The Variety of Mechanosensitive Ion Channels in Retinal Neurons
Abstract
:1. Introduction
2. Properties of MSCs and the MSCs Expressed in Photoreceptors
2.1. MSCs Permeable to K+
2.2. MSCs Permeable to Na+ and Ca2+
3. MSCs in HCs
4. MSCs in BCs
5. MSCs in ACs
6. MSCs in RGCs
6.1. MSCs Permeable to K+ in RGCs
6.2. ENaC and Piezo in RGCs
6.3. TRPVs in RGCs
7. Other Mechanical-Sensitive TRPs in Retinal Neurons
8. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conlon, R.; Saheb, H.; Ahmed, I.I. Glaucoma treatment trends: A review. Can. J. Ophthalmol. 2017, 52, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Aung, T.; Bourne, R.R.; Bron, A.M.; Ritch, R.; Panda-Jonas, S. Glaucoma. Lancet 2017, 390, 2183–2193. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A. Glaucoma. Lancet 2011, 377, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Mufti, O.; Mathew, S.; Harris, A.; Siesky, B.; Burgett, K.M.; Vercellin, A.C.V. Ocular changes in traumatic brain injury: A review. Eur. J. Ophthalmol. 2020, 30, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.N.; Courtie, E.; Bernardo-Colon, A.; Essex, G.; Rex, T.S.; Ahmed, Z.; Blanch, R.J. Assessment of necroptosis in the retina in a repeated primary ocular blast injury mouse model. Exp. Eye Res. 2020, 197, 108102. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.; Patel, D.; Alabi, O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus 2020, 12, e11686. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Caprioli, J. Intraocular Pressure Fluctuation: Is It Important? J. Ophthalmic Vis. Res. 2018, 13, 170–174. [Google Scholar]
- Pang, J.J. Roles of the ocular pressure, pressure-sensitive ion channel, and elasticity in pressure-induced retinal diseases. Neural Regen. Res. 2021, 16, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Montell, C. Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biochem. Biophys. Res. Commun. 2015, 460, 22–25. [Google Scholar] [CrossRef]
- Fang, X.Z.; Zhou, T.; Xu, J.Q.; Wang, Y.X.; Sun, M.M.; He, Y.J.; Pan, S.W.; Xiong, W.; Peng, Z.K.; Gao, X.H.; et al. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci. 2021, 11, 13. [Google Scholar] [CrossRef]
- Martinac, B. Mechanosensitive ion channels: Molecules of mechanotransduction. J. Cell Sci. 2004, 117, 2449–2460. [Google Scholar] [CrossRef]
- Piskova, T.; Kozyrina, A.N.; Di, R.J. Mechanobiological implications of age-related remodelling in the outer retina. Biomater. Adv. 2023, 147, 213343. [Google Scholar] [CrossRef]
- Shah, K.R.; Guan, X.; Yan, J. Structural and Functional Coupling of Calcium-Activated BK Channels and Calcium-Permeable Channels within Nanodomain Signaling Complexes. Front. Physiol. 2022, 12, 796540. [Google Scholar] [CrossRef]
- Fink, M.; Lesage, F.; Duprat, F.; Heurteaux, C.; Reyes, R.; Fosset, M.; Lazdunski, M. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J. 1998, 17, 3297–3308. [Google Scholar] [CrossRef]
- Pang, J.J.; Gao, F.; Wu, S.M. Generators of Pressure-Evoked Currents in Vertebrate Outer Retinal Neurons. Cells 2021, 10, 1288. [Google Scholar] [CrossRef]
- Noel, J.; Sandoz, G.; Lesage, F. Molecular regulations governing TREK and TRAAK channel functions. Channels 2011, 5, 402–409. [Google Scholar] [CrossRef]
- Sorum, B.; Rietmeijer, R.A.; Gopakumar, K.; Adesnik, H.; Brohawn, S.G. Ultrasound activates mechanosensitive TRAAK K(+) channels through the lipid membrane. Proc. Natl. Acad. Sci. USA 2021, 118, e2006980118. [Google Scholar] [CrossRef]
- Coste, B.; Murthy, S.E.; Mathur, J.; Schmidt, M.; Mechioukhi, Y.; Delmas, P.; Patapoutian, A. Piezo1 ion channel pore properties are dictated by C-terminal region. Nat. Commun. 2015, 6, 7223. [Google Scholar] [CrossRef]
- Gottlieb, P.A. A Tour de Force: The Discovery, Properties, and Function of Piezo Channels. Curr. Top. Membr. 2017, 79, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.R.; Penton, D.; Peyronnet, R.; Arhatte, M.; Moro, C.; Picard, N.; Kurt, B.; Patel, A.; Honore, E.; Demolombe, S. Piezo1-dependent regulation of urinary osmolarity. Pflugers Arch. 2016, 468, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Ridone, P.; Vassalli, M.; Martinac, B. Piezo1 mechanosensitive channels: What are they and why are they important. Biophys. Rev. 2019, 11, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Barbeau, S.; Gilbert, G.; Cardouat, G.; Baudrimont, I.; Freund-Michel, V.; Guibert, C.; Marthan, R.; Vacher, P.; Quignard, J.F.; Ducret, T. Mechanosensitivity in Pulmonary Circulation: Pathophysiological Relevance of Stretch-Activated Channels in Pulmonary Hypertension. Biomolecules 2021, 11, 1389. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.; Turner, N.A. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021, 10, 990. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, M.; Maejima, S.; Yoshie, S.; Kubo, Y.; Konno, N.; Joss, J.M. The epithelial sodium channel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Proc. Biol. Sci. 2012, 279, 4795–4802. [Google Scholar] [CrossRef]
