Formulating Treatment to Cure Alzheimer’s Dementia: Approach #2
Abstract
:1. Introduction
2. Depression and AD
3. Diabetes, Insulin Resistance, and AD
4. Vascular Pathology and AD
5. Dyslipidemia and AD
6. Hypertension in MCI Patients Who Did Not Revert to Having Normal Cognition
7. Inflammation and AD
8. Underweight in MCI Patients Who Did Not Revert to Having Normal Cognition
9. Mitochondrial Abnormalities and AD
10. Transforming Growth Factor β (TGF-β)
11. Wnt/β-Catenin and AD
12. EMT
13. Metabolic Syndrome and AD
14. Disturbed Circadian Rhythm in AD: Causal Factor or Epiphenomenon? If a Causal Factor, Then Treatment May Benefit Patients with AD
15. Discussion
16. Conclusions and Summary
Funding
Conflicts of Interest
References
- Jang, A.R.; Yoon, J.Y. Factors affecting reversion from mild cognitive impairment to normal cognition in midlife to later life in Korea: A national population study. Geriatr. Gerontol. Int. 2019, 19, 1129–1135. [Google Scholar] [CrossRef]
- Makizako, H.; Shimada, H.; Tsutsumimoto, K.; Hotta, R.; Nakakubo, S.; Makino, K.; Suzuki, T. Comorbid mild cognitive impairment and depressive symptoms predict future dementia in community older adults: A 24-month follow-up longitudinal study. J. Alzheimer’s Dis. 2016, 54, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Gabryelewicz, T.; Styczynska, M.; Luczywek, E.; Barczak, A.; Pfeffer, A.; Androsiuk, W.; Chodakowska-Zebrowska, M.; Wasiak, B.; Peplonska, B.; Barcikowska, M. The rate of conversion of mild cognitive impairment to dementia: Predictive role of depression. Int. J. Geriatr. Psychiatry A J. Psychiatry Late Life Allied Sci. 2007, 22, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-H.; Cheng, S.-J.; Lin, H.-C.; Lee, C.-Y.; Chou, C.-H. Risk factors for the progression of mild cognitive impairment in different types of neurodegenerative disorders. Behav. Neurol. 2018, 2018, 6929732. [Google Scholar] [CrossRef] [PubMed]
- Mourao, R.J.; Mansur, G.; Malloy-Diniz, L.F.; Castro Costa, E.; Diniz, B.S. Depressive symptoms increase the risk of progression to dementia in subjects with mild cognitive impairment: Systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 2016, 31, 905–911. [Google Scholar] [CrossRef]
- Li, J.-Q.; Tan, L.; Wang, H.-F.; Tan, M.-S.; Tan, L.; Xu, W.; Zhao, Q.-F.; Wang, J.; Jiang, T.; Yu, J.-T. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: A systematic review and meta-analysis of cohort studies. J. Neurol. Neurosurg. Psychiatry 2015, 87, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wang, L.; Zhao, X.; Zhu, B.; Tian, M.; Qin, H. Investigation of risk factors for the conversion of mild cognitive impairment to dementia. Int. J. Neurosci. 2021, 131, 1173–1180. [Google Scholar] [CrossRef]
- Kessing, L.V.; Søndergård, L.; Forman, J.L.; Andersen, P.K. Antidepressants and dementia. J. Affect. Disord. 2009, 117, 24–29. [Google Scholar] [CrossRef]
- Lee, C.W.-S.; Lin, C.-L.; Sung, F.-C.; Liang, J.-A.; Kao, C.-H. Antidepressant treatment and risk of dementia: A population-based, retrospective case-control study. J. Clin. Psychiatry 2016, 77, 961. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Tai, P.-A.; Poly, T.N.; Islam, M.M.; Yang, H.-C.; Wu, C.-C.; Li, Y.-C.J. Increased risk of dementia in patients with antidepressants: A meta-analysis of observational studies. Behav. Neurol. 2018, 2018, 5315098. [Google Scholar] [CrossRef]
