The Microtubule End Binding Protein Mal3 Is Essential for the Dynamic Assembly of Microtubules during Magnaporthe oryzae Growth and Pathogenesis
Abstract
:1. Introduction
2. Results
2.1. MoMal3 Is Required for M. oryzae Development and Host Infection
2.2. MoMal3 Is an MT Plus (+tip) End-Binding Protein
2.3. Knockout of MoMal3 Results in Defects in MT Dynamic Assembly during Hyphal Polar Growth
2.4. MoMal3 Is Involved in Vesicle Trafficking and Actin Organization
2.5. MoMal3 Is Required for Penetration and Expansion in Host Plant Cells
2.6. MoMal3 Is Critical for the Dynamic Assembly of MTs in the Appressorium
2.7. Knockout of MoMal3 Results in Defects in Nuclear Division
2.8. MoMal3 Is Important for M. oryzae Proliferation in Host Plant Cells
3. Discussion
4. Materials and Methods
4.1. M. oryzae Strains and Culture Conditions
4.2. Virulence Assay
4.3. Developmental Analysis of Hyphae, Conidia and Appressoria
4.4. FM4-64 Staining and Secreted Proteins Extracted from M. oryzae Hyphae
4.5. Targeted MoMal3 Deletion and Plasmid Construction
4.6. Observation of Fluorescent Signals by High-Solution-Resolution Live-Cell Imaging
4.7. Accession Numbers
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Talbot, N.J. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 2003, 57, 177–202. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Talbot, N.J. Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 2009, 7, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Orth, K. Rise of a Cereal Killer: The Biology of Magnaporthe oryzae Biotrophic Growth. Trends Microbiol. 2018, 26, 582–597. [Google Scholar] [CrossRef] [PubMed]
- Eseola, A.B.; Ryder, L.S.; Oses-Ruiz, M.; Findlay, K.; Yan, X.; Cruz-Mireles, N.; Molinari, C.; Garduno-Rosales, M.; Talbot, N.J. Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genet. Biol. 2021, 154, 103562. [Google Scholar] [CrossRef] [PubMed]
- Brandizzi, F.; Wasteneys, G.O. Cytoskeleton-dependent endomembrane organization in plant cells: An emerging role for microtubules. Plant J. 2013, 75, 339–349. [Google Scholar] [CrossRef]
- Li, Y.B.; Xu, R.; Liu, C.Y.; Shen, N.N.; Han, L.B.; Tang, D.Z. Magnaporthe oryzae fimbrin organizes actin networks in the hyphal tip during polar growth and pathogenesis. PLoS Pathog. 2020, 16, e1008437. [Google Scholar] [CrossRef]
- Dagdas, Y.F.; Yoshino, K.; Dagdas, G.; Ryder, L.S.; Bielska, E.; Steinberg, G.; Talbot, N.J. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 2012, 336, 1590–1595. [Google Scholar] [CrossRef]
- Ryder, L.S.; Dagdas, Y.F.; Kershaw, M.J.; Venkataraman, C.; Madzvamuse, A.; Yan, X.; Cruz-Mireles, N.; Soanes, D.M.; Oses-Ruiz, M.; Styles, V.; et al. A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature 2019, 574, 423–427. [Google Scholar] [CrossRef]
- Li, L.W.; Chen, X.L.; Zhang, S.P.; Yang, J.; Chen, D.; Liu, M.X.; Zhang, H.F.; Zheng, X.B.; Wang, P.; Peng, Y.L.; et al. MoCAP proteins regulated by MoArk1-mediated phosphorylation coordinate endocytosis and actin dynamics to govern development and virulence of Magnaporthe oryzae. PLoS Genet. 2017, 13, e1006814. [Google Scholar] [CrossRef]
- Li, X.; Gao, C.; Li, L.; Liu, M.; Yin, Z.; Zhang, H.; Zheng, X.; Wang, P.; Zhang, Z. MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae. PLoS Pathog. 2017, 13, e1006449. [Google Scholar] [CrossRef] [PubMed]
