Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective
Abstract
:1. Introduction
2. Bone Remodeling
2.1. Definition and Purpose
2.2. The Main Players of Bone Remodeling
2.3. The Process of Bone Remodeling
2.3.1. Activation Phase
2.3.2. Resorption Phase
2.3.3. Reversal Phase
2.3.4. Formation Phase
2.3.5. Termination Phase
2.4. Systemic Factors Influencing Bone Remodeling
2.5. Pathophysiology of Bone Metastases
Tumor–Bone Microenvironment Interaction
- a.
- Classification of bone metastases
- b.
- The metastatic cascade
- c.
- Bone is a preferred destination for metastases
3. Metabolic Reprogramming in the Microenvironment
3.1. Osteolytic Metastases
3.2. Osteoblastic Metastasis
4. Altered Metabolism in Bone Metastasis
4.1. Amino Acid Metabolism
4.2. Glucose Metabolism
5. Clinical Features of Bone Metastases
5.1. Bone Pain
5.2. Hypercalcemia
5.3. Pathological Fractures and Spinal Compression
6. Early Detection
7. Challenges
8. Diagnosis
8.1. Imaging
8.2. Other Diagnostic Tools
9. Management
9.1. Bone Pain Management
9.2. Bone Resorption Modulators
9.3. Hormone Therapy
9.4. Radiation Therapy
9.5. Radiopharmaceuticals
9.6. Radiofrequency Ablation
9.7. Chemotherapy
9.8. Surgery
9.9. Targeted Therapies
10. Future Directions in Bone Metastasis Research and Treatment
10.1. Novel Diagnostic Techniques
10.1.1. Liquid Biopsy
10.1.2. Advanced Imaging Modalities
10.1.3. Metabolic Imaging
10.1.4. Emerging Therapies
Immunotherapy
Targeted Molecular Therapies
Bone-Targeting Radiopharmaceuticals
Perspective Analysis
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, M.; Weng, K.; Guo, Y.; Huang, L.; Chen, J.; Lu, H. GRP78 Promotes Bone Metastasis of Prostate Cancer by Regulating Bone Microenvironment through Sonic Hedgehog Signaling. Mol. Carcinog. 2023, 63, 494–509. [Google Scholar] [CrossRef]
- Park, J.; Jung, M.-J.; Chung, W.-Y. The Downregulation of IGFBP3 by TGF-β Signaling in Oral Cancer Contributes to the Osteoclast Differentiation. Biochem. Biophys. Res. Commun. 2021, 534, 381–386. [Google Scholar] [CrossRef]
- Choi, S.-W.; Sun, A.K.; Cheung, J.P.-Y.; Ho, J.C.-Y. Circulating Tumour Cells in the Prediction of Bone Metastasis. Cancers 2024, 16, 252. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Gao, F.; Liu, W.; Guan, X. Cell-Cell Communication Characteristics in Breast Cancer Metastasis. Cell Commun. Signal. 2024, 22, 55. [Google Scholar] [CrossRef] [PubMed]
- Taipaleenmäki, H. Secreted microRNAs in Bone Metastasis. J. Bone Miner. Metab. 2023, 41, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, M.; Delgado-Calle, J. Role of Osteocytes in Cancer Progression in the Bone and the Associated Skeletal Disease. Curr. Osteoporos. Rep. 2021, 19, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, T.E.; Halleen, J.M.; MacRitchie, G.; Andersson, R.M.; Bernoulli, J. Insights into Immuno-Oncology Drug Development Landscape with Focus on Bone Metastasis. Front. Immunol. 2023, 14, 1121878. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, J.A.; Partridge, N.C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology 2016, 31, 233–245. [Google Scholar] [CrossRef]
- Bolamperti, S.; Villa, I.; Rubinacci, A. Bone Remodeling: An Operational Process Ensuring Survival and Bone Mechanical Competence. Bone Res. 2022, 10, 48. [Google Scholar] [CrossRef]
- Jawich, K.; Hadakie, R.; Jamal, S.; Habeeb, R.; Al Fahoum, S.; Ferlin, A.; De Toni, L. Emerging Role of Non-Collagenous Bone Proteins as Osteokines inExtraosseous Tissues. Curr. Protein Pept. Sci. 2024, 25, 215–225. [Google Scholar] [CrossRef]
- Hamandi, F.; Goswami, T. Hierarchical Structure and Properties of the Bone at Nano Level. Bioengineering 2022, 9, 677. [Google Scholar] [CrossRef]
- Salhotra, A.; Shah, H.N.; Levi, B.; Longaker, M.T. Mechanisms of Bone Development and Repair. Nat. Rev. Mol. Cell Biol. 2020, 21, 696–711. [Google Scholar] [CrossRef]
- Zaidi, M. Skeletal Remodeling in Health and Disease. Nat. Med. 2007, 13, 791–801. [Google Scholar] [CrossRef]
- Xiong, J.; Onal, M.; Jilka, R.L.; Weinstein, R.S.; Manolagas, S.C.; O’Brien, C.A. Matrix-Embedded Cells Control Osteoclast Formation. Nat. Med. 2011, 17, 1235–1241. [Google Scholar] [CrossRef]
- Hansen, M.S.; Madsen, K.; Price, M.; Søe, K.; Omata, Y.; Zaiss, M.M.; Gorvin, C.M.; Frost, M.; Rauch, A. Transcriptional Reprogramming during Human Osteoclast Differentiation Identifies Regulators of Osteoclast Activity. Bone Res. 2024, 12, 5. [Google Scholar] [CrossRef]
- Nakashima, T.; Hayashi, M.; Fukunaga, T.; Kurata, K.; Oh-hora, M.; Feng, J.Q.; Bonewald, L.F.; Kodama, T.; Wutz, A.; Wagner, E.F.; et al. Evidence for Osteocyte Regulation of Bone Homeostasis through RANKL Expression. Nat. Med. 2011, 17, 1231–1234. [Google Scholar] [CrossRef]
- Day, T.F.; Guo, X.; Garrett-Beal, L.; Yang, Y. Wnt/β-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis. Dev. Cell 2005, 8, 739–750. [Google Scholar] [CrossRef]
- Nakashima, K.; Zhou, X.; Kunkel, G.; Zhang, Z.; Deng, J.M.; Behringer, R.R.; De Crombrugghe, B. The Novel Zinc Finger-Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation. Cell 2002, 108, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Winkler, D.G. Osteocyte Control of Bone Formation via Sclerostin, a Novel BMP Antagonist. EMBO J. 2003, 22, 6267–6276. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin Binds to LRP5/6 and Antagonizes Canonical Wnt Signaling. J. Biol. Chem. 2005, 280, 19883–19887. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, G.; Boudin, E.; Mateiu, L.; Yorgan, T.A.; Steenackers, E.; Kneissel, M.; Kramer, I.; Mortier, G.; Schinke, T.; Van Hul, W. An Additional Lrp4 High Bone Mass Mutation Mitigates the Sost-Knockout Phenotype in Mice by Increasing Bone Remodeling. Calcif. Tissue Int. 2023, 114, 171–181. [Google Scholar] [CrossRef]
- Šromová, V.; Sobola, D.; Kaspar, P. A Brief Review of Bone Cell Function and Importance. Cells 2023, 12, 2576. [Google Scholar] [CrossRef]
