://doi.org/10.3390/ijms25042334
APA StyleAlbini, M., Almacellas-Barbanoj, A., Krawczun-Rygmaczewska, A., Ciano, L., Benfenati, F., Michetti, C., & Cesca, F. (2024). Alterations in KIDINS220/ARMS Expression Impact Sensory Processing and Social Behavior in Adult Mice. International Journal of Molecular Sciences, 25(4), 2334. https://doi.org/10.3390/ijms25042334