- Chan, J.Y.; Yiu, K.K.; Kwok, T.C.; Wong, S.Y.; Tsoi, K.K. Depression and antidepressants as potential risk factors in dementia: A systematic review and meta-analysis of 18 longitudinal studies. J. Am. Med. Dir. Assoc. 2019, 20, 279–286.e1. [Google Scholar] [CrossRef] [PubMed]
- Almeida, O.; Hankey, G.; Yeap, B.; Golledge, J.; Flicker, L. Depression as a modifiable factor to decrease the risk of dementia. Transl. Psychiatry 2017, 7, e1117. [Google Scholar] [CrossRef] [PubMed]
- Richardson, K.; Fox, C.; Maidment, I.; Steel, N.; Loke, Y.K.; Arthur, A.; Myint, P.K.; Grossi, C.M.; Mattishent, K.; Bennett, K. Anticholinergic drugs and risk of dementia: Case-control study. BMJ 2018, 361, k1315. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wang, L.; Guo, Y.; Cao, Z.; Lu, Y.; Qin, H. Study of the risk and preventive factors for progress of mild cognitive impairment to dementia. Am. J. Alzheimer’s Dis. Other Dement.® 2020, 35, 1533317520925324. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Sommerlad, A.; Lyketsos, C.G.; Livingston, G. Modifiable predictors of dementia in mild cognitive impairment: A systematic review and meta-analysis. Am. J. Psychiatry 2015, 172, 323–334. [Google Scholar] [CrossRef]
- Xue, M.; Xu, W.; Ou, Y.; Cao, X.; Tan, M.; Tan, L.; Yu, J. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev. 2019, 55, 100944. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Fang, M.; Pike, J.R.; Lutsey, P.L.; Sharrett, A.R.; Wagenknecht, L.E.; Hughes, T.M.; Seegmiller, J.C.; Gottesman, R.F.; Mosley, T.H. Prediabetes, intervening diabetes and subsequent risk of dementia: The Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 2023, 66, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.D.; Cross, D.J.; Minoshima, S.; Belongia, D.; Watson, G.S.; Craft, S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch. Neurol. 2011, 68, 51–57. [Google Scholar] [CrossRef]
- Vargas-Soria, M.; García-Alloza, M.; Corraliza-Gómez, M. Effects of diabetes on microglial physiology: A systematic review of in vitro, preclinical and clinical studies. J. Neuroinflamm. 2023, 20, 57. [Google Scholar] [CrossRef]
- Brabazon, F.; Bermudez, S.; Shaughness, M.; Khayrullina, G.; Byrnes, K.R. The effects of insulin on the inflammatory activity of BV2 microglia. PLoS ONE 2018, 13, e0201878. [Google Scholar] [CrossRef]
- Haas, C.B.; de Carvalho, A.K.; Muller, A.P.; Eggen, B.J.; Portela, L.V. Insulin activates microglia and increases COX-2/IL-1β expression in young but not in aged hippocampus. Brain Res. 2020, 1741, 146884. [Google Scholar] [CrossRef] [PubMed]
- Harding, H.P.; Ron, D. Endoplasmic reticulum stress and the development of diabetes: A review. Diabetes 2002, 51, S455–S461. [Google Scholar] [CrossRef]
- Lemmer, I.L.; Willemsen, N.; Hilal, N.; Bartelt, A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol. Metab. 2021, 47, 101169. [Google Scholar] [CrossRef]
- Piperi, C.; Adamopoulos, C.; Dalagiorgou, G.; Diamanti-Kandarakis, E.; Papavassiliou, A.G. Crosstalk between Advanced Glycation and Endoplasmic Reticulum Stress: Emerging Therapeutic Targeting for Metabolic Diseases. J. Clin. Endocrinol. Metab. 2012, 97, 2231–2242. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Maity, S. ER stress-sensor proteins and ER-mitochondrial crosstalk—Signaling beyond (ER) stress response. Biomolecules 2021, 11, 173. [Google Scholar] [CrossRef] [PubMed]