- Raggatt, L.J.; Partridge, N.C. Cellular and Molecular Mechanisms of Bone Remodeling. J. Biol. Chem. 2010, 285, 25103–25108. [Google Scholar] [CrossRef]
- Kamioka, H.; Honjo, T.; Takano-Yamamoto, T. A Three-Dimensional Distribution of Osteocyte Processes Revealed by the Combination of Confocal Laser Scanning Microscopy and Differential Interference Contrast Microscopy. Bone 2001, 28, 145–149. [Google Scholar] [CrossRef]
- Verborgt, O.; Gibson, G.J.; Schaffler, M.B. Loss of Osteocyte Integrity in Association with Microdamage and Bone Remodeling After Fatigue In Vivo. J. Bone Miner. Res. 2000, 15, 60–67. [Google Scholar] [CrossRef]
- Hauge, E.M.; Qvesel, D.; Eriksen, E.F.; Mosekilde, L.; Melsen, F. Cancellous Bone Remodeling Occurs in Specialized Compartments Lined by Cells Expressing Osteoblastic Markers. J. Bone Miner. Res. 2001, 16, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Harrison, K.D.; Sales, E.; Hiebert, B.D.; Panahifar, A.; Zhu, N.; Arnason, T.; Swekla, K.J.; Pivonka, P.; Chapman, L.D.; Cooper, D.M. Direct Assessment of Rabbit Cortical Bone Basic Multicellular Unit Longitudinal Erosion Rate: A 4D Synchrotron-Based Approach. J. Bone Miner. Res. 2020, 37, 2244–2258. [Google Scholar] [CrossRef] [PubMed]
- Eghbali-Fatourechi, G.Z.; Lamsam, J.; Fraser, D.; Nagel, D.; Riggs, B.L.; Khosla, S. Circulating Osteoblast-Lineage Cells in Humans. N. Engl. J. Med. 2005, 352, 1959–1966. [Google Scholar] [CrossRef]
- Andersen, T.L.; Sondergaard, T.E.; Skorzynska, K.E.; Dagnaes-Hansen, F.; Plesner, T.L.; Hauge, E.M.; Plesner, T.; Delaisse, J.-M. A Physical Mechanism for Coupling Bone Resorption and Formation in Adult Human Bone. Am. J. Pathol. 2009, 174, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.F.; Herrero, M.A.; Echeverri, L.F.; Oleaga, G.E.; López, J.M. Bone Remodeling: A Tissue-Level Process Emerging from Cell-Level Molecular Algorithms. PLoS ONE 2018, 13, e0204171. [Google Scholar] [CrossRef] [PubMed]
- Kurata, K.; Heino, T.J.; Higaki, H.; Väänänen, H.K. Bone Marrow Cell Differentiation Induced by Mechanically Damaged Osteocytes in 3D Gel-Embedded Culture. J. Bone Miner. Res. 2006, 21, 616–625. [Google Scholar] [CrossRef]
- Zhao, S.; Kato, Y.; Zhang, Y.; Harris, S.; Ahuja, S.S.; Bonewald, L.F. MLO-Y4 Osteocyte-Like Cells Support Osteoclast Formation and Activation. J. Bone Miner. Res. 2002, 17, 2068–2079. [Google Scholar] [CrossRef]
- Rucci, N. Molecular Biology of Bone Remodelling. Clin. Cases Miner. Bone Metab. 2008, 5, 49. [Google Scholar]
- Lee, B.S. Myosins in Osteoclast Formation and Function. Biomolecules 2018, 8, 157. [Google Scholar] [CrossRef]
- Delaissé, J.; Andersen, T.L.; Engsig, M.T.; Henriksen, K.; Troen, T.; Blavier, L. Matrix Metalloproteinases (MMP) and Cathepsin K Contribute Differently to Osteoclastic Activities. Microsc. Res. Tech. 2003, 61, 504–513. [Google Scholar] [CrossRef]
- Xing, L.; Boyce, B.F. Regulation of Apoptosis in Osteoclasts and Osteoblastic Cells. Biochem. Biophys. Res. Commun. 2005, 328, 709–720. [Google Scholar] [CrossRef]
- Takito, J.; Nonaka, N. Osteoclasts at Bone Remodeling: Order from Order. In Syncytia: Origin, Structure, and Functions; Kloc, M., Uosef, A., Eds.; Results and Problems in Cell Differentiation; Springer International Publishing: Cham, Switzerland, 2024; Volume 71, pp. 227–256. [Google Scholar] [CrossRef]
- Delaisse, J.-M. The Reversal Phase of the Bone-Remodeling Cycle: Cellular Prerequisites for Coupling Resorption and Formation. BoneKEy Rep. 2014, 3, 561. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.L.; Abdelgawad, M.E.; Kristensen, H.B.; Hauge, E.M.; Rolighed, L.; Bollerslev, J.; Kjærsgaard-Andersen, P.; Delaisse, J.-M. Understanding Coupling between Bone Resorption and Formation. Am. J. Pathol. 2013, 183, 235–246. [Google Scholar] [CrossRef]
- McKee, M.D.; Nanci, A. Osteopontin at Mineralized Tissue Interfaces in Bone, Teeth, and Osseointegrated Implants: Ultrastructural Distribution and Implications for Mineralized Tissue Formation, Turnover, and Repair. Microsc. Res. Tech. 1996, 33, 141–164. [Google Scholar] [CrossRef]
- Murshed, M. Mechanism of Bone Mineralization. Cold Spring Harb. Perspect. Med. 2018, 8, a031229. [Google Scholar] [CrossRef] [PubMed]
- Katsimbri, P. The Biology of Normal Bone Remodelling. Eur. J. Cancer Care 2017, 26, e12740. [Google Scholar] [CrossRef]
- Lind, M.; Deleuran, B.; Thestrup-Pedersen, K.; Søballe, K.; Eriksen, E.F.; Bünger, C. Chemotaxis of Human Osteoblasts. Effects of Osteotropic Growth Factors. APMIS Acta Pathol. Microbiol. Immunol. Scand. 1995, 103, 140–146. [Google Scholar] [CrossRef]
- Franz-Odendaal, T.A.; Hall, B.K.; Witten, P.E. Buried Alive: How Osteoblasts Become Osteocytes. Dev. Dyn. 2006, 235, 176–190. [Google Scholar] [CrossRef]
- Hughes, J.M.; Guerriere, K.I.; Popp, K.L.; Castellani, C.M.; Pasiakos, S.M. Exercise for Optimizing Bone Health after Hormone-Induced Increases in Bone Stiffness. Front. Endocrinol. 2023, 14, 1219454. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.J.; Sims, N.A.; Seeman, E. Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocr. Rev. 2021, 42, 383–406. [Google Scholar] [CrossRef]
- Hsiao, C.-Y.; Chen, T.-H.; Chu, T.-H.; Ting, Y.-N.; Tsai, P.-J.; Shyu, J.-F. Calcitonin Induces Bone Formation by Increasing Expression of Wnt10b in Osteoclasts in Ovariectomy-Induced Osteoporotic Rats. Front. Endocrinol. 2020, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- Streicher, C.; Heyny, A.; Andrukhova, O.; Haigl, B.; Slavic, S.; Schüler, C.; Kollmann, K.; Kantner, I.; Sexl, V.; Kleiter, M.; et al. Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells. Sci. Rep. 2017, 7, 6460. [Google Scholar] [CrossRef]
- Chen, J.-F.; Lin, P.-W.; Tsai, Y.-R.; Yang, Y.-C.; Kang, H.-Y. Androgens and Androgen Receptor Actions on Bone Health and Disease: From Androgen Deficiency to Androgen Therapy. Cells 2019, 8, 1318. [Google Scholar] [CrossRef]