- Sakulkoo, W.; Oses-Ruiz, M.; Oliveira Garcia, E.; Soanes, D.M.; Littlejohn, G.R.; Hacker, C.; Correia, A.; Valent, B.; Talbot, N.J. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science 2018, 359, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Oses-Ruiz, M.; Cruz-Mireles, N.; Martin-Urdiroz, M.; Soanes, D.M.; Eseola, A.B.; Tang, B.Z.; Derbyshire, P.; Nielsen, M.; Cheema, J.; Were, V.; et al. Appressorium-mediated plant infection by Magnaporthe oryzae is regulated by a Pmk1-dependent hierarchical transcriptional network. Nat. Microbiol. 2021, 6, 1383–1397. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Su, J.; Xu, Y.P.; Chen, J.H.; Chern, M.; Lei, M.L.; Qi, T.; Wang, Z.K.; Ryder, L.S.; Tang, B.Z.; et al. Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi. Nat. Microbiol. 2020, 5, 1565–1575. [Google Scholar] [CrossRef]
- Dulal, N.; Rogers, A.M.; Proko, R.; Bieger, B.D.; Liyanage, R.; Krishnamurthi, V.R.; Wang, Y.; Egan, M.J. Turgor-dependent and coronin-mediated F-actin dynamics drive septin disc-to-ring remodeling in the blast fungus Magnaporthe oryzae. J. Cell Sci. 2021, 134, jcs251298. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Plamann, M. Cytoskeleton and motor proteins in filamentous fungi. Curr. Opin. Microbiol. 2003, 6, 628–633. [Google Scholar] [CrossRef]
- Han, G.; Liu, B.; Zhang, J.; Zuo, W.; Morris, N.R.; Xiang, X. The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr. Biol. 2001, 11, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Konzack, S.; Rischitor, P.E.; Enke, C.; Fischer, R. The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol. Biol. Cell 2005, 16, 497–506. [Google Scholar] [CrossRef]
- Mourino-Perez, R.R.; Roberson, R.W.; Bartnicki-Garcia, S. Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genet. Biol. 2006, 43, 389–400. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Duan, Y.B.; Zhang, J.; Lu, F.; Zhu, Y.Y.; Shim, W.B.; Zhou, M.G. Microtubule-assisted mechanism for toxisome assembly in Fusarium graminearum. Mol. Plant Pathol. 2021, 22, 163–174. [Google Scholar] [CrossRef]
- Zeng, C.J.T.; Kim, H.R.; Arispuro, I.V.; Kim, J.M.; Huang, A.C.; Liu, B. Microtubule plus end-tracking proteins play critical roles in directional growth of hyphae by regulating the dynamics of cytoplasmic microtubules in Aspergillus nidulans. Mol. Microbiol. 2014, 94, 506–521. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Wu, S.S.; Chen, Y.; Han, X.Y.; Gu, Q.; Yin, Y.N.; Ma, Z.H. The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarium graminearum. Environ. Microbiol. 2017, 19, 1791–1807. [Google Scholar] [CrossRef]
- Lee, Y.R.J.; Liu, B. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. New Phytol. 2019, 222, 1705–1718. [Google Scholar] [CrossRef] [PubMed]
- Akhmanova, A.; Steinmetz, M.O. Control of microtubule organization and dynamics: Two ends in the limelight. Nat. Rev. Mol. Cell Biol. 2015, 16, 711–726. [Google Scholar] [CrossRef] [PubMed]
- Teixido-Travesa, N.; Roig, J.; Luders, J. The where, when and how of microtubule nucleation—One ring to rule them all. J. Cell Sci. 2012, 125, 4445–4456. [Google Scholar] [CrossRef] [PubMed]
- Teixido-Travesa, N.; Villen, J.; Lacasa, C.; Bertran, M.T.; Archinti, M.; Gygi, S.P.; Caelles, C.; Roig, J.; Luders, J. The gammaTuRC revisited: A comparative analysis of interphase and mitotic human gammaTuRC redefines the set of core components and identifies the novel subunit GCP8. Mol. Biol. Cell 2010, 21, 3963–3972. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.L.; Rogers, G.C.; Sharp, D.J.; Vale, R.D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 2002, 158, 873–884. [Google Scholar] [CrossRef]
