Molecular Structure of the mRNA Export Factor Gle1 from Debaryomyces hansenii
Abstract
:1. Introduction
2. Results
2.1. Overall Structure of DhGle1ΔN
2.2. Structural Comparison of DhGle1ΔN with Its Homologs
2.3. IP6 Binding Sites in DhGle1ΔN and Homologous Proteins
2.4. IP6-Dependent Complex Formation of DhGle1ΔN with DhDbp5
3. Discussion
4. Materials and Methods
4.1. Cloning and Overexpression of Gle1
4.2. Purification of Recombinant Proteins
4.3. Crystallization
4.4. Data Collection and Structure Determination
4.5. Size-Exclusion Chromatography Anaysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tseng, S.S.; Weaver, P.L.; Liu, Y.; Hitomi, M.; Tartakoff, A.M.; Chang, T.H. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 1998, 17, 2651–2662. [Google Scholar] [CrossRef] [PubMed]
- Tran, E.J.; Zhou, Y.; Corbett, A.H.; Wente, S.R. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol. Cell 2007, 28, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.H.; Correia, A.R.; Cai, S.W.; Huber, F.M.; Jette, C.A.; Hoelz, A. Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Nat. Commun. 2018, 9, 2319. [Google Scholar] [CrossRef]
- Hodge, C.A.; Tran, E.J.; Noble, K.N.; Alcazar-Roman, A.R.; Ben-Yishay, R.; Scarcelli, J.J.; Folkmann, A.W.; Shav-Tal, Y.; Wente, S.R.; Cole, C.N. The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Genes. Dev. 2011, 25, 1052–1064. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M. Nuclear export of mRNA. Trends Biochem. Sci. 2010, 35, 609–617. [Google Scholar] [CrossRef]
- Montpetit, B.; Thomsen, N.D.; Helmke, K.J.; Seeliger, M.A.; Berger, J.M.; Weis, K. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature 2011, 472, 238–242. [Google Scholar] [CrossRef]
- Heung, L.J.; Del Poeta, M. Unlocking the DEAD-box: A key to cryptococcal virulence? J. Clin. Investig. 2005, 115, 593–595. [Google Scholar] [CrossRef]
- Weirich, C.S.; Erzberger, J.P.; Flick, J.S.; Berger, J.M.; Thorner, J.; Weis, K. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat. Cell Biol. 2006, 8, 668–676. [Google Scholar] [CrossRef]
- Lund, M.K.; Guthrie, C. The DEAD-Box Protein Dbp5p Is Required to Dissociate Mex67p from Exported mRNPs at the Nuclear Rim. Mol. Cell 2005, 20, 645–651. [Google Scholar] [CrossRef]
- Hodge, C.A.; Colot, H.V.; Stafford, P.; Cole, C.N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 1999, 18, 5778–5788. [Google Scholar] [CrossRef]
- Alcazar-Roman, A.R.; Tran, E.J.; Guo, S.; Wente, S.R. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat. Cell Biol. 2006, 8, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Alcázar-Román, A.R.; Bolger, T.A.; Wente, S.R. Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. J. Biol. Chem. 2010, 285, 16683–16692. [Google Scholar] [CrossRef] [PubMed]
- Arul Nambi Rajan, A.; Asada, R.; Montpetit, B. Gle1 is required for tRNA to stimulate Dbp5 ATPase activity in vitro and promote Dbp5-mediated tRNA export in vivo in Saccharomyces cerevisiae. eLife 2024, 12, RP89835. [Google Scholar] [CrossRef]
- Weirich, C.S.; Erzberger, J.P.; Berger, J.M.; Weis, K. The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 2004, 16, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Noble, K.N.; Tran, E.J.; Alcazar-Roman, A.R.; Hodge, C.A.; Cole, C.N.; Wente, S.R. The Dbp5 cycle at the nuclear pore complex during mRNA export II: Nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev. 2011, 25, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Bley, C.J.; Nie, S.; Mobbs, G.W.; Petrovic, S.; Gres, A.T.; Liu, X.; Mukherjee, S.; Harvey, S.; Huber, F.M.; Lin, D.H.; et al. Architecture of the cytoplasmic face of the nuclear pore. Science 2022, 376, eabm9129. [Google Scholar] [CrossRef]
- Folkmann, A.W.; Collier, S.E.; Zhan, X.; Aditi; Ohi, M.D.; Wente, S.R. Gle1 functions during mRNA export in an oligomeric complex that is altered in human disease. Cell 2013, 155, 582–593. [Google Scholar] [CrossRef]