- Lademann, F.; Tsourdi, E.; Hofbauer, L.C.; Rauner, M. Thyroid Hormone Actions and Bone Remodeling—The Role of the Wnt Signaling Pathway. Exp. Clin. Endocrinol. Diabetes 2020, 128, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Epsley, S.; Tadros, S.; Farid, A.; Kargilis, D.; Mehta, S.; Rajapakse, C.S. The Effect of Inflammation on Bone. Front. Physiol. 2021, 11, 1695. [Google Scholar] [CrossRef]
- Horowitz, M.C. The Role of Cytokines in Bone Remodeling. J. Clin. Densitom. 1998, 1, 187–198. [Google Scholar] [CrossRef]
- Yang, N.; Liu, Y. The Role of the Immune Microenvironment in Bone Regeneration. Int. J. Med. Sci. 2021, 18, 3697–3707. [Google Scholar] [CrossRef]
- Manolagas, S.C.; Jilka, R.L. Bone Marrow, Cytokines, and Bone Remodeling—Emerging Insights into the Pathophysiology of Osteoporosis. N. Engl. J. Med. 1995, 332, 305–311. [Google Scholar] [CrossRef]
- Singh, A.; Mehdi, A.A.; Srivastava, R.N.; Verma, N.S. Immunoregulation of Bone Remodelling. Int. J. Crit. Illn. Inj. Sci. 2012, 2, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Guder, C.; Gravius, S.; Burger, C.; Wirtz, D.C.; Schildberg, F.A. Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System. Front. Immunol. 2020, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Tang, X.; Su, H.; Chen, J.; Qin, Y.; Qin, Y.; Ouyang, N.; Tang, G. Neutrophils Are Involved in Early Bone Formation during Midpalatal Expansion. Oral Dis. 2023, odi.14849. [Google Scholar] [CrossRef] [PubMed]
- Shupp, A.B.; Kolb, A.D.; Mukhopadhyay, D.; Bussard, K.M. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts. Cancers 2018, 10, 182. [Google Scholar] [CrossRef] [PubMed]
- Kreps, L.M.; Addison, C.L. Targeting Intercellular Communication in the Bone Microenvironment to Prevent Disseminated Tumor Cell Escape from Dormancy and Bone Metastatic Tumor Growth. Int. J. Mol. Sci. 2021, 22, 2911. [Google Scholar] [CrossRef]
- Reddington, J.; Mendez, G.; Ching, A.; Kubicky, C.; Klimo, P.; Ragel, B. Imaging Characteristic Analysis of Metastatic Spine Lesions from Breast, Prostate, Lung, and Renal Cell Carcinomas for Surgical Planning: Osteolytic versus Osteoblastic. Surg. Neurol. Int. 2016, 7, 361. [Google Scholar] [CrossRef]
- Roudier, M.P.; Morrissey, C.; True, L.D.; Higano, C.S.; Vessella, R.L.; Ott, S.M. Histopathological Assessment of Prostate Cancer Bone Osteoblastic Metastases. J. Urol. 2008, 180, 1154–1160. [Google Scholar] [CrossRef]
- Roodman, G. Pathogenesis of Myeloma Bone Disease. Blood Cells. Mol. Dis. 2004, 32, 290–292. [Google Scholar] [CrossRef]
- Giuliani, N.; Rizzoli, V.; Roodman, G.D. Multiple Myeloma Bone Disease: Pathophysiology of Osteoblast Inhibition. Blood 2006, 108, 3992–3996. [Google Scholar] [CrossRef]
- Cheng, J.N.; Frye, J.B.; Whitman, S.A.; Kunihiro, A.G.; Brickey, J.A.; Funk, J.L. Osteolytic Effects of Tumoral Estrogen Signaling in an Estrogen Receptor-Positive Breast Cancer Bone Metastasis Model. J. Cancer Metastasis Treat. 2021, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, X.; Wang, Y.; Qu, Z.; Lu, Q.; Zhao, J.; Yan, X.; Zhang, H.; Zhou, Y. Notch3 Is Important for TGF-β-Induced Epithelial–Mesenchymal Transition in Non-Small Cell Lung Cancer Bone Metastasis by Regulating ZEB-1. Cancer Gene Ther. 2014, 21, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Farach-Carson, M.C.; Lin, S.-H.; Nalty, T.; Satcher, R.L. Sex Differences and Bone Metastases of Breast, Lung, and Prostate Cancers: Do Bone Homing Cancers Favor Feminized Bone Marrow? Front. Oncol. 2017, 7, 163. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Merchan, E.C.; Peleteiro-Pensado, M. Newly Released Advances in the Molecular Mechanisms of Osseous Metastasis and Potential Therapeutic Strategies. Arch. Bone Jt. Surg. 2022, 10, 741–755. [Google Scholar] [CrossRef] [PubMed]
- Hinz, N.; Jücker, M. AKT in Bone Metastasis of Solid Tumors: A Comprehensive Review. Cancers 2021, 13, 2287. [Google Scholar] [CrossRef] [PubMed]
- van Zijl, F.; Krupitza, G.; Mikulits, W. Initial Steps of Metastasis: Cell Invasion and Endothelial Transmigration. Mutat. Res. 2011, 728, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Ghiso, J.A. Models, Mechanisms and Clinical Evidence for Cancer Dormancy. Nat. Rev. Cancer 2007, 7, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Croucher, P.I.; McDonald, M.M.; Martin, T.J. Bone Metastasis: The Importance of the Neighbourhood. Nat. Rev. Cancer 2016, 16, 373–386. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X. Characteristics and Significance of the Pre-Metastatic Niche. Cancer Cell 2016, 30, 668–681. [Google Scholar] [CrossRef]
- Peinado, H.; Lavotshkin, S.; Lyden, D. The Secreted Factors Responsible for Pre-Metastatic Niche Formation: Old Sayings and New Thoughts. Semin. Cancer Biol. 2011, 21, 139–146. [Google Scholar] [CrossRef]
- Janni, W.; Vogl, F.D.; Wiedswang, G.; Synnestvedt, M.; Fehm, T.; Jückstock, J.; Borgen, E.; Rack, B.; Braun, S.; Sommer, H.; et al. Persistence of Disseminated Tumor Cells in the Bone Marrow of Breast Cancer Patients Predicts Increased Risk for Relapse—A European Pooled Analysis. Clin. Cancer Res. 2011, 17, 2967–2976. [Google Scholar] [CrossRef]
- Luzzi, K.J.; MacDonald, I.C.; Schmidt, E.E.; Kerkvliet, N.; Morris, V.L.; Chambers, A.F.; Groom, A.C. Multistep Nature of Metastatic Inefficiency. Am. J. Pathol. 1998, 153, 865–873. [Google Scholar] [CrossRef]
- Cameron, M.D.; Schmidt, E.E.; Kerkvliet, N.; Nadkarni, K.V.; Morris, V.L.; Groom, A.C.; Chambers, A.F.; MacDonald, I.C. Temporal Progression of Metastasis in Lung: Cell Survival, Dormancy, and Location Dependence of Metastatic Inefficiency. Cancer Res. 2000, 60, 2541–2546. [Google Scholar]
