The Association between Inefficient Repair of DNA Double-Strand Breaks and Common Polymorphisms of the HRR and NHEJ Repair Genes in Patients with Rheumatoid Arthritis
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Differences in DNA RepEff between RA Patients and Controls
2.3. The Allele and Genotypes of Key BER Genes in RA Patients and Controls
2.4. Associations between RepEff (Phenotype) and DSB SNPs (Genotype) and RA
2.5. Differences in DSB Gene mRNA and miR-155 Expression Levels between RA Patients and Controls
2.6. Decision Tree (DT) Analysis
3. Materials and Methods
3.1. Study Groups
3.2. PBMC Isolation
3.3. Comet Assay
3.4. DNA Isolation
3.5. Determination of SNPs
3.6. RNA Expression of DSB Repair-Related Genes
3.7. Statistical Analysis
3.8. Decision Tree
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, G.; Liao, X.; Lin, Z.; Liu, W.; Luo, X.; Zhan, H.; Cai, X. Estimation of the Global Prevalence, Incidence, Years Lived with Disability of Rheumatoid Arthritis in 2019 and Forecasted Incidence in 2040: Results from the Global Burden of Disease Study 2019. Clin. Rheumatol. 2023, 42, 2297–2309. [Google Scholar] [CrossRef]
- Finckh, A.; Gilbert, B.; Hodkinson, B.; Bae, S.-C.; Thomas, R.; Deane, K.D.; Alpizar-Rodriguez, D.; Lauper, K. Global Epidemiology of Rheumatoid Arthritis. Nat. Rev. Rheumatol. 2022, 18, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Alamanos, Y.; Drosos, A.A. Epidemiology of Adult Rheumatoid Arthritis. Autoimmun. Rev. 2005, 4, 130–136. [Google Scholar] [CrossRef] [PubMed]
- McAllister, K.; Eyre, S.; Orozco, G. Genetics of Rheumatoid Arthritis: GWAS and Beyond. Open Access Rheumatol. 2011, 3, 31–46. [Google Scholar] [CrossRef]
- Järvinen, P.; Aho, K. Twin Studies in Rheumatic Diseases. Semin. Arthritis Rheum. 1994, 24, 19–28. [Google Scholar] [CrossRef]
- Wordsworth, P.; Bell, J. Polygenic Susceptibility in Rheumatoid Arthritis. Ann. Rheum. Dis. 1991, 50, 343–346. [Google Scholar] [CrossRef]
- MacGregor, A.J.; Snieder, H.; Rigby, A.S.; Koskenvuo, M.; Kaprio, J.; Aho, K.; Silman, A.J. Characterizing the Quantitative Genetic Contribution to Rheumatoid Arthritis Using Data from Twins. Arthritis Rheum. 2000, 43, 30–37. [Google Scholar] [CrossRef]
- Galita, G.; Brzezińska, O.; Gulbas, I.; Sarnik, J.; Poplawska, M.; Makowska, J.; Poplawski, T. Increased Sensitivity of PBMCs Isolated from Patients with Rheumatoid Arthritis to DNA Damaging Agents Is Connected with Inefficient DNA Repair. J. Clin. Med. 2020, 9, 988. [Google Scholar] [CrossRef]
- Shao, L.; Fujii, H.; Colmegna, I.; Oishi, H.; Goronzy, J.J.; Weyand, C.M. Deficiency of the DNA Repair Enzyme ATM in Rheumatoid Arthritis. J. Exp. Med. 2009, 206, 1435–1449. [Google Scholar] [CrossRef]
- McCurdy, D.; Tai, L.Q.; Frias, S.; Wang, Z. Delayed Repair of DNA Damage by Ionizing Radiation in Cells from Patients with Juvenile Systemic Lupus Erythematosus and Rheumatoid Arthritis. Radiat. Res. 1997, 147, 48–54. [Google Scholar] [CrossRef]