- Rayala, H.J.; Kendirgi, F.; Barry, D.M.; Majerus, P.W.; Wente, S.R. The mRNA export factor human Gle1 interacts with the nuclear pore complex protein Nup155. Mol. Cell Proteom. 2004, 3, 145–155. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Holm, L. DALI and the persistence of protein shape. Protein Sci. 2020, 29, 128–140. [Google Scholar] [CrossRef]
- Ayers, M. ChemSpider: The Free Chemical Database. Ref. Rev. 2012, 26, 45. [Google Scholar] [CrossRef]
- Dossani, Z.Y.; Weirich, C.S.; Erzberger, J.P.; Berger, J.M.; Weis, K. Structure of the C-terminus of the mRNA export factor Dbp5 reveals the interaction surface for the ATPase activator Gle1. Proc. Natl. Acad. Sci. USA 2009, 106, 16251–16256. [Google Scholar] [CrossRef]
- Schütz, P.; Bumann, M.; Oberholzer, A.E.; Bieniossek, C.; Trachsel, H.; Altmann, M.; Baumann, U. Crystal structure of the yeast eIF4A-eIF4G complex: An RNA-helicase controlled by protein-protein interactions. Proc. Natl. Acad. Sci. USA 2008, 105, 9564–9569. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.; Cao, W.; Montpetit, B.; De La Cruz, E.M. The nucleoporin Gle1 activates DEAD-box protein 5 (Dbp5) by promoting ATP binding and accelerating rate limiting phosphate release. Nucleic Acids Res. 2022, 50, 3998–4011. [Google Scholar] [CrossRef] [PubMed]
- Lari, A.; Arul Nambi Rajan, A.; Sandhu, R.; Reiter, T.; Montpetit, R.; Young, B.P.; Loewen, C.J.; Montpetit, B. A nuclear role for the DEAD-box protein Dbp5 in tRNA export. eLife 2019, 8, e48410. [Google Scholar] [CrossRef]
- Neumann, B.; Wu, H.; Hackmann, A.; Krebber, H. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export. PLoS ONE 2016, 11, e0149571. [Google Scholar] [CrossRef]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef]
Protein | Species | Z-Score | r.m.s.d. (Å) | Identity (%) | PDB Code |
---|---|---|---|---|---|
Gle1 | Saccharomyces cerevisiae | 41.1 | 1.2 | 49 | 3PEU |
Homo sapiens | 29.8 | 2.3 | 19 | 6B4F | |
Chaetomiumthermophilum | 29.5 | 2.2 | 21 | 6B4H | |
eIF4G | Saccharomyces cerevisiae | 15.1 | 3.9 | 16 | 2VSX |
Statistic | DhGle1ΔN a |
---|---|
Data collection | |
Space group | P212121 |
a, b, c (Å) | 47.2, 70.7, 87.9 |
α, β, γ (°) | 90, 90, 90 |
Resolution range (Å) a | 50–1.5 (1.55–1.50) |
No. of total reflection | 493,901 |
No. of unique reflections | 47,692 |
Completeness (%) | 99.3 (100) |
I/σ (I) | 49.5 (6.5) |
Rmerge (%) ᵇ | 8.9 (47.8) |
CC1/2 | 0.993 (0.927) |
Structure refinement | |
Resolution range (Å) | 35.9–2.0 |
No. of reflections | 47,608 |
Rwork c and Rfree d | 17.3/19.3 |
RMS deviation | |
Bond lengths (Å) | 0.007 |
Bond Angles (°) | 0.976 |
Average B-factor (Å2) | |
Protein | 19.2 |
Solvents | 30.9 |
Ramachandran plot e | |
Favored (%) | 97.6 |
Allowed (%) | 2.4 |
Disallowed (%) | 0 |
PDB code | 9LT9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, M.J.; Lee, S.J.; Chang, J.H. Molecular Structure of the mRNA Export Factor Gle1 from Debaryomyces hansenii. Int. J. Mol. Sci. 2025, 26, 1661. https://doi.org/10.3390/ijms26041661
Jang MJ, Lee SJ, Chang JH. Molecular Structure of the mRNA Export Factor Gle1 from Debaryomyces hansenii. International Journal of Molecular Sciences. 2025; 26(4):1661. https://doi.org/10.3390/ijms26041661
Chicago/Turabian StyleJang, Min Jeong, Soo Jin Lee, and Jeong Ho Chang. 2025. "Molecular Structure of the mRNA Export Factor Gle1 from Debaryomyces hansenii" International Journal of Molecular Sciences 26, no. 4: 1661. https://doi.org/10.3390/ijms26041661
APA StyleJang, M. J., Lee, S. J., & Chang, J. H. (2025). Molecular Structure of the mRNA Export Factor Gle1 from Debaryomyces hansenii. International Journal of Molecular Sciences, 26(4), 1661. https://doi.org/10.3390/ijms26041661