- Braun, S.; Vogl, F.D.; Naume, B.; Janni, W.; Osborne, M.P.; Coombes, R.C.; Schlimok, G.; Diel, I.J.; Gerber, B.; Gebauer, G.; et al. A Pooled Analysis of Bone Marrow Micrometastasis in Breast Cancer. N. Engl. J. Med. 2005, 353, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Agudo, J.; Park, E.S.; Rose, S.A.; Alibo, E.; Sweeney, R.; Dhainaut, M.; Kobayashi, K.S.; Sachidanandam, R.; Baccarini, A.; Merad, M.; et al. Quiescent Tissue Stem Cells Evade Immune Surveillance. Immunity 2018, 48, 271–285.e5. [Google Scholar] [CrossRef] [PubMed]
- Naumov, G.N.; Townson, J.L.; MacDonald, I.C.; Wilson, S.M.; Bramwell, V.H.C.; Groom, A.C.; Chambers, A.F. Ineffectiveness of Doxorubicin Treatment on Solitary Dormant Mammary Carcinoma Cells or Late-Developing Metastases. Breast Cancer Res. Treat. 2003, 82, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.-F.; Giuliano, M.; Trivedi, M.V.; Schiff, R.; Osborne, C.K. Metastasis Dormancy in Estrogen Receptor–Positive Breast Cancer. Clin. Cancer Res. 2013, 19, 6389–6397. [Google Scholar] [CrossRef] [PubMed]
- Van Der Toom, E.E.; Verdone, J.E.; Pienta, K.J. Disseminated Tumor Cells and Dormancy in Prostate Cancer Metastasis. Curr. Opin. Biotechnol. 2016, 40, 9–15. [Google Scholar] [CrossRef]
- Faries, M.B.; Steen, S.; Ye, X.; Sim, M.; Morton, D.L. Late Recurrence in Melanoma: Clinical Implications of Lost Dormancy. J. Am. Coll. Surg. 2013, 217, 27–34. [Google Scholar] [CrossRef]
- Izraely, S.; Witz, I.P. Site-specific Metastasis: A Cooperation between Cancer Cells and the Metastatic Microenvironment. Int. J. Cancer 2021, 148, 1308–1322. [Google Scholar] [CrossRef]
- Weilbaecher, K.N.; Guise, T.A.; McCauley, L.K. Cancer to Bone: A Fatal Attraction. Nat. Rev. Cancer 2011, 11, 411–425. [Google Scholar] [CrossRef]
- Paget, S. The Distribution of Secondary Growths in Cancer of the Breast. 1889. Cancer Metastasis Rev. 1989, 8, 98–101. [Google Scholar]
- Campanile, M.; Bettinelli, L.; Cerutti, C.; Spinetti, G. Bone Marrow Vasculature Advanced in Vitro Models for Cancer and Cardiovascular Research. Front. Cardiovasc. Med. 2023, 10, 1261849. [Google Scholar] [CrossRef]
- Page, J.M.; Merkel, A.R.; Ruppender, N.S.; Guo, R.; Dadwal, U.C.; Cannonier, S.A.; Basu, S.; Guelcher, S.A.; Sterling, J.A. Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin Β3 and TGF-β Receptor Type II. Biomaterials 2015, 64, 33–44. [Google Scholar] [CrossRef]
- Sottnik, J.L.; Dai, J.; Zhang, H.; Campbell, B.; Keller, E.T. Tumor-Induced Pressure in the Bone Microenvironment Causes Osteocytes to Promote the Growth of Prostate Cancer Bone Metastases. Cancer Res. 2015, 75, 2151–2158. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Whitman, M.A.; Shimpi, A.A.; Sempertegui, N.D.; Chiou, A.E.; Druso, J.E.; Verma, A.; Lux, S.C.; Cheng, Z.; Paszek, M.; et al. Bone-Matrix Mineralization Dampens Integrin-Mediated Mechanosignalling and Metastatic Progression in Breast Cancer. Nat. Biomed. Eng. 2023, 7, 1455–1472. [Google Scholar] [CrossRef] [PubMed]
- Ernst, C.; Wang, H. Bone Mineral Slows down Breast Cancer Cells. Nat. Biomed. Eng. 2023, 7, 1346–1347. [Google Scholar] [CrossRef] [PubMed]
- Hiraga, T.; Myoui, A.; Hashimoto, N.; Sasaki, A.; Hata, K.; Morita, Y.; Yoshikawa, H.; Rosen, C.J.; Mundy, G.R.; Yoneda, T. Bone-Derived IGF Mediates Crosstalk between Bone and Breast Cancer Cells in Bony Metastases. Cancer Res. 2012, 72, 4238–4249. [Google Scholar] [CrossRef]
- Fudge, K.; Wang, C.Y.; Stearns, M.E. Immunohistochemistry Analysis of Platelet-Derived Growth Factor A and B Chains and Platelet-Derived Growth Factor Alpha and Beta Receptor Expression in Benign Prostatic Hyperplasias and Gleason-Graded Human Prostate Adenocarcinomas. Mod. Pathol. Off. J. US Can. Acad. Pathol. Inc 1994, 7, 549–554. [Google Scholar]
- Schneider, A.; Kalikin, L.M.; Mattos, A.C.; Keller, E.T.; Allen, M.J.; Pienta, K.J.; McCauley, L.K. Bone Turnover Mediates Preferential Localization of Prostate Cancer in the Skeleton. Endocrinology 2005, 146, 1727–1736. [Google Scholar] [CrossRef]
- Lu, X.; Mu, E.; Wei, Y.; Riethdorf, S.; Yang, Q.; Yuan, M.; Yan, J.; Hua, Y.; Tiede, B.J.; Lu, X.; et al. VCAM-1 Promotes Osteolytic Expansion of Indolent Bone Micrometastasis of Breast Cancer by Engaging A4β1-Positive Osteoclast Progenitors. Cancer Cell 2011, 20, 701–714. [Google Scholar] [CrossRef]
- Zhang, X.H.-F.; Jin, X.; Malladi, S.; Zou, Y.; Wen, Y.H.; Brogi, E.; Smid, M.; Foekens, J.A.; Massagué, J. Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma. Cell 2013, 154, 1060–1073. [Google Scholar] [CrossRef]
- Taichman, R.S.; Cooper, C.; Keller, E.T.; Pienta, K.J.; Taichman, N.S.; McCauley, L.K. Use of the Stromal Cell-Derived Factor-1/CXCR4 Pathway in Prostate Cancer Metastasis to Bone. Cancer Res. 2002, 62, 1832–1837. [Google Scholar]
- Conley-LaComb, M.K.; Saliganan, A.; Kandagatla, P.; Chen, Y.Q.; Cher, M.L.; Chinni, S.R. PTEN Loss Mediated Akt Activation Promotes Prostate Tumor Growth and Metastasis via CXCL12/CXCR4 Signaling. Mol. Cancer 2013, 12, 85. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.; Scotto di Carlo, F.; Gianfrancesco, F. The Osteoclast Traces the Route to Bone Tumors and Metastases. Front. Cell Dev. Biol. 2022, 10, 886305. [Google Scholar] [CrossRef] [PubMed]
- Renema, N.; Navet, B.; Heymann, M.-F.; Lezot, F.; Heymann, D. RANK–RANKL Signalling in Cancer. Biosci. Rep. 2016, 36, e00366. [Google Scholar] [CrossRef] [PubMed]
- Berenson, J.R.; Rajdev, L.; Broder, M. Pathophysiology of Bone Metastases. Cancer Biol. Ther. 2006, 5, 1078–1081. [Google Scholar] [CrossRef]
- Vičić, I.; Belev, B. The Pathogenesis of Bone Metastasis in Solid Tumors: A Review. Croat. Med. J. 2021, 62, 270–282. [Google Scholar] [CrossRef]
- Nayir, E. Pathogenesis of Bone Metastasis. J. Oncol. Sci. 2016, 1, 13–16. [Google Scholar] [CrossRef]
- Grunbaum, A.; Kremer, R. Parathyroid Hormone-Related Protein (PTHrP) and Malignancy. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2022; Volume 120, pp. 133–177. [Google Scholar] [CrossRef]