- Souliotis, V.L.; Vlachogiannis, N.I.; Pappa, M.; Argyriou, A.; Sfikakis, P.P. DNA Damage Accumulation, Defective Chromatin Organization and Deficient DNA Repair Capacity in Patients with Rheumatoid Arthritis. Clin. Immunol. 2019, 203, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Shao, L. DNA Damage Response Signals Transduce Stress from Rheumatoid Arthritis Risk Factors Into T Cell Dysfunction. Front. Immunol. 2018, 9, 3055. [Google Scholar] [CrossRef]
- Galita, G.; Sarnik, J.; Zajac, G.; Brzezinska, O.; Budlewski, T.; Poplawska, M.; Przybyłowska-Sygut, K.; Joanna, M.S.; Poplawski, T. The Association between Inefficient Repair of Oxidative DNA Lesions and Common Polymorphisms of the Key Base Excision Repair Genes as Well as Their Expression Levels in Patients with Rheumatoid Arthritis. Arch. Med. Sci. 2023. [Google Scholar] [CrossRef]
- Souliotis, V.L.; Sfikakis, P.P. Increased DNA Double-Strand Breaks and Enhanced Apoptosis in Patients with Lupus Nephritis. Lupus 2015, 24, 804–815. [Google Scholar] [CrossRef]
- Palomino, G.M.; Bassi, C.L.; Wastowski, I.J.; Xavier, D.J.; Lucisano-Valim, Y.M.; Crispim, J.C.O.; Rassi, D.M.; Marques-Neto, J.F.; Sakamoto-Hojo, E.T.; Moreau, P.; et al. Patients with Systemic Sclerosis Present Increased DNA Damage Differentially Associated with DNA Repair Gene Polymorphisms. J. Rheumatol. 2014, 41, 458–465. [Google Scholar] [CrossRef]
- Kopa, P.; Macieja, A.; Galita, G.; Witczak, Z.J.; Poplawski, T. DNA Double Strand Breaks Repair Inhibitors: Relevance as Potential New Anticancer Therapeutics. Curr. Med. Chem. 2019, 26, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Cejka, P.; Symington, L.S. DNA End Resection: Mechanism and Control. Annu. Rev. Genet. 2021, 55, 285–307. [Google Scholar] [CrossRef]
- Suwaki, N.; Klare, K.; Tarsounas, M. RAD51 Paralogs: Roles in DNA Damage Signalling, Recombinational Repair and Tumorigenesis. Semin. Cell Dev. Biol. 2011, 22, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Galita, G.; Sarnik, J.; Brzezinska, O.; Budlewski, T.; Dragan, G.; Poplawska, M.; Majsterek, I.; Poplawski, T.; Makowska, J.S. Polymorphisms in DNA Repair Genes and Association with Rheumatoid Arthritis in a Pilot Study on a Central European Population. Int. J. Mol. Sci. 2023, 24, 3804. [Google Scholar] [CrossRef]
- Zhi, L.; Yao, S.; Ma, W.; Zhang, W.; Chen, H.; Li, M.; Ma, J. Polymorphisms of RAD51B Are Associated with Rheumatoid Arthritis and Erosion in Rheumatoid Arthritis Patients. Sci. Rep. 2017, 7, 45876. [Google Scholar] [CrossRef]
- Sevcik, J.; Falk, M.; Macurek, L.; Kleiblova, P.; Lhota, F.; Hojny, J.; Stefancikova, L.; Janatova, M.; Bartek, J.; Stribrna, J.; et al. Expression of Human BRCA1Δ17-19 Alternative Splicing Variant with a Truncated BRCT Domain in MCF-7 Cells Results in Impaired Assembly of DNA Repair Complexes and Aberrant DNA Damage Response. Cell. Signal. 2013, 25, 1186–1193. [Google Scholar] [CrossRef]
- Karaman, A.; Binici, D.N.; Melikoğlu, M.A. Comet Assay and Analysis of Micronucleus Formation in Patients with Rheumatoid Arthritis. Mutat. Res. 2011, 721, 1–5. [Google Scholar] [CrossRef]