- Sebastián, D.; Hernández-Alvarez, M.I.; Segalés, J.; Sorianello, E.; Muñoz, J.P.; Sala, D.; Waget, A.; Liesa, M.; Paz, J.C.; Gopalacharyulu, P. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. USA 2012, 109, 5523–5528. [Google Scholar] [CrossRef]
- De La Monte, S.M. Insulin resistance and Alzheimer’s disease. BMB Rep. 2009, 42, 475. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, L. Normalization of insulin sensitivity with lithium in diabetic rats. Diabetes 1989, 38, 648–652. [Google Scholar] [CrossRef]
- Tabata, I.; Schluter, J.; Gulve, E.A.; Holloszy, J.O. Lithium increases susceptibility of muscle glucose transport to stimulation by various agents. Diabetes 1994, 43, 903–907. [Google Scholar] [CrossRef]
- Ring, D.B.; Johnson, K.W.; Henriksen, E.J.; Nuss, J.M.; Goff, D.; Kinnick, T.R.; Ma, S.T.; Reeder, J.W.; Samuels, I.; Slabiak, T. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 2003, 52, 588–595. [Google Scholar] [CrossRef]
- Lipson, K.L.; Fonseca, S.G.; Ishigaki, S.; Nguyen, L.X.; Foss, E.; Bortell, R.; Rossini, A.A.; Urano, F. Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab. 2006, 4, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Maurer, I.C.; Schippel, P.; Volz, H.P. Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord. 2009, 11, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, R.F.; Wang, Y.; Yuan, P.; Zhou, R.; Li, X.; Alesci, S.; Du, J.; Manji, H.K. Common effects of lithium and valproate on mitochondrial functions: Protection against methamphetamine-induced mitochondrial damage. Int. J. Neuropsychopharmacol. 2009, 12, 805–822. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Ye, Q.; Fu, Y.; Li, X.; Yang, K.; Gao, F.; Zhou, A.; Wei, Y.; Tian, S. Histone deacetylase inhibitors VPA and WT161 ameliorate the pathological features and cognitive impairments of the APP/PS1 Alzheimer’s disease mouse model by regulating the expression of APP secretases. Alzheimer’s Res. Ther. 2024, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Buratti, L.; Balestrini, S.; Altamura, C.; Viticchi, G.; Falsetti, L.; Luzzi, S.; Provinciali, L.; Vernieri, F.; Silvestrini, M. Markers for the risk of progression from mild cognitive impairment to Alzheimer’s disease. J. Alzheimer’s Dis. 2015, 45, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Bande, A.R.; Rao, M.Y.; Aslam, S.M. Study of Non Genetic Risk Profile for Mild Cognitive Impairment in Elderly. JIACM 2022, 23, 25–28. [Google Scholar]
- Xue, H.; Sun, Q.; Liu, L.; Zhou, L.; Liang, R.; He, R.; Yu, H. Risk factors of transition from mild cognitive impairment to Alzheimer’s disease and death: A cohort study. Compr. Psychiatry 2017, 78, 91–97. [Google Scholar] [CrossRef]
- Arvanitakis, Z.; Capuano, A.W.; Leurgans, S.E.; Bennett, D.A.; Schneider, J.A. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: A cross-sectional study. Lancet Neurol. 2016, 15, 934–943. [Google Scholar] [CrossRef]
- Pfrieger, F.W.; Ungerer, N. Cholesterol metabolism in neurons and astrocytes. Prog. Lipid Res. 2011, 50, 357–371. [Google Scholar] [CrossRef]
- Olmastroni, E.; Molari, G.; De Beni, N.; Colpani, O.; Galimberti, F.; Gazzotti, M.; Zambon, A.; Catapano, A.L.; Casula, M. Statin use and risk of dementia or Alzheimer’s disease: A systematic review and meta-analysis of observational studies. Eur. J. Prev. Cardiol. 2022, 29, 804–814. [Google Scholar] [CrossRef]