- Shabbir, W.; Topcagic, N.; Aufy, M.; Oz, M. CRISPR/Cas9 Mediated Knock Down of δ-ENaC Blunted the TNF-Induced Activation of ENaC in A549 Cells. Int. J. Mol. Sci. 2021, 22, 1858. [Google Scholar] [CrossRef] [PubMed]
- Lemmens-Gruber, R.; Tzotzos, S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int. J. Mol. Sci. 2023, 24, 7775. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Rosen, T.A.; Tominaga, M.; Brake, A.J.; Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 1999, 398, 436–441. [Google Scholar] [CrossRef] [PubMed]
- McGahon, M.K.; FernÃ, J.A.; Dash, D.P.; McKee, J.; Simpson, D.A.; Zholos, A.V.; McGeown, J.G.; Curtis, T.M. TRPV2 Channels Contribute to Stretch-Activated Cation Currents and Myogenic Constriction in Retinal Arterioles. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5637–5647. [Google Scholar] [CrossRef]
- Muraki, K.; Iwata, Y.; Katanosaka, Y.; Ito, T.; Ohya, S.; Shigekawa, M.; Imaizumi, Y. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 2003, 93, 829–838. [Google Scholar] [CrossRef]
- Suzuki, M.; Mizuno, A.; Kodaira, K.; Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 2003, 278, 22664–22668. [Google Scholar] [CrossRef]
- Gao, F.; Yang, Z.; Jacoby, R.A.; Wu, S.M.; Pang, J.J. The expression and function of TRPV4 channels in primate retinal ganglion cells and bipolar cells. Cell Death.Dis. 2019, 10, 364–1576. [Google Scholar] [CrossRef]
- Nilius, B.; Vriens, J.; Prenen, J.; Droogmans, G.; Voets, T. TRPV4 calcium entry channel: A paradigm for gating diversity. Am. J. Physiol. Cell Physiol. 2004, 286, C195–C205. [Google Scholar] [CrossRef] [PubMed]
- Strotmann, R.; Harteneck, C.; Nunnenmacher, K.; Schultz, G.; Plant, T.D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2000, 2, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.S.; Yu, S.Q.; Premkumar, L.S. Modulation of transient receptor potential Vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol. Pain 2009, 5, 5. [Google Scholar] [CrossRef]
- O’Neil, R.G.; Heller, S. The mechanosensitive nature of TRPV channels. Pflugers Arch. 2005, 451, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Kashio, M.; Tominaga, M. TRP channels in thermosensation. Curr. Opin. Neurobiol. 2022, 75, 102591. [Google Scholar] [CrossRef]
- Liao, M.; Cao, E.; Julius, D.; Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 2013, 504, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Mugo, A.; Chou, R.; Chin, F.; Liu, B.; Jiang, Q.X.; Qin, F. A suicidal mechanism for the exquisite temperature sensitivity of TRPV1. Proc. Natl. Acad. Sci. USA 2023, 120, e2300305120. [Google Scholar] [CrossRef]
- Lawson, J.J.; McIlwrath, S.L.; Woodbury, C.J.; Davis, B.M.; Koerber, H.R. TRPV1 unlike TRPV2 is restricted to a subset of mechanically insensitive cutaneous nociceptors responding to heat. J. Pain 2008, 9, 298–308. [Google Scholar] [CrossRef]
- Canales, C.B.; Mayor, R. Mechanosensitive ion channels in cell migration. Cells Dev. 2021, 166, 203683. [Google Scholar] [CrossRef]
- Vangeel, L.; Voets, T. Transient Receptor Potential Channels and Calcium Signaling. Cold Spring Harb. Perspect. Biol. 2019, 11, a035048. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.H.; Kang, E.Y.; Lin, P.H.; Wu, P.L.; Sachs, J.A.; Wang, N.K. The Value of Electroretinography in Identifying Candidate Genes for Inherited Retinal Dystrophies: A Diagnostic Guide. Diagnostics 2023, 13, 3041. [Google Scholar] [CrossRef] [PubMed]
- Kurtenbach, A.; Kramer, S.; Strasser, T.; Zrenner, E.; Langrova, H. The importance of electrode position in visual electrophysiology. Doc. Ophthalmol. 2017, 134, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.-J.; Gao, F.; Wu, S.M. Dual-cell patch-clamp recording revealed a mechanism for a ribbon synapse to process both digital and analog inputs and outputs. Front. Cell Neurosci. 2021, 15, 722533. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.J.; Gao, F.; Lem, J.; Bramblett, D.E.; Paul, D.L.; Wu, S.M. Direct rod input to cone BCs and direct cone input to rod BCs challenge the traditional view of mammalian BC circuitry. Proc. Natl. Acad. Sci. USA 2010, 107, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.W.; Slaughter, M.M. Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse. J. Neurosci. 2005, 25, 7660–7668. [Google Scholar] [CrossRef] [PubMed]
- Pelucchi, B.; Grimaldi, A.; Moriondo, A. Vertebrate rod photoreceptors express both BK and IK calcium-activated potassium channels, but only BK channels are involved in receptor potential regulation. J. Neurosci. Res. 2008, 86, 194–201. [Google Scholar] [CrossRef]
