A High-Resolution Crystallographic Study of Cytochrome c6: Structural Basis for Electron Transfer in Cyanobacterial Photosynthesis
Abstract
1. Introduction
2. Results
2.1. Preparation and Characterization of Cyt c6 Proteins
2.2. Crystal Structural Analysis
2.3. Structural Analysis of the Dimerization Interface
2.4. Comparative Analysis of Dimeric Structures
2.5. AlphaFold3 Prediction of PSI-Cyt c6 Complex
3. Discussion
4. Materials and Methods
4.1. Expression and Purification of Cyt c6
4.2. Crystallization of Cyt c6
4.3. Data Collection, Processing, and Refinement
4.4. MALDI-TOF MS Analysis
4.5. UV–Visible Absorption Spectroscopy
4.6. AlphaFold3 Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torrado, A.; Iniesta-Pallarés, M.; Velázquez-Campoy, A.; Álvarez, C.; Mariscal, V.; Molina-Heredia, F.P. Phylogenetic and functional analysis of cyanobacterial Cytochrome c(6)-like proteins. Front. Plant Sci. 2023, 14, 1227492. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.; Junge, W. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 2015, 84, 659–683. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Bayard, P.; Pallara, C.; Castell, M.C.; Molina-Heredia, F.P.; Fernández-Recio, J.; Hervás, M.; Navarro, J.A. Interaction of photosystem I from Phaeodactylum tricornutum with plastocyanins as compared with its native cytochrome c6: Reunion with a lost donor. Biochim. Biophys. Acta 2015, 1847, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Salles, R.; Miyachi, M.; Yamanoi, Y.; Tomo, T.; Takahashi, H.; Nishihara, H.H. Photoelectric Conversion System Composed of Gene-Recombined Photosystem I and Platinum Nanoparticle Nanosheet. Langmuir 2020, 36, 6429–6435. [Google Scholar] [CrossRef]
- Than, L.; Wolfe, K.D.; Cliffel, D.E.; Jennings, G.K. Drop-casted Photosystem I/cytochrome c multilayer films for biohybrid solar energy conversion. Photosynth. Res. 2023, 155, 299–308. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Zhang, X.; Cheng, J.; Xiao, Y.; Ma, J.; Sun, S.; Zhang, X.; Wang, H.W.; Sui, S.F. In situ structure of the red algal phycobilisome–PSII–PSI–LHC megacomplex. Nature 2023, 616, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Torrado, A.; Ramírez-Moncayo, C.; Navarro, J.A.; Mariscal, V.; Molina-Heredia, F.P. Cytochrome c(6) is the main respiratory and photosynthetic soluble electron donor in heterocysts of the cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta Bioenerg. 2019, 1860, 60–68. [Google Scholar] [CrossRef]
- Chida, H.; Nakazawa, A.; Akazaki, H.; Hirano, T.; Suruga, K.; Ogawa, M.; Satoh, T.; Kadokura, K.; Yamada, S.; Hakamata, W.; et al. Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol. 2007, 48, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K.; Khatri, K.; Rathore, M.S.; Jha, B. Introgression of UfCyt c(6), a thylakoid lumen protein from a green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco. Mol. Biol. Rep. 2018, 45, 1745–1758. [Google Scholar] [CrossRef] [PubMed]
- Slater, B.; Kosmützky, D.; Nisbet, R.E.R.; Howe, C.J. The Evolution of the Cytochrome c6 Family of Photosynthetic Electron Transfer Proteins. Genome Biol. Evol. 2021, 13, evab146. [Google Scholar] [CrossRef] [PubMed]
- Wastl, J.; Bendall, D.S.; Howe, C.J. Higher plants contain a modified cytochrome c(6). Trends Plant Sci. 2002, 7, 244–245. [Google Scholar] [CrossRef]
- Molina-Heredia, F.P.; Wastl, J.; Navarro, J.A.; Bendall, D.S.; Hervás, M.; Howe, C.J.; De la Rosa, M.A. Photosynthesis: A new function for an old cytochrome? Nature 2003, 424, 33–34. [Google Scholar] [CrossRef]
- Bialek, W.; Nelson, M.; Tamiola, K.; Kallas, T.; Szczepaniak, A. Deeply branching c6-like cytochromes of cyanobacteria. Biochemistry 2008, 47, 5515–5522. [Google Scholar] [CrossRef] [PubMed]
- Kerfeld, C.A.; Anwar, H.P.; Interrante, R.; Merchant, S.; Yeates, T.O. The structure of chloroplast cytochrome c6 at 1.9 A resolution: Evidence for functional oligomerization. J. Mol. Biol. 1995, 250, 627–647. [Google Scholar] [CrossRef] [PubMed]