- Xu, J.; Wang, F.; Zang, C.; Zhang, H.; Niotis, K.; Liberman, A.L.; Stonnington, C.M.; Ishii, M.; Adekkanattu, P.; Luo, Y. Comparing the effects of four common drug classes on the progression of mild cognitive impairment to dementia using electronic health records. Sci. Rep. 2023, 13, 8102. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Qureshi, S.U.; Johnson, M.; Parikh, N.; Schulz, P.E.; Kunik, M.E. Does use of antihypertensive drugs affect the incidence or progression of dementia? A systematic review. Am. J. Geriatr. Pharmacother. 2009, 7, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wang, J.; Ho, L.; Ono, K.; Teplow, D.; Pasinetti, G. Identification of antihypertensive drugs which inhibit amyloid-beta protein oligomerization. J. Alzheimer’s Dis. JAD 2009, 16, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Affleck, A.J.; Sachdev, P.S.; Stevens, J.; Halliday, G.M. Antihypertensive medications ameliorate Alzheimer’s disease pathology by slowing its propagation. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12060. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, R.F.; Albert, M.S.; Alonso, A.; Coker, L.H.; Coresh, J.; Davis, S.M.; Deal, J.A.; McKhann, G.M.; Mosley, T.H.; Sharrett, A.R. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) cohort. JAMA Neurol. 2017, 74, 1246–1254. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.A.; Gottesman, R.F.; Wu, A.; Knopman, D.S.; Gross, A.L.; Mosley, T.H., Jr.; Selvin, E.; Windham, B.G. Systemic inflammation during midlife and cognitive change over 20 years: The ARIC Study. Neurology 2019, 92, e1256–e1267. [Google Scholar] [PubMed]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef]
- Heneka, M.T.; O’Banion, M.K. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol. 2007, 184, 69–91. [Google Scholar] [CrossRef]
- McGeer, P.L.; Rogers, J.; McGeer, E.G. Inflammation, antiinflammatory agents, and Alzheimer’s disease: The last 22 years. J. Alzheimer’s Dis. 2016, 54, 853–857. [Google Scholar] [CrossRef]
- Yip, A.G.; Green, R.C.; Huyck, M.; Cupples, L.A.; Farrer, L.A. Nonsteroidal Anti-Inflammatory Drug Use and Alzheimer’s Disease Risk: The MIRAGE Study. BMC Geriatr. 2005, 5, 2. [Google Scholar] [CrossRef]
- Zandi, P.P.; Anthony, J.C.; Hayden, K.M.; Mehta, K.; Mayer, L.; Breitner, J.C. Reduced incidence of AD with NSAID but not H2 receptor antagonists: The Cache County Study. Neurology 2002, 59, 880–886. [Google Scholar] [CrossRef]
- in’t Veld, B.; Launer, L.; Hoes, A.; Ott, A.; Hofman, A.; Breteler, M.; Stricker, B. NSAIDs and incident Alzheimer’s disease. The Rotterdam Study. Neurobiol. Aging 1998, 19, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Sisodia, S.S.; Vassar, R.J. The gut microbiome in Alzheimer’s disease: What we know and what remains to be explored. Mol. Neurodegener. 2023, 18, 9. [Google Scholar] [CrossRef] [PubMed]
- A Kohler, C.; Maes, M.; Slyepchenko, A.; Berk, M.; Solmi, M.; L Lanctôt, K.; F Carvalho, A. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: Mechanisms and pathophysiological role in Alzheimer’s disease. Curr. Pharm. Des. 2016, 22, 6152–6166. [Google Scholar] [CrossRef] [PubMed]
- Cova, I.; Clerici, F.; Rossi, A.; Cucumo, V.; Ghiretti, R.; Maggiore, L.; Pomati, S.; Galimberti, D.; Scarpini, E.; Mariani, C. Weight loss predicts progression of mild cognitive impairment to Alzheimer’s disease. PLoS ONE 2016, 11, e0151710. [Google Scholar] [CrossRef] [PubMed]