- Igarashi, H.; Hashimoto, J.; Tomita, T.; Yoshikawa, H.; Ishihara, K. TP53 Mutations Coincide with the Ectopic Expression of Activation-Induced Cytidine Deaminase in the Fibroblast-like Synoviocytes Derived from a Fraction of Patients with Rheumatoid Arthritis. Clin. Exp. Immunol. 2010, 161, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Goronzy, J.J.; Weyand, C.M. DNA Damage, Metabolism and Aging in Pro-Inflammatory T Cells Rheumatoid Arthritis as a Model System. Exp. Gerontol. 2018, 105, 118–127. [Google Scholar] [CrossRef]
- Saavedra, D.; Añé-Kourí, A.L.; Barzilai, N.; Caruso, C.; Cho, K.-H.; Fontana, L.; Franceschi, C.; Frasca, D.; Ledón, N.; Niedernhofer, L.J.; et al. Aging and Chronic Inflammation: Highlights from a Multidisciplinary Workshop. Immun. Ageing 2023, 20, 25. [Google Scholar] [CrossRef]
- Krawinkel, U.; Zoebelein, G.; Brüggemann, M.; Radbruch, A.; Rajewsky, K. Recombination between antibody heavy chain variable-region genes: Evidence for gene conversion. Proc. Natl. Acad. Sci. USA 1983, 80, 4997–5001. [Google Scholar] [CrossRef]
- Barrington, R.A.; Fasullo, M.; Knight, K.M. A role for RAD51 in the generation of immunoglobulin gene diversity in rabbits. J. Immunol. 1999, 15, 911–919. [Google Scholar] [CrossRef]
- Harrington, J.; Hsieh, C.L.; Gerton, J.; Bosma, G.; Lieber, M.R. Analysis of the defect in DNA end joining in the murine scid mutation. Mol. Cell Biol. 1992, 12, 4758–4768. [Google Scholar] [CrossRef]
- Bauer, M.A. Accelerated immunosenescence in rheumatoid arthritis: Impact on clinical progression. Immun. Ageing 2020, 17, 6. [Google Scholar] [CrossRef]
Parameters | RA Patients n = 45 | Control Group n = 45 |
---|---|---|
sex | F-32 M-13 | F-37 M-8 |
age | 58.27 ± 13.45 years | 54.73 ± 15.50 |
smoking | 10 | 2 |
disease duration | 14.55 ± 13.12 years | |
remission | yes 4; no 41 | |
CRP | 18.26 ± 22.02 | |
ESR | 28.33 ± 23.20 | |
RF | 220.38 ± 333.60 | |
ACPA | 1169.36 ± 4291.60 | |
treatment | Methotrexate 17/45 | |
Sulfasalazine 4/45 | ||
No DMARDs 22/45 | ||
Glucocorticosteroids 22/45 |
RepEff | Percentage of Total Repair | Controls (n = 45) | RA (n = 45) |
---|---|---|---|
Group 1 Highly efficient DNA repair | >83.4 | 12 (26.8%) | 1 (2.2%) |
Group 2 Efficient DNA repair | 78.7–83.3 | 11 (24.4%) | 1 (2.2%) |
Group 3 Marginally efficient DNA repair | 65.1–78.6 | 11 (24.4%) | 5 (11.1%) |
Group 4 No DNA repair | <65 | 11 (24.4%) | 38 (84.5%) |
Polymorphism/Gene | Genotype | Control | RA | OR (95% CI) |
---|---|---|---|---|
rs3218536/XRCC2 | C/C | 3 (6.7%) | 1 (2.2%) | 1.00 |
C/T | 41 (91.1%) | 43 (95.6%) | 3.15 (0.31–31.49) | |
T/T | 1 (2.2%) | 1 (2.2%) | 3.00 (0.08–107.45) | |
rs1801320/RAD51 | G/G | 32 (71.1%) | 19 (40.0%) | 1.00 |
G/C | 2 (4.4%) | 8 (17.8%) | 6.74 (1.29–35.08) | |
C/C | 11 (24.4%) | 18 (42.2%) | 2.75 (1.07–7.06) | |
rs7180135/RAD51 | G/G | 5 (11.1%) | 4 (8.9%) | 1.00 |
A/G | 22 (48.9%) | 31 (68.9%) | 1.76 (0.42–7.31) | |
A/A | 18 (40%) | 10 (22.2%) | 0.69 (0.15–3.19) | |
rs45549040/RAD51 | A/A | 41 (91.1%) | 43 (95.6%) | 1.00 |