- Worrall, J.A.; Schlarb-Ridley, B.G.; Reda, T.; Marcaida, M.J.; Moorlen, R.J.; Wastl, J.; Hirst, J.; Bendall, D.S.; Luisi, B.F.; Howe, C.J. Modulation of heme redox potential in the cytochrome c6 family. J. Am. Chem. Soc. 2007, 129, 9468–9475. [Google Scholar] [CrossRef]
- Falke, S.; Feiler, C.; Chapman, H.; Sarrou, I. Crystal structures of native cytochrome c(6) from Thermosynechococcus elongatus in two different space groups and implications for its oligomerization. Acta Crystallogr. F Struct. Biol. Commun. 2020, 76 Pt 9, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Marcaida, M.J.; Schlarb-Ridley, B.G.; Worrall, J.A.; Wastl, J.; Evans, T.J.; Bendall, D.S.; Luisi, B.F.; Howe, C.J. Structure of cytochrome c6A, a novel dithio-cytochrome of Arabidopsis thaliana, and its reactivity with plastocyanin: Implications for function. J. Mol. Biol. 2006, 360, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Akazaki, H.; Kawai, F.; Chida, H.; Matsumoto, Y.; Hirayama, M.; Hoshikawa, K.; Unzai, S.; Hakamata, W.; Nishio, T.; Park, S.Y.; et al. Cloning, expression and purification of cytochrome c(6) from the brown alga Hizikia fusiformis and complete X-ray diffraction analysis of the structure. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2008, 64 Pt 8, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Hirota, S.; Hattori, Y.; Nagao, S.; Taketa, M.; Komori, H.; Kamikubo, H.; Wang, Z.; Takahashi, I.; Negi, S.; Sugiura, Y.; et al. Cytochrome c polymerization by successive domain swapping at the C-terminal helix. Proc. Natl. Acad. Sci. USA 2010, 107, 12854–12859. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, M.S.; Parui, P.P.; Kamikubo, H.; Yamanaka, M.; Nagao, S.; Komori, H.; Kataoka, M.; Higuchi, Y.; Hirota, S. Formation of domain-swapped oligomer of cytochrome C from its molten globule state oligomer. Biochemistry 2014, 53, 4696–4703. [Google Scholar] [CrossRef] [PubMed]
- Naschberger, A.; Mosebach, L.; Tobiasson, V.; Kuhlgert, S.; Scholz, M.; Perez-Boerema, A.; Ho, T.T.H.; Vidal-Meireles, A.; Takahashi, Y.; Hippler, M.; et al. Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex. Nat. Plants 2022, 8, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hamaoka, N.; Makino, F.; Kawamoto, A.; Lin, Y.; Rögner, M.; Nowaczyk, M.M.; Lee, Y.-H.; Namba, K.; Gerle, C.; et al. Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 Å resolution. Commun. Biol. 2022, 5, 951. [Google Scholar] [CrossRef] [PubMed]
- Arslan, E.; Schulz, H.; Zufferey, R.; Künzler, P.; Thöny-Meyer, L. Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem. Biophys. Res. Commun. 1998, 251, 744–747. [Google Scholar] [CrossRef] [PubMed]
- Beissinger, M.; Beißinger, M.; Sticht, H.; Sutter, M.; Ejchart, A.; Haehnel, W.; Rösch, P. Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus. Embo J. 1998, 17, 27–36. [Google Scholar] [CrossRef]
- Schnackenberg, J.; Than, M.E.; Mann, K.; Wiegand, G.; Huber, R.; Reuter, W. Amino acid sequence, crystallization and structure determination of reduced and oxidized cytochrome c6 from the green alga Scenedesmus obliquus. J. Mol. Biol. 1999, 290, 1019–1030. [Google Scholar] [CrossRef]
- Breuer, M.; Rosso, K.M.; Blumberger, J. Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Proc. Natl. Acad. Sci. USA 2014, 111, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Cavallaro, G.; Rosato, A. Cytochrome c: Occurrence and functions. Chem. Rev. 2006, 106, 90–115. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Cao, P.; Cao, D.; Si, L.; Su, X.; Tian, L.; Chang, W.; Liu, Z.; Zhang, X.; Li, M. Structural basis for energy and electron transfer of the photosystem I-IsiA-flavodoxin supercomplex. Nat. Plants 2020, 6, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Moreno, I.; Díaz-Quintana, A.; Molina-Heredia, F.P.; Nieto, P.M.; Hansson, O.; De la Rosa, M.A.; Karlsson, B.G. NMR analysis of the transient complex between membrane photosystem I and soluble cytochrome c6. J. Biol. Chem. 2005, 280, 7925–7931. [Google Scholar] [CrossRef] [PubMed]