- Nagai, N.; Koyanagi, E.; Izumida, Y.; Liu, J.; Katsuyama, A.; Kaji, H.; Nishizawa, M.; Osumi, N.; Kondo, M.; Terasaki, H.; et al. Long-Term Protection of Genetically Ablated Rabbit Retinal Degeneration by Sustained Transscleral Unoprostone Delivery. Investig. Ophthalmol.Vis. Sci. 2016, 57, 6527–6538. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Chi, S.; Su, X.; Naruse, K.; Sokabe, M. Activation of a mechanosensitive BK channel by membrane stress created with amphipaths. Mol. Membr. Biol. 2005, 22, 519–527. [Google Scholar] [CrossRef]
- Wawrzkiewicz-Jalowiecka, A.; Dworakowska, B.; Grzywna, Z.J. The temperature dependence of the BK channel activity—Kinetics, thermodynamics, and long-range correlations. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1805–1814. [Google Scholar] [CrossRef]
- Wang, L.; Shi, K.P.; Li, H.; Huang, H.; Wu, W.B.; Cai, C.S.; Zhang, X.T.; Zhu, X.B. Activation of the TRAAK two-pore domain potassium channels in rd1 mice protects photoreceptor cells from apoptosis. Int. J. Ophthalmol. 2019, 12, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; Foster, R.G.; Peirson, S.N.; Hankins, M.W. Expression and localisation of two-pore domain (K2P) background leak potassium ion channels in the mouse retina. Sci. Rep. 2017, 7, 46085. [Google Scholar] [CrossRef] [PubMed]
- McCoull, D.; Veale, E.L.; Walsh, Y.; Byrom, L.; Avkiran, T.; Large, J.M.; Vaitone, E.; Gaffey, F.; Jerman, J.; Mathie, A.; et al. Aprepitant is a novel, selective activator of the K2P channel TRAAK. Biochem. Biophys. Res. Commun. 2022, 588, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Yu, B. Recent advance and possible future in TREK-2: A two-pore potassium channel may involved in the process of NPP, brain ischemia and memory impairment. Med. Hypotheses 2008, 70, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Krizaj, D.; Cordeiro, S.; Strau, O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog. Retin. Eye Res. 2023, 92, 101114. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.J.; Yu, Y.; Yang, J.Y.; Li, J.J.; Zhu, J.Y.; Vieira, J.A.C.; Jiang, Q. Involvement of transient receptor potential channels in ocular diseases: A narrative review. Ann. Transl. Med. 2022, 10, 839–6145. [Google Scholar] [CrossRef] [PubMed]
- Montell, C. The TRP superfamily of cation channels. Sci. STKE 2005, 2005, re3. [Google Scholar] [CrossRef] [PubMed]
- Nilius, B.; Szallasi, A. Transient receptor potential channels as drug targets: From the science of basic research to the art of medicine. Pharmacol. Rev. 2014, 66, 676–814. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, J.C.; Wensel, T.G. TRP channel gene expression in the mouse retina. Vision Res. 2011, 51, 2440–2452. [Google Scholar] [CrossRef]
- Yazulla, S.; Studholme, K.M. Vanilloid receptor like 1 (VRL1) immunoreactivity in mammalian retina: Colocalization with somatostatin and purinergic P2X1 receptors. J. Comp. Neurol. 2004, 474, 407–418. [Google Scholar] [CrossRef]
- Yarishkin, O.; Phuong, T.T.T.; Lakk, M.; Krizaj, D. TRPV4 Does Not Regulate the Distal Retinal Light Response. Adv. Exp. Med. Biol. 2018, 1074, 553–560. [Google Scholar] [CrossRef]
- Jo, A.O.; Lakk, M.; Rudzitis, C.N.; Krizaj, D. TRPV4 and TRPC1 channels mediate the response to tensile strain in mouse Muller cells. Cell Calcium. 2022, 104, 102588. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, Y.; Zhang, S.; Sun, X.; Wu, J. TRPV4-induced Muller cell gliosis and TNF-α elevation-mediated retinal ganglion cell apoptosis in glaucomatous rats via JAK2/STAT3/NF-κB pathway. J. Neuroinflamm. 2021, 18, 271–02315. [Google Scholar] [CrossRef]
- Redmon, S.N.; Yarishkin, O.; Lakk, M.; Jo, A.; Mustafic, E.; Tvrdik, P.; Krizaj, D. TRPV4 channels mediate the mechanoresponse in retinal microglia. Glia 2021, 69, 1563–1582. [Google Scholar] [CrossRef]
- Taylor, L.; Arner, K.; Ghosh, F. Specific inhibition of TRPV4 enhances retinal ganglion cell survival in adult porcine retinal explants. Exp. Eye Res. 2016, 154, 10–21. [Google Scholar] [CrossRef]
- Matsumoto, H.; Sugio, S.; Seghers, F.; Krizaj, D.; Akiyama, H.; Ishizaki, Y.; Gailly, P.; Shibasaki, K. Retinal Detachment-Induced Muller Glial Cell Swelling Activates TRPV4 Ion Channels and Triggers Photoreceptor Death at Body Temperature. J. Neurosci. 2018, 38, 8745–8758. [Google Scholar] [CrossRef]
- Liedtke, W.; Choe, Y.; Marti-Renom, M.A.; Bell, A.M.; Denis, C.S.; Sali, A.; Hudspeth, A.J.; Friedman, J.M.; Heller, S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000, 103, 525–535. [Google Scholar] [CrossRef]
- Fernández-Carvajal, A.; Fernández-Ballester, G.; González-Muñiz, R.A. Ferrer-Montiel Chapter 2 Pharmacology of TRP Channels. In TRP Channels in Sensory Transduction; Madrid, R., Bacigalupo, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 41–50. [Google Scholar]
- Conde, J.; Pumroy, R.A.; Baker, C.; Rodrigues, T.; Guerreiro, A.; Sousa, B.B.; Marques, M.C.; de Almeida, B.P.; Lee, S.; Leites, E.P.; et al. Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression. ACS Cent. Sci. 2021, 7, 868–881. [Google Scholar] [CrossRef]