A/C | 3 (6.7%) | 0 (0%) | 0.00 (0.00–NA) | |
C/C | 1 (2.2%) | 2 (4.4%) | 1.91 (0.17–21.84) | |
rs1801321/RAD51 | G/G | 17 (37.8%) | 7 (15.6%) | 1.00 |
G/T | 9 (20%) | 11 (24.4%) | 2.97 (0.85–10.31) | |
T/T | 19 (42.2%) | 27 (60%) | 3.45 (1.20–9.94) | |
rs2619681/RAD51 | C/C | 30 (66.7%) | 30 (66.7%) | 1.00 |
C/T | 13 (28.9%) | 13 (28.9%) | 1.00 (0.40–2.51) | |
T/T | 2 (4.4%) | 2 (4.4%) | 1.00 (0.13–7.57) | |
rs963917/RAD51B | G/G | 12 (26.7%) | 26 (57.8%) | 1.00 |
A/G | 23 (51.1%) | 17 (37.8%) | 0.34 (0.13–0.86) | |
A/A | 10 (22.2%) | 2 (4.4%) | 0.09 (0.02–0.49) | |
rs963918/RAD51B | C/C | 7 (15.6%) | 5 (11.1%) | 1.00 |
C/T | 17 (37.8%) | 26 (57.8%) | 2.14 (0.58–7.86) | |
T/T | 21 (46.7%) | 14 (31.1%) | 0.93 (0.25–3.54) | |
rs3784099/RAD51B | G/G | 30 (66.7%) | 20 (44.4%) | 1.00 |
A/G | 11 (24.4%) | 23 (51.1%) | 3.14 (1.26–7.83) | |
A/A | 4 (8.9%) | 2 (4.4%) | 0.75 (0.13–4.49) | |
rs10483813/RAD51B | T/T | 34 (75.6%) | 33 (73.3%) | 1.00 |
A/T | 8 (17.8%) | 11 (24.4%) | 1.42 (0.51–3.96) | |
A/A | 3 (6.7%) | 1 (2.2%) | 0.34 (0.03–3.47) | |
rs1042522/TP53 | C/C | 21 (46.7%) | 26 (57.8%) | 1.00 |
C/G | 11 (24.4%) | 14 (31.1%) | 1.03 (0.39–2.73) | |
G/G | 13 (28.9%) | 5 (11.1%) | 0.31 (0.10–1.01) | |
rs1051669/RAD52 | C/C | 31 (68.9%) | 25 (55.6%) | 1.00 |
C/T | 14 (31.1%) | 19 (42.2%) | 1.68 (0.71–4.01) | |
T/T | 0 (0%) | 1 (2.2%) | NA (0.00-NA) | |
rs2155209/MRE11A | T/T | 15 (33.3%) | 15 (33.3%) | 1.00 |
C/T | 19 (42.2%) | 26 (57.8%) | 1.37 (0.54–3.46) | |
C/C | 11 (24.4%) | 4 (8.9%) | 0.36 (0.09–1.40) | |
rs132774/XRCC6 | G/G | 20 (44.4%) | 16 (35.6%) | 1.00 |
C/G | 13 (28.9%) | 18 (40%) | 1.73 (0.66–4.57) | |
C/C | 12 (26.7%) | 11 (24.4%) | 1.15 (0.40–3.27) | |
rs207906/XRCC5 | G/G | 33 (73.3%) | 29 (64.4%) | 1.00 |
A/G | 8 (17.8%) | 12 (26.7%) | 1.71 (0.61–4.75) | |
A/A | 4 (8.9%) | 4 (8.9%) | 1.14 (0.26–4.96) | |
rs7003908/PRKDC | A/A | 14 (31.1%) | 10 (22.2%) | 1.00 |
A/C | 27 (60%) | 25 (55.6%) | 1.30 (0.49–3.44) | |
C/C | 4 (8.9%) | 10 (22.2%) | 3.50 (0.85–14.41) | |
rs861539/XRCC3 | G/G | 33 (73.3%) | 39 (86.7%) | 1.00 |
A/G | 4 (8.9%) | 1 (2.2%) | 0.21 (0.02–1.99) | |
A/A | 8 (17.8%) | 5 (11.1%) | 0.53 (0.16–1.77) |
Factor | Adjusted for | OR (95% CI) |
---|---|---|
RepEff | N/A | 41.4 (4.8–355.01) |
rs1801320 | 42.52 (4.4–408.2) | |
rs1801321 | 44.93 (5.05–399.83) | |
rs963917 | 69.7 (5.9–816.8) | |
rs10483813 | 57.4 (4.7–698.5) | |
rs1801321 and rs1801320 (RAD51) | 53.5 (4.7–613.21) | |
rs963917 and rs3784099 (RAD51B) | 73.4 (5.3–1011.05) |
SNP Features Selected by SFS | SNP Features Selected by SBS | ||
---|---|---|---|
RepEff | RepEff | ||
RAD51_rs1801320-RNG | OGG1_rs1052133-RNG | ||
RAD51B_rs963917-RNG | RAD51_rs1801321-RNG | ||
RAD51_rs1801320-RNG | |||
RAD51B_rs963917-RNG | |||
PRKDC_rs7003908-RNG | |||
TDG_rs4135054-RNG | |||
XRCC3_rs861539-RNG |
DT Inputs | TP | FP | FN | TN | Accuracy | Precision | Sensitivity | Specificity | F1 Score |
---|---|---|---|---|---|---|---|---|---|
38 | 7 | 11 | 34 | 0.8000 | 0.8444 | 0.7755 | 0.8293 | 0.8085 | |