- Cronk, B.B.; Johnson, D.K.; Burns, J.M.; Initiative, A.s.D.N. Body mass index and cognitive decline in mild cognitive impairment. Alzheimer Dis. Assoc. Disord. 2010, 24, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Tchalla, A.E.; Clément, J.-P.; Saulnier, I.; Beaumatin, B.; Lachal, F.; Gayot, C.; Bosetti, A.; Desormais, I.; Perrochon, A.; Preux, P.-M. Predictors of rapid cognitive decline in patients with mild-to-moderate Alzheimer disease: A prospective cohort study with 12-month follow-up performed in memory clinics. Dement. Geriatr. Cogn. Disord. 2018, 45, 56–65. [Google Scholar] [CrossRef]
- Soto, M.E.; Secher, M.; Gillette-Guyonnet, S.; van Kan, G.A.; Andrieu, S.; Nourhashemi, F.; Rolland, Y.; Vellas, B. Weight loss and rapid cognitive decline in community-dwelling patients with Alzheimer’s disease. J. Alzheimer’s Dis. 2012, 28, 647–654. [Google Scholar] [CrossRef]
- Yu, J.; Gattoni-Celli, M.; Zhu, H.; Bhat, N.R.; Sambamurti, K.; Gattoni-Celli, S.; Kindy, M.S. Vitamin D 3-enriched diet correlates with a decrease of amyloid plaques in the brain of AβPP transgenic mice. J. Alzheimer’s Dis. 2011, 25, 295–307. [Google Scholar] [CrossRef]
- Muangpaisan, W.; Petcharat, C.; Srinonprasert, V. Prevalence of potentially reversible conditions in dementia and mild cognitive impairment in a geriatric clinic. Geriatr. Gerontol. Int. 2012, 12, 59–64. [Google Scholar] [CrossRef]
- Blasko, I.; Hinterberger, M.; Kemmler, G.; Jungwirth, S.; Krampla, W.; Leitha, T.; Heinz Tragl, K.; Fischer, P. Conversion from mild cognitive impairment to dementia: Influence of folic acid and vitamin B12 use in the VITA cohort. J. Nutr. Health Aging 2012, 16, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Ravaglia, G.; Forti, P.; Maioli, F.; Martelli, M.; Servadei, L.; Brunetti, N.; Pantieri, G.; Mariani, E. Conversion of mild cognitive impairment to dementia: Predictive role of mild cognitive impairment subtypes and vascular risk factors. Dement. Geriatr. Cogn. Disord. 2005, 21, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Abduljawad, A.A.; Elawad, M.A.; Elkhalifa, M.E.M.; Ahmed, A.; Hamdoon, A.A.E.; Salim, L.H.M.; Ashraf, M.; Ayaz, M.; Hassan, S.S.u.; Bungau, S. Alzheimer’s disease as a major public health concern: Role of dietary saponins in mitigating neurodegenerative disorders and their underlying mechanisms. Molecules 2022, 27, 6804. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Han, Y.; Zheng, Z.; Peng, G.; Liu, P.; Yue, S.; Zhu, S.; Chen, J.; Lv, H.; Shao, L. Altered gut microbial metabolites in amnestic mild cognitive impairment and Alzheimer’s disease: Signals in host–microbe interplay. Nutrients 2021, 13, 228. [Google Scholar] [CrossRef]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, N.; Agis-Balboa, R.C.; Walter, J.; Sananbenesi, F.; Fischer, A. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J. Alzheimer’s Dis. 2011, 26, 187–197. [Google Scholar] [CrossRef]
- Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 2019, 47, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol. Neurodegener. 2020, 15, 30. [Google Scholar] [CrossRef]
- Baloyannis, S.J.; Costa, V.; Michmizos, D. Mitochondrial alterations Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Dement.® 2004, 19, 89–93. [Google Scholar] [CrossRef]
- Huang, L.; Jia, J.; Liu, R. Decreased serum levels of the angiogenic factors VEGF and TGF-β1 in Alzheimer’s disease and amnestic mild cognitive impairment. Neurosci. Lett. 2013, 550, 60–63. [Google Scholar] [CrossRef]