- Sawamura, S.; Shirakawa, H.; Nakagawa, T.; Mori, Y.Y.; Kaneko, S. TRP Channels in the Brain: What Are They There For? In Neurobiology of TRP Channels; Emir, T.L.R., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ma, L.; Liu, X.; Liu, Q.; Jin, S.; Chang, H.; Liu, H. The Roles of Transient Receptor Potential Ion Channels in Pathologies of Glaucoma. Front. Physiol. 2022, 13, 806786. [Google Scholar] [CrossRef]
- Dosey, T.L.; Wang, Z.; Fan, G.; Zhang, Z.; Serysheva, I.I.; Chiu, W.; Wensel, T.G. Structures of TRPV2 in distinct conformations provide insight into role of the pore turret. Nat. Struct. Mol. Biol. 2019, 26, 40–49. [Google Scholar] [CrossRef]
- Huynh, K.W.; Cohen, M.R.; Jiang, J.; Samanta, A.; Lodowski, D.T.; Zhou, Z.H.; Moiseenkova-Bell, V.Y. Structure of the full-length TRPV2 channel by cryo-EM. Nat. Commun. 2016, 7, 11130. [Google Scholar] [CrossRef]
- Canessa, C.M.; Schild, L.; Buell, G.; Thorens, B.; Gautschi, I.; Horisberger, J.D.; Rossier, B.C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994, 367, 463–467. [Google Scholar] [CrossRef]
- Brockway, L.M.; Benos, D.J.; Keyser, K.T.; Kraft, T.W. Blockade of amiloride-sensitive sodium channels alters multiple components of the mammalian electroretinogram. Vis. Neurosci. 2005, 22, 143–151. [Google Scholar] [CrossRef]
- Aufy, M.; Hussein, A.M.; Stojanovic, T.; Studenik, C.R.; Kotob, M.H. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications. Int. J. Mol. Sci. 2023, 24, 17563. [Google Scholar] [CrossRef]
- Schmid, B.; Kredel, M.; Ullrich, R.; Krenn, K.; Lucas, R.; Markstaller, K.; Fischer, B.; Kranke, P.; Meybohm, P.; Zwißler, B.; et al. Safety and preliminary efficacy of sequential multiple ascending doses of solnatide to treat pulmonary permeability edema in patients with moderate-to-severe ARDS-a randomized, placebo-controlled, double-blind trial. Trials 2021, 22, 643. [Google Scholar] [CrossRef]
- Gottlieb, P.A.; Sachs, F. Piezo1: Properties of a cation selective mechanical channel. Channels 2012, 6, 214–219. [Google Scholar] [CrossRef]
- Zhu, Y.; Garcia-Sanchez, J.; Dalal, R.; Sun, Y.; Kapiloff, M.S.; Goldberg, J.L.; Liu, W.W. Differential expression of PIEZO1 and PIEZO2 mechanosensitive channels in ocular tissues implicates diverse functional roles. Exp. Eye Res. 2023, 236, 109675. [Google Scholar] [CrossRef]
- Bocchero, U.; Falleroni, F.; Mortal, S.; Li, Y.; Cojoc, D.; Lamb, T.; Torre, V. Mechanosensitivity is an essential component of phototransduction in vertebrate rods. PLoS Biol. 2020, 18, e3000750. [Google Scholar] [CrossRef]
- Boyle, K.C.; Chen, Z.C.; Ling, T.; Pandiyan, V.P.; Kuchenbecker, J.; Sabesan, R.; Palanker, D. Mechanisms of Light-Induced Deformations in Photoreceptors. Biophys. J. 2020, 119, 1481–1488. [Google Scholar] [CrossRef]
- Lu, Y.; Benedetti, J.; Yao, X. Light-Induced Length Shrinkage of Rod Photoreceptor Outer Segments. Transl. Vis. Sci. Technol. 2018, 7, 29. [Google Scholar] [CrossRef]
- Pang, J.J.; Yang, Z.; Jacoby, R.A.; Wu, S.M. Cone synapses in mammalian retinal rod bipolar cells. J. Comp. Neurol. 2018, 526, 1896–1909. [Google Scholar] [CrossRef]
- Sun, X.; Hirano, A.A.; Brecha, N.C.; Barnes, S. Calcium-activated BK(Ca) channels govern dynamic membrane depolarizations of horizontal cells in rodent retina. J. Physiol. 2017, 595, 4449–4465. [Google Scholar] [CrossRef]
- Burrone, J.; Lagnado, L. Electrical resonance and Ca2+ influx in the synaptic terminal of depolarizing bipolar cells from the goldfish retina. J. Physiol. 1997, 505, 571–584. [Google Scholar] [CrossRef]
- Sakaba, T.; Ishikane, H.; Tachibana, M. Ca2+ -activated K+ current at presynaptic terminals of goldfish retinal bipolar cells. Neurosci. Res. 1997, 27, 219–228. [Google Scholar] [CrossRef]
- Tanimoto, N.; Sothilingam, V.; Euler, T.; Ruth, P.; Seeliger, M.W.; Schubert, T. BK channels mediate pathway-specific modulation of visual signals in the in vivo mouse retina. J. Neurosci. 2012, 32, 4861–4866. [Google Scholar] [CrossRef]
- Sausbier, M.; Hu, H.; Arntz, C.; Feil, S.; Kamm, S.; Adelsberger, H.; Sausbier, U.; Sailer, C.A.; Feil, R.; Hofmann, F.; et al. Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc. Natl. Acad. Sci. USA 2004, 101, 9474–9478. [Google Scholar] [CrossRef]
- DeMar, J.; Sharrow, K.; Hill, M.; Berman, J.; Oliver, T.; Long, J. Effects of Primary Blast Overpressure on Retina and Optic Tract in Rats. Front. Neurol. 2016, 7, 59. [Google Scholar] [CrossRef]
- Zhu, Y.; Howard, J.T.; Edsall, P.R.; Morris, R.B.; Lund, B.J.; Cleland, J.M. Blast Exposure Induces Ocular Functional Changes with Increasing Blast Over-pressures in a Rat Model. Curr. Eye Res. 2019, 44, 770–780. [Google Scholar] [CrossRef]
- Naguib, S.; Bernardo-Colon, A.; Cencer, C.; Gandra, N.; Rex, T.S. Galantamine protects against synaptic, axonal, and vision deficits in experimental neurotrauma. Neurobiol. Dis. 2019, 134, 104695. [Google Scholar] [CrossRef]
- Agostinone, J.; Di, P.A. Retinal ganglion cell dendrite pathology and synapse loss: Implications for glaucoma. Prog. Brain Res. 2015, 220, 199–216. [Google Scholar]