27 | 18 | 10 | 35 | 0.6889 | 0.6000 | 0.7297 | 0.6604 | 0.6585 | |
Selected by SFS | 39 | 6 | 8 | 37 | 0.8444 | 0.8667 | 0.8298 | 0.8605 | 0.8478 |
Selected by SBS | 37 | 8 | 5 | 40 | 0.8556 | 0.8222 | 0.8810 | 0.8333 | 0.8506 |
SNP (Gene Name) | Pathway | Chromosome | Positions | Allele | Minor Allele Frequency | |
---|---|---|---|---|---|---|
Case | Control | |||||
rs3218536 (XRCC2) | DSB | 7 | 152648922 | C/T | 0.5 | 0.48 |
rs1801320 (RAD51) | HR | 15 | 40695330 | G/C | 0.49 | 0.33 |
rs7180135 (RAD51) | HR | 15 | 40731896 | A/G | 0.43 | 0.36 |
rs45549040 (RAD51) | HR | 15 | 40732091 | A/C | 0.04 | 0.06 |
rs1801321 (RAD51) | HR | 15 | 40695367 | G/T | 0.28 | 0.48 |
rs2619681 (RAD51) | HR | 15 | 40696823 | C/T | 0.19 | 0.19 |
rs963917 (RAD51B) | HR | 14 | 68595606 | A/G | 0.23 | 0.48 |
rs963918 (RAD51B) | HR | 14 | 68595397 | C/T | 0.4 | 0.34 |
rs3784099 (RAD51B) | HR | 14 | 68283210 | A/G | 0.3 | 0.21 |
rs10483813 (RAD51B) | HR | 14 | 68564567 | A/T | 0.14 | 0.16 |
rs1042522 (TP53) | DSB | 17 | 7676154 | C/G | 0.27 | 0.41 |
rs1051669 (RAD52) | DSB | 12 | 913286 | C/T | 0.23 | 0.16 |
rs2155209 (MRE11A) | DSB | 11 | 94417624 | C/T | 0.38 | 0.46 |
rs132774 (XRCC6) | NHEJ | 22 | 41635949 | C/G | 0.44 | 0.41 |
rs207906 (XRCC5) | NHEJ | 2 | 216148178 | A/G | 0.22 | 0.18 |
rs7003908 (PRKDC) | NHEJ | 8 | 47858141 | A/C | 0.5 | 0.39 |
rs861539 (XRCC3) | HR | 14 | 103699416 | A/G | 0.12 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galita, G.; Sarnik, J.; Brzezinska, O.; Budlewski, T.; Poplawska, M.; Sakowski, S.; Dudek, G.; Majsterek, I.; Makowska, J.; Poplawski, T. The Association between Inefficient Repair of DNA Double-Strand Breaks and Common Polymorphisms of the HRR and NHEJ Repair Genes in Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2024, 25, 2619. https://doi.org/10.3390/ijms25052619
Galita G, Sarnik J, Brzezinska O, Budlewski T, Poplawska M, Sakowski S, Dudek G, Majsterek I, Makowska J, Poplawski T. The Association between Inefficient Repair of DNA Double-Strand Breaks and Common Polymorphisms of the HRR and NHEJ Repair Genes in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences. 2024; 25(5):2619. https://doi.org/10.3390/ijms25052619
Chicago/Turabian StyleGalita, Grzegorz, Joanna Sarnik, Olga Brzezinska, Tomasz Budlewski, Marta Poplawska, Sebastian Sakowski, Grzegorz Dudek, Ireneusz Majsterek, Joanna Makowska, and Tomasz Poplawski. 2024. "The Association between Inefficient Repair of DNA Double-Strand Breaks and Common Polymorphisms of the HRR and NHEJ Repair Genes in Patients with Rheumatoid Arthritis" International Journal of Molecular Sciences 25, no. 5: 2619. https://doi.org/10.3390/ijms25052619
APA StyleGalita, G., Sarnik, J., Brzezinska, O., Budlewski, T., Poplawska, M., Sakowski, S., Dudek, G., Majsterek, I., Makowska, J., & Poplawski, T. (2024). The Association between Inefficient Repair of DNA Double-Strand Breaks and Common Polymorphisms of the HRR and NHEJ Repair Genes in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences, 25(5), 2619. https://doi.org/10.3390/ijms25052619