- Mocali, A.; Cedrola, S.; Della Malva, N.; Bontempelli, M.; Mitidieri, V.; Bavazzano, A.; Comolli, R.; Paoletti, F.; La Porta, C. Increased plasma levels of soluble CD40, together with the decrease of TGFβ1, as possible differential markers of Alzheimer disease. Exp. Gerontol. 2004, 39, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Fessel, J. Ineffective levels of transforming growth factors and their receptor account for old age being a risk factor for Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 899–905. [Google Scholar] [CrossRef]
- Caraci, F.; Tascedda, F.; Merlo, S.; Benatti, C.; Spampinato, S.F.; Munafò, A.; Leggio, G.M.; Nicoletti, F.; Brunello, N.; Drago, F. Fluoxetine prevents Aβ1-42-induced toxicity via a paracrine signaling mediated by transforming-growth-factor-β1. Front. Pharmacol. 2016, 7, 389. [Google Scholar] [CrossRef] [PubMed]
- Inestrosa, N.C.; Tapia-Rojas, C.; Cerpa, W.; Cisternas, P.; Zolezzi, J.M. WNT signaling is a key player in Alzheimer’s disease. In Pharmacology of the WNT Signaling System; Springer: Berlin/Heidelberg, Germany, 2021; pp. 357–382. [Google Scholar]
- Tay, L.; Leung, B.; Yeo, A.; Chan, M.; Lim, W.S. Elevations in Serum Dickkopf-1 and disease progression in community-dwelling older adults with mild cognitive impairment and mild-to-moderate Alzheimer’s disease. Front. Aging Neurosci. 2019, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Scali, C.; Caraci, F.; Gianfriddo, M.; Diodato, E.; Roncarati, R.; Pollio, G.; Gaviraghi, G.; Copani, A.; Nicoletti, F.; Terstappen, G.C. Inhibition of Wnt signaling, modulation of Tau phosphorylation and induction of neuronal cell death by DKK1. Neurobiol. Dis. 2006, 24, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; He, G.; Song, F.; Wang, Z.; Liu, X.; Liao, L.; Ni, J.; Silva, M.J.; Long, F. Inducible expression of Wnt7b promotes bone formation in aged mice and enhances fracture healing. Bone Res. 2020, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ding, L.; Kasugai, S. Effect of doxycycline doped bone substitute on vertical bone augmentation on rat calvaria. Dent. Mater. J. 2019, 38, 211–217. [Google Scholar] [CrossRef]
- Gomes, K.d.N.; Alves, A.P.N.N.; Dutra, P.G.P.; Viana, G.S.d.B. Doxycycline induces bone repair and changes in Wnt signalling. Int. J. Oral Sci. 2017, 9, 158–166. [Google Scholar] [CrossRef]
- Liu, L.; Watanabe, N.; Akatsu, H.; Nishimura, M. Neuronal expression of ILEI/FAM3C and its reduction in Alzheimer’s disease. Neuroscience 2016, 330, 236–246. [Google Scholar] [CrossRef]
- Watanabe, N.; Nakano, M.; Mitsuishi, Y.; Hara, N.; Mano, T.; Iwata, A.; Murayama, S.; Suzuki, T.; Ikeuchi, T.; Nishimura, M. Transcriptional downregulation of FAM3C/ILEI in the Alzheimer’s brain. Hum. Mol. Genet. 2022, 31, 122–132. [Google Scholar] [CrossRef]
- Hasegawa, H.; Liu, L.; Tooyama, I.; Murayama, S.; Nishimura, M. The FAM3 superfamily member ILEI ameliorates Alzheimer’s disease-like pathology by destabilizing the penultimate amyloid-β precursor. Nat. Commun. 2014, 5, 3917. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Scafato, E.; Capurso, C.; D’Introno, A.; Colacicco, A.M.; Frisardi, V.; Vendemiale, G.; Baldereschi, M.; Crepaldi, G.; Di Carlo, A. Metabolic syndrome, mild cognitive impairment, and progression to dementia. The Italian Longitudinal Study on Aging. Neurobiol. Aging 2011, 32, 1932–1941. [Google Scholar] [CrossRef] [PubMed]