- El-Danaf, R.N.; Huberman, A.D. Characteristic patterns of dendritic remodeling in early-stage glaucoma: Evidence from genetically identified retinal ganglion cell types. J. Neurosci. 2015, 35, 2329–2343. [Google Scholar] [CrossRef]
- Berry, R.H.; Qu, J.; John, S.W.; Howell, G.R.; Jakobs, T.C. Synapse Loss and Dendrite Remodeling in a Mouse Model of Glaucoma. PLoS ONE 2015, 10, e0144341. [Google Scholar] [CrossRef]
- Park, H.Y.; Kim, J.H.; Park, C.K. Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Mol. Brain 2014, 7, 53. [Google Scholar] [CrossRef]
- Allen, R.S.; Motz, C.T.; Feola, A.; Chesler, K.C.; Haider, R.; Ramachandra, R.S.; Skelton, L.A.; Fliesler, S.J.; Pardue, M.T. Long-Term Functional and Structural Consequences of Primary Blast Overpressure to the Eye. J. Neurotrauma 2018, 35, 2104–2116. [Google Scholar] [CrossRef]
- Bricker-Anthony, C.; Hines-Beard, J.; Rex, T.S. Molecular changes and vision loss in a mouse model of closed-globe blast trauma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4853–4862. [Google Scholar] [CrossRef]
- North, R.V.; Jones, A.L.; Drasdo, N.; Wild, J.M.; Morgan, J.E. Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1216–1222. [Google Scholar] [CrossRef]
- Frankfort, B.J.; Khan, A.K.; Tse, D.Y.; Chung, I.; Pang, J.J.; Yang, Z.; Gross, R.L.; Wu, S.M. Elevated intraocular pressure causes inner retinal dysfunction before cell loss in a mouse model of experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 2013, 54, 762–770. [Google Scholar] [CrossRef]
- Shen, Y.; Luo, X.; Liu, S.; Shen, Y.; Nawy, S.; Shen, Y. Rod bipolar cells dysfunction occurs before ganglion cells loss in excitotoxin-damaged mouse retina. Cell Death Dis. 2019, 10, 905. [Google Scholar] [CrossRef]
- Noailles, A.; Kutsyr, O.; Mayordomo-Febrer, A.; Lax, P.; López-Murcia, M.; Sanz-González, S.M.; Pinazo-Durán, M.D.; Cuenca, N. Sodium Hyaluronate-Induced Ocular Hypertension in Rats Damages the Direction-Selective Circuit and Inner/Outer Retinal Plexiform Layers. Investig. Ophthalmol. Vis. Sci. 2022, 63, 2. [Google Scholar] [CrossRef]
- Xiong, W.H.; Pang, J.J.; Pennesi, M.E.; Duvoisin, R.M.; Wu, S.M.; Morgans, C.W. The Effect of PKCalpha on the Light Response of Rod Bipolar Cells in the Mouse Retina. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4961–4974. [Google Scholar] [CrossRef]
- Baratchi, S.; Keov, P.; Darby, W.G.; Lai, A.; Khoshmanesh, K.; Thurgood, P.; Vahidi, P.; Ejendal, K.; McIntyre, P. TRPV, T.1016790A Regulates the Membrane Expression of TRPV4 Channels. Front. Pharmacol. 2019, 10, 6. [Google Scholar] [CrossRef]
- Xu, F.; Satoh, E.; Iijima, T. Protein kinase C-mediated Ca2+ entry in HEK 293 cells transiently expressing human TRPV4. Br. J. Pharmacol. 2003, 140, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Qu, L.; Wang, S.; Kim, M.; Bennett, D.; Ro, J.; Caterina, M.J.; Chung, M.K. Phosphorylation of TRPV1 S801 Contributes to Modality-Specific Hyperalgesia in Mice. J. Neurosci. 2019, 39, 9954–9966. [Google Scholar] [CrossRef] [PubMed]
- Rampino, M.A.; Nawy, S.A. Relief of Mg2+-dependent inhibition of TRPM1 by PKCα at the rod bipolar cell synapse. J. Neurosci. 2011, 31, 13596–13603. [Google Scholar] [CrossRef]
- Daneva, Z.; Ottolini, M.; Chen, Y.L.; Klimentova, E.; Kuppusamy, M.; Shah, S.A.; Minshall, R.D.; Seye, C.I.; Laubach, V.E.; Isakson, B.E.; et al. Endothelial pannexin 1-TRPV4 channel signaling lowers pulmonary arterial pressure in mice. Elife 2021, 10, e67777. [Google Scholar] [CrossRef]
- Mitra, P.; Slaughter, M.M. Mechanism of generation of spontaneous miniature outward currents (SMOCs) in retinal amacrine cells. J. Gen. Physiol. 2002, 119, 355–372. [Google Scholar] [CrossRef]
- Grimes, W.N.; Li, W.; ChÃ, A.E.; Diamond, J.S. BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina. Nat. Neurosci. 2009, 12, 585–592. [Google Scholar] [CrossRef]
- Oda, M.; Yamamoto, H.; Matsumoto, H.; Ishizaki, Y.; Shibasaki, K. TRPC5 regulates axonal outgrowth in developing retinal ganglion cells. Lab. Investig. 2020, 100, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Ford, K.J.; Arroyo, D.A.; Kay, J.N.; Lloyd, E.E.; Bryan, R.M., Jr.; Sanes, J.R.; Feller, M.B. A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells. J. Neurophysiol. 2013, 109, 2250–2259. [Google Scholar] [CrossRef]
- Dyka, F.M.; May, C.A.; Enz, R. Subunits of the epithelial sodium channel family are differentially expressed in the retina of mice with ocular hypertension. J. Neurochem. 2005, 94, 120–128. [Google Scholar] [CrossRef]
- Krueger, B.; Schlotzer-Schrehardt, U.; Haerteis, S.; Zenkel, M.; Chankiewitz, V.E.; Amann, K.U.; Kruse, F.E.; Korbmacher, C. Four subunits (αβγδ) of the epithelial sodium channel (ENaC) are expressed in the human eye in various locations. Investig. Ophthalmol. Vis. Sci. 2012, 53, 596–604. [Google Scholar] [CrossRef]