- Galva, C.; Kirik, V.; Lindeboom, J.J.; Kaloriti, D.; Rancour, D.M.; Hussey, P.J.; Bednarek, S.Y.; Ehrhardt, D.W.; Sedbrook, J.C. The Microtubule Plus-End Tracking Proteins SPR1 and EB1b Interact to Maintain Polar Cell Elongation and Directional Organ Growth in Arabidopsis. Plant Cell 2014, 26, 4409–4425. [Google Scholar] [CrossRef]
- Xue, M.F.; Yang, J.; Li, Z.G.; Hu, S.N.A.; Yao, N.; Dean, R.A.; Zhao, W.S.; Shen, M.; Zhang, H.W.; Li, C.; et al. Comparative Analysis of the Genomes of Two Field Isolates of the Rice Blast Fungus Magnaporthe oryzae. PLoS Genet. 2012, 8, e1002869. [Google Scholar] [CrossRef]
- Ebbole, D.J. Magnaporthe as a model for understanding host-pathogen interactions. Annu. Rev. Phytopathol. 2007, 45, 437–456. [Google Scholar] [CrossRef]
- Harris, S.D.; Momany, M. Polarity in filamentous fungi: Moving beyond the yeast paradigm. Fungal Genet. Biol. 2004, 41, 391–400. [Google Scholar] [CrossRef]
- Idilli, A.I.; Morandini, P.; Onelli, E.; Rodighiero, S.; Caccianiga, M.; Moscatelli, A. Microtubule Depolymerization Affects Endocytosis and Exocytosis in the Tip and Influences Endosome Movement in Tobacco Pollen Tubes. Mol. Plant 2013, 6, 1109–1130. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Kang, E.F.; Xu, Q.Y.; Wang, M.Y.; Rui, Y.; Liu, B.Q.; Yuan, M.; Fu, Y. MAP18 Regulates the Direction of Pollen Tube Growth in Arabidopsis by Modulating F-Actin Organization. Plant Cell 2013, 25, 851–867. [Google Scholar] [CrossRef] [PubMed]
- Sieberer, B.J.; Ketelaar, T.; Esseling, J.J.; Emons, A.M.C. Microtubules guide root hair tip growth. New Phytol. 2005, 167, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Horio, T.; Oakley, B.R. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol. Biol. Cell 2005, 16, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Sablowski, R. Coordination of plant cell growth and division: Collective control or mutual agreement? Curr. Opin. Plant Biol. 2016, 34, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Paredez, A.R.; Somerville, C.R.; Ehrhardt, D.W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 2006, 312, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.J.; Wu, S.J.; Nowak, J.; Wang, G.D.; Han, L.B.; Feng, Z.D.; Mendrinna, A.; Ma, Y.P.; Wang, H.; Zhang, X.X.; et al. Live-cell imaging of the cytoskeleton in elongating cotton fibres. Nat. Plants 2019, 5, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Bera, A.; Gupta, M.L., Jr. Microtubules in Microorganisms: How Tubulin Isotypes Contribute to Diverse Cytoskeletal Functions. Front. Cell Dev. Biol. 2022, 10, 913809. [Google Scholar] [CrossRef] [PubMed]
- Goode, B.L.; Drubin, D.G.; Barnes, G. Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol. 2000, 12, 63–71. [Google Scholar] [CrossRef]
- Carvalho, P.; Tirnauer, J.S.; Pellman, D. Surfing on microtubule ends. Trends Cell Biol. 2003, 13, 229–237. [Google Scholar] [CrossRef]
- Trinkle-Mulcahy, L.; Lamond, A.I. Toward a high-resolution view of nuclear dynamics. Science 2007, 318, 1402–1407. [Google Scholar] [CrossRef]
- Kankanala, P.; Czymmek, K.; Valent, B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 2007, 19, 706–724. [Google Scholar] [CrossRef]