- Viola, S.; Sellés, J.; Bailleul, B.; Joliot, P.; Wollman, F.-A. In vivo electron donation from plastocyanin and cytochrome c(6) to PSI in Synechocystis sp. PCC6803. Biochim. Biophys. Acta Bioenerg. 2021, 1862, 148449. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Yu, L.; Chitnis, V.; Chitnis, P. Function and organization of photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J. Biol. Chem. 1994, 269, 3205–3211. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Sugawara, H.; Hamanaka, S.; Tsukui, H.; Suzuki, E.; Kohzuma, T.; Kai, Y. Crystal structure determinations of oxidized and reduced plastocyanin from the cyanobacterium Synechococcus sp. PCC 7942. Biochemistry 1999, 38, 6063–6069. [Google Scholar] [CrossRef] [PubMed]
- Kölsch, A.; Hejazi, M.; Stieger, K.R.; Feifel, S.C.; Kern, J.F.; Müh, F.; Lisdat, F.; Lokstein, H.; Zouni, A. Insights into the binding behavior of native and non-native cytochromes to photosystem I from Thermosynechococcus elongatus. J. Biol. Chem. 2018, 293, 9090–9100. [Google Scholar] [CrossRef] [PubMed]
- Hippler, M.; Drepper, F.; Haehnel, W.; Rochaix, J.D. The N-terminal domain of PsaF: Precise recognition site for binding and fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 1998, 95, 7339–7344. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Moreno, I.; Hulsker, R.; Skubak, P.; Foerster, J.M.; Cavazzini, D.; Finiguerra, M.G.; Díaz-Quintana, A.; Moreno-Beltrán, B.; Rossi, G.-L.; Ullmann, G.M.; et al. The dynamic complex of cytochrome c6 and cytochrome f studied with paramagnetic NMR spectroscopy. Biochim. Biophys. Acta 2014, 1837, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 2, 125–132. [Google Scholar] [CrossRef] [PubMed]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40 Pt 4, 658–674. [Google Scholar] [CrossRef]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.-W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 2, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Murshudov, G.N.; Skubák, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011, 67 Pt 4, 355–367. [Google Scholar] [CrossRef]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60 Pt 12, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 1, 12–21. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Xu, Y.; Liu, S.; Chen, S.; Zhao, W.; Li, Z.; Wang, J.; Zhao, W.; Zhang, H.; Dong, Y.; et al. A High-Resolution Crystallographic Study of Cytochrome c6: Structural Basis for Electron Transfer in Cyanobacterial Photosynthesis. Int. J. Mol. Sci. 2025, 26, 824. https://doi.org/10.3390/ijms26020824
Zhang B, Xu Y, Liu S, Chen S, Zhao W, Li Z, Wang J, Zhao W, Zhang H, Dong Y, et al. A High-Resolution Crystallographic Study of Cytochrome c6: Structural Basis for Electron Transfer in Cyanobacterial Photosynthesis. International Journal of Molecular Sciences. 2025; 26(2):824. https://doi.org/10.3390/ijms26020824
Chicago/Turabian StyleZhang, Botao, Yuancong Xu, Shuwen Liu, Sixu Chen, Wencong Zhao, Zhaoyang Li, Junshuai Wang, Weijian Zhao, Heng Zhang, Yuhui Dong, and et al. 2025. "A High-Resolution Crystallographic Study of Cytochrome c6: Structural Basis for Electron Transfer in Cyanobacterial Photosynthesis" International Journal of Molecular Sciences 26, no. 2: 824. https://doi.org/10.3390/ijms26020824
APA StyleZhang, B., Xu, Y., Liu, S., Chen, S., Zhao, W., Li, Z., Wang, J., Zhao, W., Zhang, H., Dong, Y., Gong, Y., Sheng, W., & Cao, P. (2025). A High-Resolution Crystallographic Study of Cytochrome c6: Structural Basis for Electron Transfer in Cyanobacterial Photosynthesis. International Journal of Molecular Sciences, 26(2), 824. https://doi.org/10.3390/ijms26020824