- Zimov, S.; Yazulla, S. Localization of vanilloid receptor 1 (TRPV1/VR1)-like immunoreactivity in goldfish and zebrafish retinas: Restriction to photoreceptor synaptic ribbons. J. Neurocytol. 2004, 33, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Ryskamp, D.A.; Witkovsky, P.; Barabas, P.; Huang, W.; Koehler, C.; Akimov, N.P.; Lee, S.H.; Chauhan, S.; Xing, W.; Renteria, R.C.; et al. The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J. Neurosci. 2011, 31, 7089–7101. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Sanchez, L.; de Sevilla Muller, L.P.; Brecha, N.C.; Cuenca, N. Loss of outer retinal neurons and circuitry alterations in the DBA/2J mouse. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6059–6072. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.U.; Neuhardt, T.; May, A.C.; Martus, P.; Maag, K.P.; Brodie, S.; Lutjen-Drecoll, E.; Podos, S.M.; Mittag, T. Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1258–1265. [Google Scholar]
- Pang, J.J.; Frankfort, B.J.; Gross, R.L.; Wu, S.M. Elevated intraocular pressure decreases response sensitivity of inner retinal neurons in experimental glaucoma mice. Proc. Natl. Acad. Sci. USA 2015, 112, 2593–2598. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.; Rodriguez, F.D.; Sharma, S.C.; Vecino, E. Immunohistochemical changes in rat retinas at various time periods of elevated intraocular pressure. Mol. Vis. 2009, 15, 2696–2709. [Google Scholar] [PubMed]
- Moon, J.I.; Kim, I.B.; Gwon, J.S.; Park, M.H.; Kang, T.H.; Lim, E.J.; Choi, K.R.; Chun, M.H. Changes in retinal neuronal populations in the DBA/2J mouse. Cell Tissue Res. 2005, 320, 51–59. [Google Scholar] [CrossRef]
- Akopian, A.; Kumar, S.; Ramakrishnan, H.; Viswanathan, S.; Bloomfield, S.A. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. J. Comp. Neurol. 2019, 527, 159–173. [Google Scholar] [CrossRef]
- Moreno, M.C.; de Zavalía, N.; Sande, P.; Jaliffa, C.O.; Fernandez, D.C.; Sarmiento, M.I.K.; Rosenstein, R.E. Effect of ocular hypertension on retinal GABAergic activity. Neurochem. Int. 2008, 52, 675–682. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Z.; Han, J.; Xue, J.; Liu, L.; Lin, J.; Wu, C.; Zhang, Q.; Wu, S.; Liu, C.; et al. Increased Mobile Zinc Regulates Retinal Ganglion Cell Survival via Activating Mitochondrial OMA1 and Integrated Stress Response. Antioxidants 2022, 11, 2001. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Drews, A.; Rizun, O.; Wagner, T.F.; Lis, A.; Mannebach, S.; Plant, S.; Portz, M.; Meissner, M.; Philipp, S.E.; et al. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J. Biol. Chem. 2011, 286, 12221–12233. [Google Scholar] [CrossRef] [PubMed]
- Henne, J.; Jeserich, G. Maturation of spiking activity in trout retinal ganglion cells coincides with upregulation of Kv3.1- and BK-related potassium channels. J. Neurosci. Res. 2004, 75, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Y.; Robinson, D.W.; Chalupa, L.M. Calcium-activated potassium conductances in retinal ganglion cells of the ferret. J. Neurophysiol. 1998, 79, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Nemargut, J.P.; Zhu, J.; Savoie, B.T.; Wang, G.Y. Differential effects of charybdotoxin on the activity of retinal ganglion cells in the dark- and light-adapted mouse retina. Vision Res. 2009, 49, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Reyes, R.; Lauritzen, I.; Lesage, F.; Ettaiche, M.; Fosset, M.; Lazdunski, M. Immunolocalization of the arachidonic acid and mechanosensitive baseline traak potassium channel in the nervous system. Neuroscience 2000, 95, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Garaycochea, J.; Slaughter, M.M. GABAB receptors enhance excitatory responses in isolated rat retinal ganglion cells. J. Physiol. 2016, 594, 5543–5554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.T.; Xu, Z.; Shi, K.P.; Guo, D.L.; Li, H.; Wang, L.; Zhu, X.B. Elevated expression of TREK-TRAAK K(2P) channels in the retina of adult rd1 mice. Int. J. Ophthalmol. 2019, 12, 924–929. [Google Scholar] [PubMed]
- Wen, X.; Liao, P.; Luo, Y.; Yang, L.; Yang, H.; Liu, L.; Jiang, R. Tandem pore domain acid-sensitive K channel 3 (TASK-3) regulates visual sensitivity in healthy and aging retina. Sci. Adv. 2022, 8, eabn8785. [Google Scholar] [CrossRef]
- Coste, B.; Xiao, B.; Santos, J.S.; Syeda, R.; Grandl, J.; Spencer, K.S.; Kim, S.E.; Schmidt, M.; Mathur, J.; Dubin, A.E.; et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 2012, 483, 176–181. [Google Scholar] [CrossRef]
- Choi, H.J.; Sun, D.; Jakobs, T.C. Astrocytes in the optic nerve head express putative mechanosensitive channels. Mol. Vis. 2015, 21, 749–766. [Google Scholar] [PubMed]
- Morozumi, W.; Inagaki, S.; Iwata, Y.; Nakamura, S.; Hara, H.; Shimazawa, M. Piezo channel plays a part in retinal ganglion cell damage. Exp. Eye Res. 2019, 191, 107900. [Google Scholar] [CrossRef]