- Vanhanen, M.; Koivisto, K.; Moilanen, L.; Helkala, E.; Hanninen, T.; Soininen, H.; Kervinen, K.; Kesaniemi, Y.; Laakso, M.; Kuusisto, J. Association of metabolic syndrome with Alzheimer disease: A population-based study. Neurology 2006, 67, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Weldemichael, D.A.; Grossberg, G.T. Circadian rhythm disturbances in patients with Alzheimer’s disease: A review. Int. J. Alzheimer’s Dis. 2010, 2010, 716453. [Google Scholar] [CrossRef] [PubMed]
- Homolak, J.; Mudrovčić, M.; Vukić, B.; Toljan, K. Circadian Rhythm and Alzheimer’s Disease. Med. Sci. 2018, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Tranah, G.J.; Blackwell, T.; Yaffe, K.; Stone, K.L.; Ancoll-israel, S.; Paudel, M.L. Circadian Activity Rhythms and Risk of Incident Dementia and Mild Cognitive Impairment in Older Women. Ann. Neurol. 2011, 70, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Covell, G.E.S.; Dhawan, P.S.; Iannotti, J.K.L.; Hoffman-Snyder, C.R.; Wellik, K.E.; Caselli, R.J.; Woodruff, B.K.; Wingerchuk, D.M.; Demaerschalk, B.M. Disrupted daytime activity and altered sleep-wake patterns may predict transition to mild cognitive impairment or dementia: A critically appraised topic. Neurol. 2012, 18, 426–429. [Google Scholar]
- Posner, A.B.; Tranah, G.J.; Blackwell, T.; Yaffe, K.; Ancoli-Israel, S.; Redline, S.; Leng, Y.; Zeitzer, J.M.; Chen, D.M.; Webber, K.R. Predicting incident dementia and mild cognitive impairment in older women with nonparametric analysis of circadian activity rhythms in the Study of Osteoporotic Fractures. Sleep 2021, 44, zsab119. [Google Scholar] [CrossRef]
- Xiao, Q.; Shadyab, A.H.; Rapp, S.R.; Stone, K.L.; Yaffe, K.; Sampson, J.N.; Chen, J.C.; Hayden, K.M.; Henderson, V.W.; LaCroix, A.Z. Rest-activity rhythms and cognitive impairment and dementia in older women: Results from the Women’s Health Initiative. J. Am. Geriatr. Soc. 2022, 70, 2925–2937. [Google Scholar] [CrossRef]
- Sprecher, K.E.; Koscik, R.L.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Okonkwo, O.C.; Sager, M.A.; Asthana, S.; Johnson, S.C.; Benca, R.M. Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 2017, 89, 445–453. [Google Scholar] [CrossRef]
- Vitiello, M.V.; Poceta, J.S.; Prinz, P.N. Sleep in Alzheimer’s disease and other dementing disorders. Can. J. Psychol./Rev. Can. De Psychol. 1991, 45, 221. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J. Sleep drives metabolite clearance from the adult brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-E.; Lim, M.M.; Bateman, R.J.; Lee, J.J.; Smyth, L.P.; Cirrito, J.R.; Fujiki, N.; Nishino, S.; Holtzman, D.M. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 2009, 326, 1005–1007. [Google Scholar] [CrossRef]
- Lucey, B.P.; Hicks, T.J.; McLeland, J.S.; Toedebusch, C.D.; Boyd, J.; Elbert, D.L.; Patterson, B.W.; Baty, J.; Morris, J.C.; Ovod, V. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann. Neurol. 2018, 83, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.; Blennow, K.; Zetterberg, H.; Cedernaes, J. Effects of acute sleep loss on diurnal plasma dynamics of CNS health biomarkers in young men. Neurology 2020, 94, e1181–e1189. [Google Scholar] [CrossRef] [PubMed]
- Anders, J.J.; Arany, P.R.; Baxter, G.D.; Lanzafame, R.J. Light-Emitting Diode Therapy and Low-Level Light Therapy Are Photobiomodulation Therapy; Mary Ann Liebert, Inc.: Larchmont, NY, USA, 2019; Volume 37, pp. 63–65. [Google Scholar]