- Cafforio, P.; Savonarola, A.; Stucci, S.; De Matteo, M.; Tucci, M.; Brunetti, A.E.; Vecchio, V.M.; Silvestris, F. PTHrP Produced by Myeloma Plasma Cells Regulates Their Survival and Pro-Osteoclast Activity For Bone Disease Progression. J. Bone Miner. Res. 2014, 29, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhu, K.; Jiao, H.; Zhao, Z.; Zhang, L.; Liu, M.; Deng, W.; Chen, D.; Yao, Z.; Xiao, G. PTHrP Expression in Human MDA-MB-231 Breast Cancer Cells Is Critical for Tumor Growth and Survival and Osteoblast Inhibition. Int. J. Biol. Sci. 2013, 9, 830–841. [Google Scholar] [CrossRef]
- Bryden, A.A.G.; Islam, S.; Freemont, A.J.; Shanks, J.H.; George, N.J.R.; Clarke, N.W. Parathyroid Hormone-Related Peptide: Expression in Prostate Cancer Bone Metastases. Prostate Cancer Prostatic Dis. 2002, 5, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Powell, G.J.; Southby, J.; Danks, J.A.; Stillwell, R.G.; Hayman, J.A.; Henderson, M.A.; Bennett, R.C.; Martin, T.J. Localization of Parathyroid Hormone-Related Protein in Breast Cancer Metastases: Increased Incidence in Bone Compared with Other Sites. Cancer Res. 1991, 51, 3059–3061. [Google Scholar]
- Swami, S.; Johnson, J.; Bettinson, L.A.; Kimura, T.; Zhu, H.; Albertelli, M.A.; Johnson, R.W.; Wu, J.Y. Prevention of Breast Cancer Skeletal Metastases with Parathyroid Hormone. JCI Insight 2017, 2, e90874. [Google Scholar] [CrossRef]
- Amin, N.; Boccardi, V.; Taghizadeh, M.; Jafarnejad, S. Probiotics and Bone Disorders: The Role of RANKL/RANK/OPG Pathway. Aging Clin. Exp. Res. 2020, 32, 363–371. [Google Scholar] [CrossRef]
- Hiraga, T.; Horibe, K.; Koide, M.; Yamashita, T.; Kobayashi, Y. Sclerostin Blockade Promotes Bone Metastases of Wnt-Responsive Breast Cancer Cells. Cancer Sci. 2023, 114, 2460–2470. [Google Scholar] [CrossRef]
- van Loon, K.; Huijbers, E.J.M.; Griffioen, A.W. Secreted Frizzled-Related Protein 2: A Key Player in Noncanonical Wnt Signaling and Tumor Angiogenesis. Cancer Metastasis Rev. 2021, 40, 191–203. [Google Scholar] [CrossRef]
- Yuan, S.; Hoggard, N.K.; Kantake, N.; Hildreth, B.E.; Rosol, T.J. Effects of Dickkopf-1 (DKK-1) on Prostate Cancer Growth and Bone Metastasis. Cells 2023, 12, 2695. [Google Scholar] [CrossRef]
- Sugyo, A.; Tsuji, A.B.; Sudo, H.; Sugiura, Y.; Koizumi, M.; Higashi, T. Wnt1 Induces Osteoblastic Changes in a Well-Established Osteolytic Skeletal Metastatic Model Derived from Breast Cancer. Cancer Rep. 2023, 6, e1909. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.; Massagué, J. Roles of TGFβ in Metastasis. Cell Res. 2009, 19, 89–102. [Google Scholar] [CrossRef]
- Buijs, J.T.; Stayrook, K.R.; Guise, T.A. The Role of TGF-β in Bone Metastasis: Novel Therapeutic Perspectives. BoneKEy Rep. 2012, 1, 96. [Google Scholar] [CrossRef] [PubMed]
- Sethi, N.; Dai, X.; Winter, C.G.; Kang, Y. Tumor-Derived Jagged1 Promotes Osteolytic Bone Metastasis of Breast Cancer by Engaging Notch Signaling in Bone Cells. Cancer Cell 2011, 19, 192–205. [Google Scholar] [CrossRef]
- Qiao, X.; Ma, B.; Sun, W.; Zhang, N.; Liu, Y.; Jia, L.; Liu, C. JAG1 Is Associated with the Prognosis and Metastasis in Breast Cancer. Sci. Rep. 2022, 12, 21986. [Google Scholar] [CrossRef]
- Pin, F.; Prideaux, M.; Bonewald, L.F.; Bonetto, A. Osteocytes and Cancer. Curr. Osteoporos. Rep. 2021, 19, 616–625. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, W.; Li, H.; Xu, F.; Yinwang, E.; Xue, Y.; Chen, T.; Wang, S.; Wang, Z.; Sun, H.; et al. Osteocyte Mitochondria Inhibit Tumor Development via STING-Dependent Antitumor Immunity. Sci. Adv. 2024, 10, eadi4298. [Google Scholar] [CrossRef]
- Mulcrone, P.L.; Edwards, S.K.E.; Petrusca, D.N.; Haneline, L.S.; Delgado-Calle, J.; Roodman, G.D. Osteocyte Vegf-a Contributes to Myeloma-Associated Angiogenesis and Is Regulated by Fgf23. Sci. Rep. 2020, 10, 17319. [Google Scholar] [CrossRef] [PubMed]
- Sabol, H.M.; Amorim, T.; Ashby, C.; Halladay, D.; Anderson, J.; Cregor, M.; Sweet, M.; Nookaew, I.; Kurihara, N.; Roodman, G.D.; et al. Notch3 Signaling between Myeloma Cells and Osteocytes in the Tumor Niche Promotes Tumor Growth and Bone Destruction. Neoplasia 2022, 28, 100785. [Google Scholar] [CrossRef]
- Anloague, A.; Delgado-Calle, J. Osteocytes: New Kids on the Block for Cancer in Bone Therapy. Cancers 2023, 15, 2645. [Google Scholar] [CrossRef]
- Dwivedi, A.; Kiely, P.A.; Hoey, D.A. Mechanically Stimulated Osteocytes Promote the Proliferation and Migration of Breast Cancer Cells via a Potential CXCL1/2 Mechanism. Biochem. Biophys. Res. Commun. 2021, 534, 14–20. [Google Scholar] [CrossRef]
- van Santen, V.J.B.; Jin, J.; Hogervorst, J.M.A.; Bakker, A.D. Shear Loaded Osteocyte-like-Cells Affect Epithelial and Mesenchymal Gene Expression in DU145 Prostate Cancer Cells, While Decreasing Their Invasion In Vitro. Biochem. Biophys. Res. Commun. 2023, 646, 70–77. [Google Scholar] [CrossRef]
- Fan, Y.; Jalali, A.; Chen, A.; Zhao, X.; Liu, S.; Teli, M.; Guo, Y.; Li, F.; Li, J.; Siegel, A.; et al. Skeletal Loading Regulates Breast Cancer-Associated Osteolysis in a Loading Intensity-Dependent Fashion. Bone Res. 2020, 8, 9. [Google Scholar] [CrossRef]
- Kesler, M.; Kerzhner, K.; Druckmann, I.; Kuten, J.; Levine, C.; Sarid, D.; Keizman, D.; Yossepowitch, O.; Even-Sapir, E. Staging 68 Ga-PSMA PET/CT in 963 Consecutive Patients with Newly Diagnosed Prostate Cancer: Incidence and Characterization of Skeletal Involvement. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2077–2085. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, P.; Wang, C. The Role of Prostate-Specific Antigen in the Osteoblastic Bone Metastasis of Prostate Cancer: A Literature Review. Front. Oncol. 2023, 13, 1127637. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, X.; Chen, H.-N.; Wang, K. Amino Acid Metabolic Reprogramming in Tumor Metastatic Colonization. Front. Oncol. 2023, 13, 1123192. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Bado, I.; Wang, H.; Zhang, W.; Rosen, J.M.; Zhang, X.H.-F. Metastasis Organotropism: Redefining the Congenial Soil. Dev. Cell 2019, 49, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Navarro, C.; Ortega, Á.; Santeliz, R.; Garrido, B.; Chacín, M.; Galban, N.; Vera, I.; De Sanctis, J.B.; Bermúdez, V. Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches. Pharmaceutics 2022, 14, 1303. [Google Scholar] [CrossRef] [PubMed]