- Jones, K.; Jenkinson, C.B.; Borges Araujo, M.; Zhu, J.; Kim, R.Y.; Kim, D.W.; Khang, C.H. Mitotic stopwatch for the blast fungus Magnaporthe oryzae during invasion of rice cells. Fungal Genet. Biol. 2016, 93, 46–49. [Google Scholar] [CrossRef]
- Pfeifer, M.A.; Khang, C.H. A nuclear contortionist: The mitotic migration of Magnaporthe oryzae nuclei during plant infection. Mycology 2018, 9, 202–210. [Google Scholar] [CrossRef]
- Gao, C.; Sun, P.; Wang, W.; Tang, D. Arabidopsis E3 ligase KEG associates with and ubiquitinates MKK4 and MKK5 to regulate plant immunity. J. Integr. Plant Biol. 2020, 63, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Li, Y.B.; Liu, C.; Shen, N.; Zhang, Q.; Cao, T.; Qin, M.; Han, L.B.; Tang, D. Twinfilin regulates actin assembly and Hexagonal peroxisome 1 (Hex1) localization in the pathogenesis of rice blast fungus Magnaporthe oryzae. Mol. Plant Pathol. 2021, 22, 1641–1655. [Google Scholar] [CrossRef]
- Liu, C.; Shen, N.; Zhang, Q.; Qin, M.; Cao, T.; Zhu, S.; Tang, D.; Han, L. Magnaporthe oryzae Transcription Factor MoBZIP3 Regulates Appressorium Turgor Pressure Formation during Pathogenesis. Int. J. Mol. Sci. 2022, 23, 881. [Google Scholar] [CrossRef] [PubMed]
- Gupta, Y.K.; Dagdas, Y.F.; Martinez-Rocha, A.L.; Kershaw, M.J.; Littlejohn, G.R.; Ryder, L.S.; Sklenar, J.; Menke, F.; Talbot, N.J. Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by Magnaporthe oryzae. Plant Cell 2015, 27, 3277–3289. [Google Scholar] [CrossRef]
- Tang, W.; Ru, Y.; Hong, L.; Zhu, Q.; Zuo, R.; Guo, X.; Wang, J.; Zhang, H.; Zheng, X.; Wang, P.; et al. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environ. Microbiol. 2015, 17, 1377–1396. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.G.; Aves, S.J.; Talbot, N.J. Cell cycle-mediated regulation of plant infection by the rice blast fungus. Plant Cell 2010, 22, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, N.; Han, L.; Liu, Z.; Deng, X.; Zhu, S.; Liu, C.; Tang, D.; Han, L. Fimbrin associated with Pmk1 to regulate the actin assembly during Magnaporthe oryzae hyphal growth and infection. Stress Biol. 2024, 4, 5. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, N.; Han, L.; Liu, Z.; Deng, X.; Zhu, S.; Liu, C.; Tang, D.; Li, Y. The Microtubule End Binding Protein Mal3 Is Essential for the Dynamic Assembly of Microtubules during Magnaporthe oryzae Growth and Pathogenesis. Int. J. Mol. Sci. 2024, 25, 2672. https://doi.org/10.3390/ijms25052672
Shen N, Han L, Liu Z, Deng X, Zhu S, Liu C, Tang D, Li Y. The Microtubule End Binding Protein Mal3 Is Essential for the Dynamic Assembly of Microtubules during Magnaporthe oryzae Growth and Pathogenesis. International Journal of Molecular Sciences. 2024; 25(5):2672. https://doi.org/10.3390/ijms25052672
Chicago/Turabian StyleShen, Ningning, Libo Han, Zixuan Liu, Xianya Deng, Shuai Zhu, Chengyu Liu, Dingzhong Tang, and Yuanbao Li. 2024. "The Microtubule End Binding Protein Mal3 Is Essential for the Dynamic Assembly of Microtubules during Magnaporthe oryzae Growth and Pathogenesis" International Journal of Molecular Sciences 25, no. 5: 2672. https://doi.org/10.3390/ijms25052672
APA StyleShen, N., Han, L., Liu, Z., Deng, X., Zhu, S., Liu, C., Tang, D., & Li, Y. (2024). The Microtubule End Binding Protein Mal3 Is Essential for the Dynamic Assembly of Microtubules during Magnaporthe oryzae Growth and Pathogenesis. International Journal of Molecular Sciences, 25(5), 2672. https://doi.org/10.3390/ijms25052672