- Harraz, O.F.; Klug, N.R.; Senatore, A.J.; Hill-Eubanks, D.C.; Nelson, M.T. Piezo1 Is a Mechanosensor Channel in Central Nervous System Capillaries. Circ. Res. 2022, 130, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Lan, C.; Gu, Z.; Tan, Q.; Xiang, X.; Zhou, H.; Liao, X. The Mechanosensitive Piezo1 Channel Mediates Mechanochemical Transmission in Myopic Eyes. Investig. Ophthalmol. Vis. Sci. 2023, 64, 1. [Google Scholar] [CrossRef] [PubMed]
- Baxter, S.L.; Keenan, W.T.; Athanas, A.J.; Proudfoot, J.A.; Zangwill, L.M.; Ayyagari, R.; Liebmann, J.M.; Girkin, C.A.; Patapoutian, A.; Weinreb, R.N. Investigation of associations between Piezo1 mechanoreceptor gain-of-function variants and glaucoma-related phenotypes in humans and mice. Sci. Rep. 2020, 10, 19013–76026. [Google Scholar] [CrossRef]
- Pang, J.J.; Wu, S.M. Ocular Pressure-Volume Relationship and Ganglion Cell Death in Glaucoma. OBM Neurobiol. 2021, 5, 10. [Google Scholar] [CrossRef]
- Pang, J.J.; Wu, S.M. Retinal Ganglion Cell Death is correlated with Eyeball Expansion in Mammals. J. Ophthalmol. 2014, 1, 1–5. [Google Scholar]
- Zhang, Y.; Daday, C.; Gu, R.X.; Cox, C.D.; Martinac, B.; de Groot, B.L.; Walz, T. Visualization of the mechanosensitive ion channel MscS under membrane tension. Nature 2021, 590, 509–514. [Google Scholar] [CrossRef]
- Anand, D.; Hummler, E.; Rickman, O.J. ENaC activation by proteases. Acta Physiol. 2022, 235, e13811. [Google Scholar] [CrossRef]
- Golestaneh, N.; Nicolas, C.; Picaud, S.; Ferrari, P.; Mirshahi, M. The epithelial sodium channel (ENaC) in rodent retina, ontogeny and molecular identity. Curr. Eye Res. 2000, 21, 703–709. [Google Scholar] [CrossRef]
- Leonelli, M.; Martins, D.O.; Britto, L.R. Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases. Cell Mol. Neurobiol. 2013, 33, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Sappington, R.M.; Sidorova, T.; Ward, N.J.; Chakravarthy, R.; Ho, K.W.; Calkins, D.J. Activation of transient receptor potential vanilloid-1 (TRPV1) influences how retinal ganglion cell neurons respond to pressure-related stress. Channels 2015, 9, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Lakk, M.; Young, D.; Baumann, J.M.; Jo, A.O.; Hu, H.; Krizaj, D. Polymodal TRPV1 and TRPV4 Sensors Colocalize but Do Not Functionally Interact in a Subpopulation of Mouse Retinal Ganglion Cells. Front. Cell Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Liedtke, W.; Tobin, D.M.; Bargmann, C.I.; Friedman, J.M. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2003, 100 (Suppl. 2), 14531–14536. [Google Scholar] [CrossRef]
- Liedtke, W.; Friedman, J.M. Abnormal osmotic regulation in trpv4−/− mice. Proc. Natl. Acad. Sci. USA 2003, 100, 13698–13703. [Google Scholar] [CrossRef] [PubMed]
- Orduna, R.M.; Noguez, I.R.; Godinez, N.M.H.; Cortes, A.M.B.; Escalante, D.D.L.; Liedtke, W.; Martinez, T.A.; Concha, L.; Thebault, S. TRPV4 inhibition prevents increased water diffusion and blood-retina barrier breakdown in the retina of streptozotocin-induced diabetic mice. PLoS ONE 2019, 14, e0212158. [Google Scholar]
- O’Hare, M.; Esquiva, G.; McGahon, M.K.; Hombrebueno, J.M.R.; Augustine, J.; Canning, P.; Edgar, K.S.; Barabas, P.; Friedel, T.; Cincolà, P.; et al. Loss of TRPV2-mediated blood flow autoregulation recapitulates diabetic retinopathy in rats. JCI Insight 2022, 7, e155128. [Google Scholar] [CrossRef] [PubMed]
- Rountree, C.M.; Meng, C.; Troy, J.B.; Saggere, L. Mechanical Stimulation of the Retina: Therapeutic Feasibility and Cellular Mechanism. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Risner, M.L.; McGrady, N.R.; Boal, A.M.; Pasini, S.; Calkins, D.J. TRPV1 Supports Axogenic Enhanced Excitability in Response to Neurodegenerative Stress. Front. Cell Neurosci. 2021, 14, 603419. [Google Scholar] [CrossRef]
- Birkholz, T.R.; Beane, W.S. The planarian TRPA1 homolog mediates extraocular behavioral responses to near-ultraviolet light. J. Exp. Biol. 2017, 220, 2616–2625. [Google Scholar] [CrossRef]
- Shen, Y.; Rampino, M.A.; Carroll, R.C.; Nawy, S. G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer. Proc. Natl. Acad. Sci. USA 2012, 109, 8752–8757. [Google Scholar] [CrossRef]
- Xu, Y.; Orlandi, C.; Cao, Y.; Yang, S.; Choi, C.I.; Pagadala, V.; Birnbaumer, L.; Martemyanov, K.A.; Vardi, N. The TRPM1 channel in ON-bipolar cells is gated by both the α and the βγ subunits of the G-protein Go. Sci. Rep. 2016, 6, 20940. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, I.; Prado, Y.; Marchant, F.; Otero, C.; Eltit, F.; Cabello-Verrugio, C.; Cerda, O.; Simon, F. TRPM Channels in Human Diseases. Cells 2020, 9, 2604. [Google Scholar] [CrossRef]