- Schiliro, C.; Firestein, B.L. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021, 10, 1056. [Google Scholar] [CrossRef] [PubMed]
- Whitburn, J.; Rao, S.R.; Morris, E.V.; Tabata, S.; Hirayama, A.; Soga, T.; Edwards, J.R.; Kaya, Z.; Palmer, C.; Hamdy, F.C.; et al. Metabolic Profiling of Prostate Cancer in Skeletal Microenvironments Identifies G6PD as a Key Mediator of Growth and Survival. Sci. Adv. 2022, 8, eabf9096. [Google Scholar] [CrossRef] [PubMed]
- Godet, I.; Shin, Y.J.; Ju, J.A.; Ye, I.C.; Wang, G.; Gilkes, D.M. Fate-Mapping Post-Hypoxic Tumor Cells Reveals a ROS-Resistant Phenotype That Promotes Metastasis. Nat. Commun. 2019, 10, 4862. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, F.K. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants 2021, 10, 1838. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.N. Amino Acid Metabolism in Bone Metastatic Disease. Curr. Osteoporos. Rep. 2023, 21, 344–353. [Google Scholar] [CrossRef]
- Tandon, M.; Othman, A.H.; Winogradzki, M.; Pratap, J. Bone Metastatic Breast Cancer Cells Display Downregulation of PKC-ζ with Enhanced Glutamine Metabolism. Gene 2021, 775, 145419. [Google Scholar] [CrossRef] [PubMed]
- Pollari, S.; Käkönen, S.-M.; Edgren, H.; Wolf, M.; Kohonen, P.; Sara, H.; Guise, T.; Nees, M.; Kallioniemi, O. Enhanced Serine Production by Bone Metastatic Breast Cancer Cells Stimulates Osteoclastogenesis. Breast Cancer Res. Treat. 2011, 125, 421–430. [Google Scholar] [CrossRef]
- Zhong, X.; He, Z.; Yin, L.; Fan, Y.; Tong, Y.; Kang, Y.; Bi, Q. Glutamine Metabolism in Tumor Metastasis: Genes, Mechanisms and the Therapeutic Targets. Heliyon 2023, 9, e20656. [Google Scholar] [CrossRef]
- Li, T.; Copeland, C.; Le, A. Glutamine Metabolism in Cancer. In The Heterogeneity of Cancer Metabolism; Le, A., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2021; pp. 17–38. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Zhu, F.; Duan, Q. The Role of Branched Chain Amino Acids Metabolic Disorders in Tumorigenesis and Progression. Biomed. Pharmacother. 2022, 153, 113390. [Google Scholar] [CrossRef]
- Iqbal, J.; Sun, L.; Cao, J.; Yuen, T.; Lu, P.; Bab, I.; Leu, N.A.; Srinivasan, S.; Wagage, S.; Hunter, C.A.; et al. Smoke Carcinogens Cause Bone Loss through the Aryl Hydrocarbon Receptor and Induction of Cyp1 Enzymes. Proc. Natl. Acad. Sci. USA 2013, 110, 11115–11120. [Google Scholar] [CrossRef]
- Eisa, N.H.; Reddy, S.V.; Elmansi, A.M.; Kondrikova, G.; Kondrikov, D.; Shi, X.-M.; Novince, C.M.; Hamrick, M.W.; McGee-Lawrence, M.E.; Isales, C.M.; et al. Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway. Int. J. Mol. Sci. 2020, 21, 7931. [Google Scholar] [CrossRef]
- Tiedemann, K.; Hussein, O.; Komarova, S.V. Role of Altered Metabolic Microenvironment in Osteolytic Metastasis. Front. Cell Dev. Biol. 2020, 8, 435. [Google Scholar] [CrossRef]
- Zhou, D.; Duan, Z.; Li, Z.; Ge, F.; Wei, R.; Kong, L. The Significance of Glycolysis in Tumor Progression and Its Relationship with the Tumor Microenvironment. Front. Pharmacol. 2022, 13, 1091779. [Google Scholar] [CrossRef]
- Lu, J.; Tan, M.; Cai, Q. The Warburg Effect in Tumor Progression: Mitochondrial Oxidative Metabolism as an Anti-Metastasis Mechanism. Cancer Lett. 2015, 356, 156–164. [Google Scholar] [CrossRef]
- Liao, M.; Yao, D.; Wu, L.; Luo, C.; Wang, Z.; Zhang, J.; Liu, B. Targeting the Warburg Effect: A Revisited Perspective from Molecular Mechanisms to Traditional and Innovative Therapeutic Strategies in Cancer. Acta Pharm. Sin. B, 2023, in press. [CrossRef]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wordliczek, J. Bone Pain in Cancer Patients: Mechanisms and Current Treatment. Int. J. Mol. Sci. 2019, 20, 6047. [Google Scholar] [CrossRef] [PubMed]
- Macedo, F.; Ladeira, K.; Pinho, F.; Saraiva, N.; Bonito, N.; Pinto, L.; Goncalves, F. Bone Metastases: An Overview. Oncol. Rev. 2017, 11, 321. [Google Scholar] [CrossRef]
- Wilkinson, A.N.; Viola, R.; Brundage, M.D. Managing Skeletal Related Events Resulting from Bone Metastases. BMJ 2008, 337, a2041. [Google Scholar] [CrossRef]
- Aielli, F.; Ponzetti, M.; Rucci, N. Bone Metastasis Pain, from the Bench to the Bedside. Int. J. Mol. Sci. 2019, 20, 280. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.E. Clinical Features of Metastatic Bone Disease and Risk of Skeletal Morbidity. Clin. Cancer Res. 2006, 12, 6243s–6249s. [Google Scholar] [CrossRef]
- Wright, J.D.; Tergas, A.I.; Ananth, C.V.; Burke, W.M.; Hou, J.Y.; Chen, L.; Neugut, A.I.; Richards, C.A.; Hershman, D.L. Quality and Outcomes of Treatment of Hypercalcemia of Malignancy. Cancer Investig. 2015, 33, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Mirrakhimov, A.E. Hypercalcemia of Malignancy: An Update on Pathogenesis and Management. N. Am. J. Med. Sci. 2015, 7, 483–493. [Google Scholar] [CrossRef]
- Quinn, J.M.; Matsumura, Y.; Tarin, D.; McGee, J.O.; Athanasou, N.A. Cellular and Hormonal Mechanisms Associated with Malignant Bone Resorption. Lab. Investig. J. Tech. Methods Pathol. 1994, 71, 465–471. [Google Scholar]
- Walker, M.D.; Shane, E. Hypercalcemia: A Review. JAMA 2022, 328, 1624–1636. [Google Scholar] [CrossRef]
- Hu, Y.-C.; Lun, D.-X.; Wang, H. Clinical Features of Neoplastic Pathological Fracture in Long Bones. Chin. Med. J. 2012, 125, 3127–3132. [Google Scholar]