- Pan, W.-T.; Liu, P.-M.; Ma, D.; Yang, J.-J. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J. Transl. Med. 2023, 21, 135. [Google Scholar] [CrossRef] [PubMed]
- Stepanov, Y.V.; Golovynska, I.; Zhang, R.; Golovynskyi, S.; Stepanova, L.I.; Gorbach, O.; Dovbynchuk, T.; Garmanchuk, L.V.; Ohulchanskyy, T.Y.; Qu, J. Near-infrared light reduces β-amyloid-stimulated microglial toxicity and enhances survival of neurons: Mechanisms of light therapy for Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 84. [Google Scholar] [CrossRef]
- Bathini, M.; Raghushaker, C.R.; Mahato, K.K. The molecular mechanisms of action of photobiomodulation against neurodegenerative diseases: A systematic review. Cell. Mol. Neurobiol. 2022, 42, 955–971. [Google Scholar] [CrossRef]
- da Luz Eltchechem, C.; Salgado, A.S.I.; Zângaro, R.A.; da Silva Pereira, M.C.; Kerppers, I.I.; da Silva, L.A.; Parreira, R.B. Transcranial LED therapy on amyloid-β toxin 25–35 in the hippocampal region of rats. Lasers Med. Sci. 2017, 32, 749–756. [Google Scholar] [CrossRef]
- Sasso, F.C.; Simeon, V.; Galiero, R.; Caturano, A.; De Nicola, L.; Chiodini, P.; Rinaldi, L.; Salvatore, T.; Lettieri, M.; Nevola, R. The number of risk factors not at target is associated with cardiovascular risk in a type 2 diabetic population with albuminuria in primary cardiovascular prevention. Post-hoc analysis of the NID-2 trial. Cardiovasc. Diabetol. 2022, 21, 235. [Google Scholar] [CrossRef]
- Racsa, P.N.; Booth, T.A.; Chung, L.N.; Dixon, S.W.; Poonawalla, I.B. Association of medication adherence quality measures for diabetes, hypertension, and hyperlipidemia with cognitive decline. J. Fam. Med. Prim. Care 2023, 12, 2667–2675. [Google Scholar] [CrossRef]
Condition | Present at MCI | Present at Dementia. | Treat at Dementia? |
---|---|---|---|
Depression | + | + | +/− ** |
Diabetes | + | + | + |
Hypertension | − | + | + * |
Lipids ↑ | − | + | + |
CRP ↑ | + | + | + |
Weight ↓ | + | + | + |
Wnt ↓ | − | + | + * |
Metabolic synd. | − | + | + * |
Circadian rhythm ↑ | + | + | + |
Causal Element | Human?/Benefit/Refs. | Clinical Trial? |
---|---|---|
Depression | Yes/+/− */[1,7] | No |
Diabetes | Yes/+++/[6,12,14,15] | No |
Insulin resistance | Yes/++/ | No |
Hyperlipidemia | Yes/++/++/[6] | No |
Hypertension | Yes/+ or −/[6,14,15] | No |
Inflammation | Yes/++/[55] | No |
Mitochondria | Yes/++/[78,79,80,81,82,83] | No |
Nutrient deficiency | Yes/++/[79,81] | No |
TFG β | Yes/++/[84,85] | No |
Wnt/catenin-β | Yes/++/[88,89] | No |
Metabolic syndrome | Yes/+/[97,98] | No |
Circadian rhythm | Yes/+++/[99,100,101,102,103] | No |
Underweight | Yes/+++/[52,53,54,55,56] | No |
Vascular abn’s | Yes/++/[6,13,15,38] | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fessel, J. Formulating Treatment to Cure Alzheimer’s Dementia: Approach #2. Int. J. Mol. Sci. 2024, 25, 3524. https://doi.org/10.3390/ijms25063524
Fessel J. Formulating Treatment to Cure Alzheimer’s Dementia: Approach #2. International Journal of Molecular Sciences. 2024; 25(6):3524. https://doi.org/10.3390/ijms25063524
Chicago/Turabian StyleFessel, Jeffrey. 2024. "Formulating Treatment to Cure Alzheimer’s Dementia: Approach #2" International Journal of Molecular Sciences 25, no. 6: 3524. https://doi.org/10.3390/ijms25063524
APA StyleFessel, J. (2024). Formulating Treatment to Cure Alzheimer’s Dementia: Approach #2. International Journal of Molecular Sciences, 25(6), 3524. https://doi.org/10.3390/ijms25063524