- Contreras, E.; Nobleman, A.P.; Robinson, P.R.; Schmidt, T.M. Melanopsin phototransduction: Beyond canonical cascades. J. Exp. Biol. 2021, 224, jeb226522. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, R.; Schlotterer, A.; Schumacher, D.; Matka, C.; Mathar, I.; Dietrich, N.; Medert, R.; Kriebs, U.; Lin, J.; Nawroth, P.; et al. TRPC proteins contribute to development of diabetic retinopathy and regulate glyoxalase 1 activity and methylglyoxal accumulation. Mol. Metab. 2018, 9, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.L.; Xiong, W.H.; Peters, J.H.; Tekmen-Clark, M.; Strycharska-Orczyk, I.; Reed, B.T.; Morgans, C.W.; Duvoisin, R.M. TRPM3 expression in mouse retina. PLoS ONE 2015, 10, e0117615. [Google Scholar] [CrossRef] [PubMed]
- Webster, C.M.; Tworig, J.; Caval-Holme, F.; Morgans, C.W.; Feller, M.B. The Impact of Steroid Activation of TRPM3 on Spontaneous Activity in the Developing Retina. eNeuro 2020, 7, ENEURO-19. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gil, N.; Kutsyr, O.; Fernandez-Sanchez, L.; Sanchez-Saez, X.; Albertos-Arranz, H.; Sanchez-Castillo, C.; Vidal-Gil, L.; Cuenca, N.; Lax, P.; Maneu, V. Ischemia-Reperfusion Increases TRPM7 Expression in Mouse Retinas. Int. J. Mol. Sci. 2023, 24, 16068. [Google Scholar] [CrossRef]
- Hu, L.; Xu, G. Potential Protective Role of TRPM7 and Involvement of PKC/ERK Pathway in Blue Light-Induced Apoptosis in Retinal Pigment Epithelium Cells In Vitro. Asia Pac. J. Ophthalmol. 2021, 10, 572–578. [Google Scholar] [CrossRef]
MSCs | Photoreceptors | BCs, HCs, ACs, RGCs, INL, GCL | OPL, IPL | Other Cells |
---|---|---|---|---|
BK | Rods, cones, axons, synapses, salamander, goldfish, mouse, rabbit. | Cone ON BCs, RBCs, rabbit. A17 ACs, mouse. HCs, mouse, rat. RGCs, trout, ferret, mouse, salamander. | OPL, salamander, goldfish. | |
TRAAK | Rods, cones, ONL, mouse. | ACs, INL, GCL, mouse. | IPL, mouse, salamander. | Müller cells, mouse. |
TREK1 | Photoreceptors, mouse. | INL, GCL, mouse. | ||
TREK2 | INL, GCL, mouse. | Müller cells, mouse. | ||
ENaC | Photoreceptors, inner and outer segments, ONL, rat, human. | GCL, rabbit, rat, human. BCs, rat, rabbit. INL, mouse, human. | IPL, OPL, rat, human, mouse. | Müller cells, rabbit. RPE, rat, human. |
Piezo1/2 | Piezo1, retina, guinea pig. Piezo1, rods, Xenopus. | Piezo1/2, RGCs, mouse. Piezo1, INL, mouse. | Cornea, trabecular meshwork, lens, epithelial, astrocytes, mouse. Piezo1, capillary, mouse. | |
TRPV2 | Rods, cones, salamander. Axons, mouse. | RGCs, mouse. GCL, cat, monkey, salamander. INL (ACs), rat. HC, salamander. | OPL, mouse. IPL, OPL, rat, cat, monkey, salamander. | RPE, human, mouse, porcine. Artery, rat. |
TRPV4 | Rods, cones, salamander | RGCs, monkey, mouse, porcine. BCs, primate. BCs, HCs, salamander. INL(ACs), zebra fish. | OPL, IPL, monkey, mouse, porcine. | Müller cells, mouse. Microglia, mouse. RPE, human. |
TRPV1 | Cone and rod ribbons, goldfish, zebra fish | GCL, mouse, rat, primate. INL (ACs), rat. | OPL, mouse. | RPE, human. |
TRPCs | TRPC1, rods, Xenopus | TRPC3/6/7, ipRGCs, mouse. TRPC5, ACs, mouse. | TRPC1, IPL, chicken. TRPC4, all layers, chicken. | TRPC1/4/5/6, Müller cells, endothelium, mouse. |
TRPC1, TRPC3, TRPM1, TRPM3, and TRPML1, TRPC4, TRPM7, TRPP2, | Retina, mouse. | TRPM1, ON BC, mouse, human. TRPM3, GCL, mouse. | TRPM3, IPL, mouse. | TRPM7, Müller cells, rat. |
TRPC1–6, TRPV2, TRPV4, TRPM1–4/6/7, TRPP1, and TRPP2 | Astrocytes at optic nerve head, mouse. |
Permeability (P) | Mechanical Sensitivity | Erev | References | |
---|---|---|---|---|
BK | Permeable to K+ | Membrane tension | EK: −75 to −90 mV | [13] |
TRAAK | Permeable to K+ | Membrane tension | EK: −75 to −90 mV | [14,15,16,17] |
TREK1, TREK2 | Permeable to K+ | Membrane stretch | EK: −75 to −90 mV | [16] |
Piezo1, Piezo2 | Permeable to monovalent and divalent cations | Membrane stretch, touch | −15 to 0 mV | [18,19,20,21,22,23] |
ENaCa | PNa:PK = 100:1 | Membrane stretch | −10 to 0 mV | [24,25,26] |
TRPV2 | PCa: PNa = 2.8 | Mechanical and osmotic pressure, membrane stretch, heat > 52 °C | −3 to 10 mV | [15,27,28,29] |
TRPV4 | PCa: PNa = 6 to 10 | Mechanical and osmotic pressure, touch, heat 27–34 °C | −10 to 0 mV | [30,31,32,33,34,35,36] |
TRPV1 | PCa: PNa = 10 | Heat 43 to 50 °C Pressure-sensitive or -insensitive | ~0 mV | [27,37,38,39] |
TRPA1, TRPC1/3/5/6, TRPM3/4/7, TRPP1/2 | PCa > PNa: TRPC5 (8), TRPM7 (3), TRPM3α2 (1.5) PCa < PNa: TRPA1 (0.8), TRPM4/5 (~0.01), TRPM3α1 (0.1), TRPP2 (4) | Mechanosensitive | ~0 mV | [22,40,41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, J.-J. The Variety of Mechanosensitive Ion Channels in Retinal Neurons. Int. J. Mol. Sci. 2024, 25, 4877. https://doi.org/10.3390/ijms25094877
Pang J-J. The Variety of Mechanosensitive Ion Channels in Retinal Neurons. International Journal of Molecular Sciences. 2024; 25(9):4877. https://doi.org/10.3390/ijms25094877
Chicago/Turabian StylePang, Ji-Jie. 2024. "The Variety of Mechanosensitive Ion Channels in Retinal Neurons" International Journal of Molecular Sciences 25, no. 9: 4877. https://doi.org/10.3390/ijms25094877
APA StylePang, J. -J. (2024). The Variety of Mechanosensitive Ion Channels in Retinal Neurons. International Journal of Molecular Sciences, 25(9), 4877. https://doi.org/10.3390/ijms25094877