- Boussios, S.; Cooke, D.; Hayward, C.; Kanellos, F.S.; Tsiouris, A.K.; Chatziantoniou, A.A.; Zakynthinakis-Kyriakou, N.; Karathanasi, A. Metastatic Spinal Cord Compression: Unraveling the Diagnostic and Therapeutic Challenges. Anticancer Res. 2018, 38, 4987–4997. [Google Scholar] [CrossRef]
- Roberts, C.C.; Daffner, R.H.; Weissman, B.N.; Bancroft, L.; Bennett, D.L.; Blebea, J.S.; Bruno, M.A.; Fries, I.B.; Germano, I.M.; Holly, L.; et al. ACR Appropriateness Criteria® on Metastatic Bone Disease. J. Am. Coll. Radiol. 2010, 7, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Heindel, W.; Gübitz, R.; Vieth, V.; Weckesser, M.; Schober, O.; Schäfers, M. The Diagnostic Imaging of Bone Metastases. Dtsch. Ärztebl. Int. 2014, 111, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.H.; Klimo, P.; Vrionis, F.D. Metastatic Spinal Cord Compression. J. Natl. Compr. Canc. Netw. 2005, 3, 711–719. [Google Scholar] [CrossRef]
- Brodowicz, T.; Hadji, P.; Niepel, D.; Diel, I. Early Identification and Intervention Matters: A Comprehensive Review of Current Evidence and Recommendations for the Monitoring of Bone Health in Patients with Cancer. Cancer Treat. Rev. 2017, 61, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Zacharia, B.; Joy, J.; Subramaniam, D.; Pai, P.K. Factors Affecting Life Expectancy After Bone Metastasis in Adults—Results of a 5-Year Prospective Study. Indian J. Surg. Oncol. 2021, 12, 759–769. [Google Scholar] [CrossRef]
- O’Sullivan, G.J.; Carty, F.L.; Cronin, C.G. Imaging of Bone Metastasis: An Update. World J. Radiol. 2015, 7, 202–211. [Google Scholar] [CrossRef]
- Chang, C.Y.; Garner, H.W.; Ahlawat, S.; Amini, B.; Bucknor, M.D.; Flug, J.A.; Khodarahmi, I.; Mulligan, M.E.; Peterson, J.J.; Riley, G.M.; et al. Society of Skeletal Radiology—White Paper. Guidelines for the Diagnostic Management of Incidental Solitary Bone Lesions on CT and MRI in Adults: Bone Reporting and Data System (Bone-RADS). Skeletal Radiol. 2022, 51, 1743–1764. [Google Scholar] [CrossRef]
- Lote, K.; Walløe, A.; Bjersand, A. Bone Metastasis Prognosis, Diagnosis and Treatment. Acta Radiol. Oncol. 1986, 25, 227–232. [Google Scholar] [CrossRef]
- Riccio, A.I.; Wodajo, F.M.; Malawer, M. Metastatic Carcinoma of the Long Bones. Am. Fam. Physician 2007, 76, 1489–1494. [Google Scholar]
- Shah, L.M.; Salzman, K.L. Imaging of Spinal Metastatic Disease. Int. J. Surg. Oncol. 2011, 2011, 769753. [Google Scholar] [CrossRef]
- Gallamini, A.; Zwarthoed, C.; Borra, A. Positron Emission Tomography (PET) in Oncology. Cancers 2014, 6, 1821–1889. [Google Scholar] [CrossRef]
- Takalkar, A.M.; El-Haddad, G.; Lilien, D.L. FDG-PET and PET/CT—Part II. Indian J. Radiol. Imaging 2008, 18, 17–36. [Google Scholar] [CrossRef]
- Özülker, T.; Uzun, A.; Ozülker, F.; Ozpaçac, T. Comparison of F-18-FDG-PET/CT with Tc-99m-MDP Bone Scintigraphy for the Detection of Bone Metastases in Cancer Patients. Nucl. Med. Commun. 2010, 31, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Campos, H.M.; Jiménez-Zarazúa, O.; Mondragón, J.D. Diagnosis and Treatment Options of Spinal Metastases. Rev. Investig. Clin. Organo Hosp. Enfermedades Nutr. 2015, 67, 140–157. [Google Scholar]
- Raphael, B.; Hwang, S.; Lefkowitz, R.A.; Landa, J.; Sohn, M.; Panicek, D.M. Biopsy of Suspicious Bone Lesions in Patients with a Single Known Malignancy: Prevalence of a Second Malignancy. AJR Am. J. Roentgenol. 2013, 201, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Łukaszewski, B.; Nazar, J.; Goch, M.; Łukaszewska, M.; Stępiński, A.; Jurczyk, M.U. Diagnostic Methods for Detection of Bone Metastases. Contemp. Oncol. 2017, 21, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Pagnotti, G.M.; Trivedi, T.; Mohammad, K.S. Translational Strategies to Target Metastatic Bone Disease. Cells 2022, 11, 1309. [Google Scholar] [CrossRef] [PubMed]
- Jing, D.; Zhao, Q.; Zhao, Y.; Lu, X.; Feng, Y.; Zhao, B.; Zhao, X. Management of Pain in Patients with Bone Metastases. Front. Oncol. 2023, 13, 1156618. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Kido, A.; Tanaka, Y.; Facchini, G.; Peta, G.; Rossi, G.; Mavrogenis, A.F. Current Overview of Treatment for Metastatic Bone Disease. Curr. Oncol. 2021, 28, 3347–3372. [Google Scholar] [CrossRef] [PubMed]
- D’Oronzo, S.; Coleman, R.; Brown, J.; Silvestris, F. Metastatic Bone Disease: Pathogenesis and Therapeutic Options: Up-Date on Bone Metastasis Management. J. Bone Oncol. 2019, 15, 100205. [Google Scholar] [CrossRef] [PubMed]
- Pagano, B.; Baldari, S. Radiopharmaceuticals for Bone Metastases. In Clinical Applications of Nuclear Medicine Targeted Therapy; Bombardieri, E., Seregni, E., Evangelista, L., Chiesa, C., Chiti, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 345–364. [Google Scholar] [CrossRef]
- Bădilă, A.E.; Rădulescu, D.M.; Niculescu, A.-G.; Grumezescu, A.M.; Rădulescu, M.; Rădulescu, A.R. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review. Cancers 2021, 13, 4229. [Google Scholar] [CrossRef]
- Shibata, H. JS1-2—Work-Sharing between Radiotherapy and Chemotherapy for the Treatment of Bone Metastasis. Ann. Oncol. 2019, 30, vi7. [Google Scholar] [CrossRef]
- Denaro, V.; Longo, U.G.; De Salvatore, S.; Denaro, L. Surgical Management of Bone Metastasis. In Textbook of Musculoskeletal Disorders; Longo, U.G., Denaro, V., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 229–237. [Google Scholar] [CrossRef]
- Soeharno, H.; Povegliano, L.; Choong, P.F. Multimodal Treatment of Bone Metastasis—A Surgical Perspective. Front. Endocrinol. 2018, 9, 518. [Google Scholar] [CrossRef] [PubMed]
- Cirstoiu, C.; Cretu, B.; Iordache, S.; Popa, M.; Serban, B.; Cursaru, A. Surgical Management Options for Long-Bone Metastasis. EFORT Open Rev. 2022, 7, 206–213. [Google Scholar] [CrossRef]
- Chiechi, A.; Waning, D.L.; Stayrook, K.R.; Buijs, J.T.; Guise, T.A.; Mohammad, K.S. Role of TGF-β in Breast Cancer Bone Metastases. Adv. Biosci. Biotechnol. Print 2013, 4, 15–30. [Google Scholar] [CrossRef]
- Mohammad, K.S.; Javelaud, D.; Fournier, P.G.J.; Niewolna, M.; McKenna, C.R.; Peng, X.H.; Duong, V.; Dunn, L.K.; Mauviel, A.; Guise, T.A. TGF-Beta-RI Kinase Inhibitor SD-208 Reduces the Development and Progression of Melanoma Bone Metastases. Cancer Res. 2011, 71, 175–184. [Google Scholar] [CrossRef]
- Juárez, P.; Mohammad, K.S.; Yin, J.J.; Fournier, P.G.J.; McKenna, R.C.; Davis, H.W.; Peng, X.H.; Niewolna, M.; Javelaud, D.; Chirgwin, J.M.; et al. Halofuginone Inhibits the Establishment and Progression of Melanoma Bone Metastases. Cancer Res. 2012, 72, 6247–6256. [Google Scholar] [CrossRef]
- Straign, D.M.; Ihle, C.L.; Provera, M.D.; Owens, P. Targeting the BMP Pathway in Prostate Cancer Induced Bone Disease. Front. Endocrinol. 2021, 12, 769316. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Cai, S.; Zabkiewicz, C.; Liu, C.; Ye, L. Bone Morphogenetic Proteins Mediate Crosstalk between Cancer Cells and the Tumour Microenvironment at Primary Tumours and Metastases (Review). Int. J. Oncol. 2020, 56, 1335–1351. [Google Scholar] [CrossRef]
- Koushyar, S.; Meniel, V.S.; Phesse, T.J.; Pearson, H.B. Exploring the Wnt Pathway as a Therapeutic Target for Prostate Cancer. Biomolecules 2022, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Loberg, R.; Taichman, R.S. The Pivotal Role of CXCL12 (SDF-1)/CXCR4 Axis in Bone Metastasis. Cancer Metastasis Rev. 2006, 25, 573–587. [Google Scholar] [CrossRef]
- Conley-LaComb, M.K.; Semaan, L.; Singareddy, R.; Li, Y.; Heath, E.I.; Kim, S.; Cher, M.L.; Chinni, S.R. Pharmacological Targeting of CXCL12/CXCR4 Signaling in Prostate Cancer Bone Metastasis. Mol. Cancer 2016, 15, 68. [Google Scholar] [CrossRef]
- Sethakorn, N.; Heninger, E.; Sánchez-de-Diego, C.; Ding, A.B.; Yada, R.C.; Kerr, S.C.; Kosoff, D.; Beebe, D.J.; Lang, J.M. Advancing Treatment of Bone Metastases through Novel Translational Approaches Targeting the Bone Microenvironment. Cancers 2022, 14, 757. [Google Scholar] [CrossRef] [PubMed]
- Ucci, A.; Rucci, N.; Ponzetti, M. Liquid Biopsies in Primary and Secondary Bone Cancers. Cancer Drug Resist. 2022, 5, 541–559. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid Biopsy: A Step Closer to Transform Diagnosis, Prognosis and Future of Cancer Treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Chen, G.; Zhu, Y.; Ma, B.; Ban, X.; Wu, N.; Ming, Y. Artificial Intelligence in Skeletal Metastasis Imaging. Comput. Struct. Biotechnol. J. 2024, 23, 157–164. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Aggarwal, R.; Bok, R.A.; Ohliger, M.A.; Zhu, Z.; Lee, P.; Gordon, J.W.; Van Criekinge, M.; Carvajal, L.; Slater, J.B.; et al. Hyperpolarized 13C-Pyruvate MRI Detects Real-Time Metabolic Flux in Prostate Cancer Metastases to Bone and Liver: A Clinical Feasibility Study. Prostate Cancer Prostatic Dis. 2020, 23, 269–276. [Google Scholar] [CrossRef]
- Sushentsev, N.; McLean, M.A.; Warren, A.Y.; Benjamin, A.J.V.; Brodie, C.; Frary, A.; Gill, A.B.; Jones, J.; Kaggie, J.D.; Lamb, B.W.; et al. Hyperpolarised 13C-MRI Identifies the Emergence of a Glycolytic Cell Population within Intermediate-Risk Human Prostate Cancer. Nat. Commun. 2022, 13, 466. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ollodart, J.; Contino, K.F.; Shiozawa, Y. Immunotherapy as a Potential Treatment Approach for Currently Incurable Bone Metastasis. J. Bone Miner. Metab. 2023, 41, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, M.; Xu, C.; Li, B.; Chen, J.; Chen, J.; Wang, Z. Immune Checkpoint Inhibitor Therapy for Bone Metastases: Specific Microenvironment and Current Situation. J. Immunol. Res. 2021, 2021, 8970173. [Google Scholar] [CrossRef]
- Del Conte, A.; De Carlo, E.; Bertoli, E.; Stanzione, B.; Revelant, A.; Bertola, M.; Spina, M.; Bearz, A. Bone Metastasis and Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer (NSCLC): Microenvironment and Possible Clinical Implications. Int. J. Mol. Sci. 2022, 23, 6832. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Bao, M.; Zeng, K.; Fu, S.; Wang, C.; Ye, L. Wnt Signaling in Bone Metastasis: Mechanisms and Therapeutic Opportunities. Life Sci. 2018, 208, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Casimiro, S.; Vilhais, G.; Gomes, I.; Costa, L. The Roadmap of RANKL/RANK Pathway in Cancer. Cells 2021, 10, 1978. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.; Xing, L. Src Inhibitors in the Treatment of Metastatic Bone Disease: Rationale and Clinical Data. Clin. Investig. 2011, 1, 1695–1706. [Google Scholar] [CrossRef]
- Choi, J.Y. Treatment of Bone Metastasis with Bone-Targeting Radiopharmaceuticals. Nucl. Med. Mol. Imaging 2018, 52, 200–207. [Google Scholar] [CrossRef]
- Bouman-Wammes, E.W.; De Klerk, J.M.H.; Bloemendal, H.J.; Van Dodewaard-de Jong, J.M.; Lange, R.; Ter Heine, R.; Verheul, H.M.W.; Van Den Eertwegh, A.J.M. Bone-Targeting Radiopharmaceuticals as Monotherapy or Combined With Chemotherapy in Patients With Castration-Resistant Prostate Cancer Metastatic to Bone. Clin. Genitourin. Cancer 2019, 17, e281–e292. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elaasser, B.; Arakil, N.; Mohammad, K.S. Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective. Int. J. Mol. Sci. 2024, 25, 2846. https://doi.org/10.3390/ijms25052846
Elaasser B, Arakil N, Mohammad KS. Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective. International Journal of Molecular Sciences. 2024; 25(5):2846. https://doi.org/10.3390/ijms25052846
Chicago/Turabian StyleElaasser, Basant, Nour Arakil, and Khalid S. Mohammad. 2024. "Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective" International Journal of Molecular Sciences 25, no. 5: 2846. https://doi.org/10.3390/ijms25052846
APA StyleElaasser, B., Arakil, N., & Mohammad, K. S. (2024). Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective. International Journal of Molecular Sciences, 25(5), 2846. https://doi.org/10.3390/ijms25052846